Clinically compatible subject‐specific dynamic parallel transmit pulse design for homogeneous fat saturation and water‐excitation at 7T: Proof‐of‐concept for CEST MRI of the brain
To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI. "Universal" k -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogene...
Saved in:
Published in | Magnetic resonance in medicine Vol. 89; no. 1; pp. 77 - 94 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI.
"Universal" k
-points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T.
With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias.
This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B
heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B
heterogeneities and fat are more substantial. |
---|---|
AbstractList | To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI.
"Universal" k
-points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T.
With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias.
This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B
heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B
heterogeneities and fat are more substantial. To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI.PURPOSETo evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST MRI."Universal" kT -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T.METHODS"Universal" kT -points (for FS) and spiral non-selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies). The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T.With a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias.RESULTSWith a 25%-shorter pulse duration, pTx FS largely improved the FA homogeneity (root-mean-square-error (RMSE) = 12.3° vs. 53.4° with circularly-polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WE showed a trade-off between FA homogeneity and spectral selectivity compared to pTx non-selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°). In the brain, CEST metrics were reduced by up to 31.9% at -3.3 ppm with pTx FS, suggesting a mitigated lipid-induced bias.This clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B0 heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial.CONCLUSIONThis clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject-specific B0 heterogeneities online. This study highlights the lipid-induced biases on the CEST z-spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial. PurposeTo evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water‐excitation (WE), in the context of CEST MRI.Methods“Universal” kT‐points(for FS) and spiral non‐selective (for WE) trajectories were optimized offline for flip angle (FA) homogeneity. Routines to optimize the pulse shape online, based on the subject's fields maps, were implemented (target FA of 110°/0° for FS, 0°/5° for WE at fat/water frequencies).The pulses were inserted in a CEST sequence with a pTx readout. The different fat suppression schemes and their effects on CEST contrasts were compared in 12 volunteers at 7T.ResultsWitha 25%‐shorter pulse duration, pTx FS largely improved the FA homogeneity (root‐mean‐square‐error (RMSE) = 12.3° vs. 53.4° with circularly‐polarized mode, at the fat frequency). However, the spectral selectivity was degraded mainly in the cerebellum and close to the sinuses (RMSE = 5.8° vs. 0.2° at the water frequency). Similarly, pTx WEshowed a trade‐off between FA homogeneity and spectral selectivity compared to pTx non‐selective pulses (RMSE = 0.9° and 1.1° at the fat and water frequencies, vs. 4.6° and 0.5°).In the brain, CEST metrics were reduced by up to 31.9% at −3.3 ppm with pTx FS, suggesting a mitigated lipid‐induced bias.ConclusionThis clinically compatible implementation of dynamic pTx pulses improved the fat suppression homogeneity at 7T taking into account the subject‐specific B0 heterogeneities online. This study highlights the lipid‐induced biases on the CEST z‐spectrum. The results are promising for body applications where B0 heterogeneities and fat are more substantial. Click here for author‐reader discussions |
