The differential pencils with turning point on the half line

We investigate the inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning point. Using the asymptotic distribution of the Weyl function, we give a formulation of the inverse problem and prove the uniqueness theorem for the solution of the...

Full description

Saved in:
Bibliographic Details
Published inArab journal of mathematical sciences Vol. 19; no. 1; pp. 95 - 104
Main Authors Neamaty, A., Khalili, Y.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate the inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning point. Using the asymptotic distribution of the Weyl function, we give a formulation of the inverse problem and prove the uniqueness theorem for the solution of the inverse problem.
AbstractList We investigate the inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning point. Using the asymptotic distribution of the Weyl function, we give a formulation of the inverse problem and prove the uniqueness theorem for the solution of the inverse problem.
Author Neamaty, A.
Khalili, Y.
Author_xml – sequence: 1
  givenname: A.
  surname: Neamaty
  fullname: Neamaty, A.
  email: namaty@umz.ac.ir
– sequence: 2
  givenname: Y.
  surname: Khalili
  fullname: Khalili, Y.
  email: y.khalili@stu.umz.ac.ir
BookMark eNp9j0FOwzAQRb0oEqX0BGx8gYQZO3EcCRaoAopUiU1ZW64zoY5Sp7IDiNuTUtb8zWz-G_13xWZhCMTYDUKOgOq2y213SC4XgCIHnQPIGZujxDorUalLtkypAwCspEZRztnddk-88W1LkcLobc-PFJzvE__y456PHzH48M6Pgw8jHwIfp_re9i3vfaBrdtHaPtHy7y7Y29PjdrXONq_PL6uHTeaEkjKrdKULoYpTJGpHaB0UFgoUAnY7K0XZ0FSsK2qwKO1OKyzq2qmGagWFlAsmz39dHFKK1Jpj9Acbvw2COXmbzvx6m5O3AW0m74m6P1M0Tfv0FE1yfpKjxkdyo2kG_y__A1WpY9Q
CitedBy_id crossref_primary_10_1080_25742558_2018_1464880
crossref_primary_10_1080_17415977_2013_848436
crossref_primary_10_1007_s40324_016_0104_y
Cites_doi 10.1088/0266-5611/13/5/010
10.1007/s10958-008-0160-7
10.1002/mana.19941650114
10.1515/9783110940961
10.1088/0266-5611/10/1/003
10.1006/jdeq.1998.3564
10.1070/SM2000v191n10ABEH000520
10.1016/j.jmaa.2005.06.085
ContentType Journal Article
Copyright 2012
Copyright_xml – notice: 2012
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.ajmsc.2012.08.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 104
ExternalDocumentID 10_1016_j_ajmsc_2012_08_003
S131951661200028X
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABJCF
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFKRA
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AUCOK
BCNDV
BENPR
BGLVJ
CCPQU
EBS
EJD
FDB
GEI
GROUPED_DOAJ
HCIFZ
HZ~
IPNFZ
IXB
KQ8
M41
M7S
NCXOZ
O-L
O9-
OK1
PIMPY
PTHSS
RIG
ROL
SES
SSZ
XDTOA
XH2
AAGBP
AAYXX
ADVLN
AKRWK
CITATION
H13
ID FETCH-LOGICAL-c2633-787842644444318ce1ac04a041220bba325de63397ed145ab861499c6de960433
IEDL.DBID IXB
ISSN 1319-5166
IngestDate Fri Aug 23 01:35:37 EDT 2024
Fri Feb 23 02:25:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Sturm–Liouville
Turning point
Weyl function
34L20
34B07
34D05
Asymptotic form
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2633-787842644444318ce1ac04a041220bba325de63397ed145ab861499c6de960433
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S131951661200028X
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_ajmsc_2012_08_003
elsevier_sciencedirect_doi_10_1016_j_ajmsc_2012_08_003
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationTitle Arab journal of mathematical sciences
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yurko (b0050) 2002
Freiling, Yurko (b0015) 1997; 13
Freiling, Yurko (b0020) 1999; 154
Mennicken, Moller (b0030) 2003
Yurko (b0055) 2006; 320
Conway (b0005) 1995
Eberhard, Freiling, Schneider (b0010) 1994; 165
Khruslov, Shepelsky (b0025) 1994; 10
Yurko (b0045) 2000
Yurko (b0060) 2008; 150
Yurko (b0040) 2000; 191
Tamarkin (b0035) 1917
Yurko (10.1016/j.ajmsc.2012.08.003_b0050) 2002
Freiling (10.1016/j.ajmsc.2012.08.003_b0020) 1999; 154
Yurko (10.1016/j.ajmsc.2012.08.003_b0060) 2008; 150
Eberhard (10.1016/j.ajmsc.2012.08.003_b0010) 1994; 165
Freiling (10.1016/j.ajmsc.2012.08.003_b0015) 1997; 13
Mennicken (10.1016/j.ajmsc.2012.08.003_b0030) 2003
Yurko (10.1016/j.ajmsc.2012.08.003_b0055) 2006; 320
Tamarkin (10.1016/j.ajmsc.2012.08.003_b0035) 1917
Conway (10.1016/j.ajmsc.2012.08.003_b0005) 1995
Yurko (10.1016/j.ajmsc.2012.08.003_b0045) 2000
Khruslov (10.1016/j.ajmsc.2012.08.003_b0025) 1994; 10