Author | Fabian, Moritz S. Lévy, Simon Liebert, Andrzej Eisen, Christian Nagel, Armin M. Tkotz, Katharina Uder, Michael Dörfler, Arnd Herrler, Jürgen Grodzki, David Zaiss, Moritz |
Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-6492-2990 surname: Lévy fullname: Lévy, Simon organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 2 givenname: Jürgen orcidid: 0000-0002-4620-8216 surname: Herrler fullname: Herrler, Jürgen organization: Institute of Neuroradiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 3 givenname: Andrzej orcidid: 0000-0002-8450-3021 surname: Liebert fullname: Liebert, Andrzej organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 4 givenname: Katharina surname: Tkotz fullname: Tkotz, Katharina organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 5 givenname: Moritz S. surname: Fabian fullname: Fabian, Moritz S. organization: Institute of Neuroradiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 6 givenname: Christian surname: Eisen fullname: Eisen, Christian organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 7 givenname: David surname: Grodzki fullname: Grodzki, David organization: MR Application Predevelopment Siemens Healthcare Erlangen Germany – sequence: 8 givenname: Michael surname: Uder fullname: Uder, Michael organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 9 givenname: Arnd surname: Dörfler fullname: Dörfler, Arnd organization: Institute of Neuroradiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany – sequence: 10 givenname: Moritz surname: Zaiss fullname: Zaiss, Moritz organization: Institute of Neuroradiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany, High‐Field Magnetic Resonance Center Max‐Planck Institute for Biological Cybernetics Tübingen Germany – sequence: 11 givenname: Armin M. orcidid: 0000-0003-0948-1421 surname: Nagel fullname: Nagel, Armin M. organization: Institute of Radiology, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU) University Hospital Erlangen Erlangen Germany, Division of Medical Physics in Radiology German Cancer Research Center (DKFZ) Heidelberg Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36128895$$D View this record in MEDLINE/PubMed |
BookMark | eNplkcFu1DAQhi1URLeFAy-ALHGhh20d24kTbtWqhUpFIFjO0cQZt14ldrAdwd54BN6Ht-FJMNvdS7nMSONv_vHMf0KOnHdIyMuCnReM8YsxjOe8kQV_QhZFyfmSl408IgumJFuKopHH5CTGDWOsaZR8Ro5FVfC6bsoF-b0arLMahmFLtR8nSLYbkMa526BOf37-ihNqa6ym_dbBmPMEIdM40BTAxdEmOs1DRNpjtHeOGh_ovR_9HTr0c6QGEo2Q5pCVvaPgevodEoYsjT-0Tftyomr9ln4K3pv8sgvaO41T2imurr6s6YfPN9Qbmu6RdgGse06eGsijX-zzKfl6fbVevV_efnx3s7q8XWpeCb40Avpe1Qg678-kUEwZyXuDElQlpDECJdOyq5Wu0XRgQEklTKV5V0FfN-KUvHnQnYL_NmNM7WijxmGA3YotV0VVclGqMqOvH6EbPweXf5cp3lSNKmueqVd7au5G7Nsp2BHCtj3YkoGLB0AHH2NA0x4ulY9uh7Zg7T_j22x8uzM-d5w96jiI_s_-BbU_tXg |
CitedBy_id | crossref_primary_10_3390_jimaging10070166 crossref_primary_10_1007_s10334_024_01149_8 crossref_primary_10_1002_mrm_29863 crossref_primary_10_1002_mrm_30346 |
Cites_doi | 10.15274/NRJ-2014-10090 10.1002/mrm.25076 10.1016/j.jmr.2011.05.001 10.1002/nbm.3879 10.1016/j.neuroimage.2010.09.025 10.1098/rstb.2001.0915 10.1002/jmri.25838 10.1038/jcbfm.2014.12 10.1016/j.neuroimage.2005.02.018 10.1002/mrm.23141 10.1002/mrm.27762 10.1007/s10107-004-0559-y 10.1136/bcr-2014-207581 10.1002/mrm.25277 10.1016/j.jmr.2021.106941 10.1287/ijoc.1060.0175 10.1002/mrm.20989 10.1002/mrm.27983 10.1007/s10334-020-00851-7 10.1002/mrm.26148 10.1002/mrm.26900 10.1002/nbm.1622 10.1002/jmri.26645 10.1002/nbm.3313 10.1002/mrm.22978 10.1002/mrm.28745 10.1007/s00234-005-0001-z 10.1002/nbm.3283 10.1016/j.neuroimage.2015.02.040 10.1002/mrm.28643 10.1136/jamia.2001.0080401 10.1002/mrm.1910150211 |
ContentType | Journal Article |
Copyright | 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.29412 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Biochemistry Abstracts 1 CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 94 |
ExternalDocumentID | 36128895 10_1002_mrm_29412 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c2632-f3add78eac009043707f42dfe4a7634ff3e40c4b87c8efbafa7473f6c2b6ad893 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 12:23:32 EDT 2025 Fri Jul 25 12:11:55 EDT 2025 Thu Apr 03 07:00:32 EDT 2025 Tue Jul 01 04:27:04 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | water-excitation fat saturation 7T MRI fat suppression CEST parallel transmission dynamic pulse design |