Yurko (10.1016/j.ajmsc.2012.08.003_b0040) 2000; 191
References_xml – year: 1995
  ident: b0005
  article-title: Functions of One Complex Variable
  contributor:
    fullname: Conway
– year: 2000
  ident: b0045
  article-title: Inverse Spectral Problems for Differential Operators and Their Applications
  contributor:
    fullname: Yurko
– volume: 13
  start-page: 1247
  year: 1997
  end-page: 1263
  ident: b0015
  article-title: Inverse problems for differential equations with turning points
  publication-title: Inverse Problems
  contributor:
    fullname: Yurko
– year: 1917
  ident: b0035
  article-title: On Some Problems of the Theory of Ordinary Linear Differential Equations
  contributor:
    fullname: Tamarkin
– year: 2002
  ident: b0050
  publication-title: Method of Spectral Mappings in the Inverse Problem Theory, Inverse and III-Posed Problems Series
  contributor:
    fullname: Yurko
– volume: 10
  start-page: 1
  year: 1994
  end-page: 37
  ident: b0025
  article-title: Inverse scattering method in electromagnetic sounding theory
  publication-title: Inverse Problems
  contributor:
    fullname: Shepelsky
– volume: 191
  start-page: 1561
  year: 2000
  end-page: 1586
  ident: b0040
  article-title: An inverse problem for pencils of differential operators
  publication-title: Sb. Math.
  contributor:
    fullname: Yurko
– volume: 165
  start-page: 205
  year: 1994
  end-page: 229
  ident: b0010
  article-title: Connection formulas for second-order differential equations with a complex parameter and having an arbitrary number of turning points
  publication-title: Math. Nachr.
  contributor:
    fullname: Schneider
– volume: 154
  start-page: 419
  year: 1999
  end-page: 453
  ident: b0020
  article-title: Inverse spectral problems for differential equations on the half-line with turning points
  publication-title: J. Dif. Eqs.
  contributor:
    fullname: Yurko
– volume: 320
  start-page: 439
  year: 2006
  end-page: 463
  ident: b0055
  article-title: Inverse spectral problems for differential pencils on the half-line with turning points
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Yurko
– volume: 150
  start-page: 2620
  year: 2008
  end-page: 2627
  ident: b0060
  article-title: The inverse problem for pencils of differential operators on the half-line with turning points
  publication-title: J. Math. Sci.
  contributor:
    fullname: Yurko
– year: 2003
  ident: b0030
  article-title: Non-Self-Adjoint Boundary Eigenvalue Problems
  contributor:
    fullname: Moller
– volume: 13
  start-page: 1247
  year: 1997
  ident: 10.1016/j.ajmsc.2012.08.003_b0015
  article-title: Inverse problems for differential equations with turning points
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/13/5/010
  contributor:
    fullname: Freiling
– volume: 150
  start-page: 2620
  year: 2008
  ident: 10.1016/j.ajmsc.2012.08.003_b0060
  article-title: The inverse problem for pencils of differential operators on the half-line with turning points
  publication-title: J. Math. Sci.
  doi: 10.1007/s10958-008-0160-7
  contributor:
    fullname: Yurko
– year: 1917
  ident: 10.1016/j.ajmsc.2012.08.003_b0035
  contributor:
    fullname: Tamarkin
– volume: 165
  start-page: 205
  year: 1994
  ident: 10.1016/j.ajmsc.2012.08.003_b0010
  article-title: Connection formulas for second-order differential equations with a complex parameter and having an arbitrary number of turning points
  publication-title: Math. Nachr.
  doi: 10.1002/mana.19941650114
  contributor:
    fullname: Eberhard
– year: 2003
  ident: 10.1016/j.ajmsc.2012.08.003_b0030
  contributor:
    fullname: Mennicken
– year: 2000
  ident: 10.1016/j.ajmsc.2012.08.003_b0045
  contributor:
    fullname: Yurko
– year: 2002
  ident: 10.1016/j.ajmsc.2012.08.003_b0050
  doi: 10.1515/9783110940961
  contributor:
    fullname: Yurko
– volume: 10
  start-page: 1
  year: 1994
  ident: 10.1016/j.ajmsc.2012.08.003_b0025
  article-title: Inverse scattering method in electromagnetic sounding theory
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/10/1/003
  contributor:
    fullname: Khruslov
– volume: 154
  start-page: 419
  year: 1999
  ident: 10.1016/j.ajmsc.2012.08.003_b0020
  article-title: Inverse spectral problems for differential equations on the half-line with turning points
  publication-title: J. Dif. Eqs.
  doi: 10.1006/jdeq.1998.3564
  contributor:
    fullname: Freiling
– volume: 191
  start-page: 1561
  year: 2000
  ident: 10.1016/j.ajmsc.2012.08.003_b0040
  article-title: An inverse problem for pencils of differential operators
  publication-title: Sb. Math.
  doi: 10.1070/SM2000v191n10ABEH000520
  contributor:
    fullname: Yurko
– volume: 320
  start-page: 439
  year: 2006
  ident: 10.1016/j.ajmsc.2012.08.003_b0055
  article-title: Inverse spectral problems for differential pencils on the half-line with turning points
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.06.085
  contributor:
    fullname: Yurko
– year: 1995
  ident: 10.1016/j.ajmsc.2012.08.003_b0005
  contributor:
    fullname: Conway
SSID ssj0001738125
Score 1.9251826
Snippet We investigate the inverse spectral problem of recovering pencils of second-order differential operators on the half-line with turning point. Using the...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 95
SubjectTerms 34B07
34D05
34L20
Asymptotic form
Sturm–Liouville
Turning point
Weyl function
Title The differential pencils with turning point on the half line
URI https://dx.doi.org/10.1016/j.ajmsc.2012.08.003
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB2KXvQgfmL9KHvwaGiS3U0a8KLFUgTrQQvBS9hkdzGlpsHW_-_MNsEK4sEcwy4kszvzhsfMG4ArX8RGycB6vi2EJ7hAn0ssOZ6SCbc6MoqogcdJNJ6Kh1SmHRi2vTBUVtnE_nVMd9G6edNvrNmvy7L_HODtkQHiS-g4ohTjMJWlUxNfevfNs8SISW72Kq33aEMrPuTKvNTsfUlShsQJUlkl_x2gNkBntA97TbbIbtcfdAAdUx3C7oaG4BHc4EGzdswJuuuc1fgT5XzJiGJliCjEfLB6UVYrtqgYJnzsTc0to_zyGKaj-5fh2GtGInhFGHHuoXsNXA6DD3pjYQJV-EKRaFbo57niodQGFyax0YGQKh8g_CZJEWlDKiycn8BWtajMKbDQxpxbwVUiSZAnGRQFddHqWArta227cN3aIavXyhdZWxI2y5zZMjJbRmMsfd6FqLVV9uMAM4zNf208--_Gc9gJ3WwK4kMuYGv18WkuMUNY5T13BXqwPRmmT69fKs631A
link.rule.ids 315,783,787,3514,27937,27938,45887
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED2VMgAD4lOUTw-MRE1iJ2kkFqioWmi70ErZLCe2RaqSRrT8f3xuIoqEGMgY5aTk7Lt3eTq_A7h1WaRE4GnH1RlzGGUm5mKNgSeCmGoZKoHUwGgc9qfsOQmSBnTrszDYVlnl_nVOt9m6utOuvNku87z96pndE3gGX3zLESVbsI3HLvEPbJA8fhMtkQElO3wVDRy0qNWHbJ-XmL0vUcsQSUHsq6S_I9QG6vQOYL8qF8nD-o0OoaGKI9jbEBE8hnuz0qSec2LidU5K8xX5fEmQYyUGUpD6IOUiL1ZkURBT8ZE3MdcEC8wTmPaeJt2-U81EcDI_pNQx8dWxRYy5TDhmyhOZywSqZvlumgrqB1KZB-NISY8FIu0Y_I3jLJQKZVgoPYVmsSjUGRBfR5RqRkUcoCJP3MkyPEYro4BJV0rdgrvaD7xcS1_wuidsxq3bOLqN4xxLl7YgrH3Ff6wgN8n5L8Pz_xrewE5_Mhry4WD8cgG7vh1UgeTIJTRXH5_qypQLq_Tabocv0JS5TQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+differential+pencils+with+turning+point+on+the+half+line&rft.jtitle=Arab+journal+of+mathematical+sciences&rft.au=Neamaty%2C+A.&rft.au=Khalili%2C+Y.&rft.date=2013-01-01&rft.pub=Elsevier+B.V&rft.issn=1319-5166&rft.volume=19&rft.issue=1&rft.spage=95&rft.epage=104&rft_id=info:doi/10.1016%2Fj.ajmsc.2012.08.003&rft.externalDocID=S131951661200028X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1319-5166&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1319-5166&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1319-5166&client=summon