Language | English |
License | 2022 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2632-f3add78eac009043707f42dfe4a7634ff3e40c4b87c8efbafa7473f6c2b6ad893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0948-1421 0000-0002-8450-3021 0000-0002-4620-8216 0000-0002-6492-2990 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.29412 |
PMID | 36128895 |
PQID | 2729697582 |
PQPubID | 1016391 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2716523575 proquest_journals_2729697582 pubmed_primary_36128895 crossref_citationtrail_10_1002_mrm_29412 crossref_primary_10_1002_mrm_29412 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-00 2023-Jan 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 Mennecke A (e_1_2_8_24_1) 2022 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – ident: e_1_2_8_32_1 doi: 10.15274/NRJ-2014-10090 – ident: e_1_2_8_13_1 doi: 10.1002/mrm.25076 – ident: e_1_2_8_28_1 doi: 10.1016/j.jmr.2011.05.001 – ident: e_1_2_8_17_1 doi: 10.1002/nbm.3879 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_8_25_1 doi: 10.1098/rstb.2001.0915 – ident: e_1_2_8_2_1 doi: 10.1002/jmri.25838 – ident: e_1_2_8_4_1 doi: 10.1038/jcbfm.2014.12 – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2005.02.018 – ident: e_1_2_8_31_1 doi: 10.1002/mrm.23141 – ident: e_1_2_8_15_1 doi: 10.1002/mrm.27762 – ident: e_1_2_8_21_1 doi: 10.1007/s10107-004-0559-y – ident: e_1_2_8_34_1 doi: 10.1136/bcr-2014-207581 – ident: e_1_2_8_6_1 doi: 10.1002/mrm.25277 – ident: e_1_2_8_22_1 doi: 10.1016/j.jmr.2021.106941 – ident: e_1_2_8_20_1 doi: 10.1287/ijoc.1060.0175 – ident: e_1_2_8_3_1 doi: 10.1002/mrm.20989 – ident: e_1_2_8_8_1 doi: 10.1002/mrm.27983 – ident: e_1_2_8_10_1 doi: 10.1007/s10334-020-00851-7 – ident: e_1_2_8_14_1 doi: 10.1002/mrm.26148 – ident: e_1_2_8_7_1 doi: 10.1002/mrm.26900 – ident: e_1_2_8_9_1 doi: 10.1002/nbm.1622 – ident: e_1_2_8_5_1 doi: 10.1002/jmri.26645 – ident: e_1_2_8_11_1 doi: 10.1002/nbm.3313 – ident: e_1_2_8_19_1 doi: 10.1002/mrm.22978 – ident: e_1_2_8_16_1 doi: 10.1002/mrm.28745 – ident: e_1_2_8_33_1 doi: 10.1007/s00234-005-0001-z – start-page: e4717 year: 2022 ident: e_1_2_8_24_1 article-title: 7 tricks for 7 T CEST: improving reproducibility of multi‐pool evaluation provides insights into effects of age and early stage Parkinson's disease publication-title: NMR Biomed – ident: e_1_2_8_29_1 doi: 10.1002/nbm.3283 – ident: e_1_2_8_30_1 doi: 10.1016/j.neuroimage.2015.02.040 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.28643 – ident: e_1_2_8_26_1 doi: 10.1136/jamia.2001.0080401 – ident: e_1_2_8_12_1 doi: 10.1002/mrm.1910150211 |
SSID | ssj0009974 |
Score | 2.40494 |
Snippet | Click here
for author‐reader discussions To evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water-excitation (WE), in the context of CEST... PurposeTo evaluate the benefits and challenges of dynamic parallel transmit (pTx) pulses for fat saturation (FS) and water‐excitation (WE), in the context of... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 77 |
SubjectTerms | Algorithms Brain Brain - diagnostic imaging Cerebellum Contrast Media Excitation Frequency dependence Homogeneity Humans Lipids Magnetic resonance imaging Magnetic Resonance Imaging - methods Pulse duration Pulse shape Root-mean-square errors Saturation Selectivity Sinuses Trajectory optimization Water |
Title | Clinically compatible subject‐specific dynamic parallel transmit pulse design for homogeneous fat saturation and water‐excitation at 7T: Proof‐of‐concept for CEST MRI of the brain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36128895 https://www.proquest.com/docview/2729697582 https://www.proquest.com/docview/2716523575 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKENO-IBhvhYEM4gNSlC1N0rzwDaqhMlGEtk7at8hJbCg0aZWmAva3-A_8Lu78kmTdJgFSFVWxY6u5p747--45Ql66zBGYhQYSYIHtD6LABrUQ2iLOBo7I8jyKMN958jEYn_pHZ8OzXu93J2ppXaf72fmVeSX_I1W4B3LFLNl_kGwzKNyA7yBfuIKE4fpXMtaknvP5TxVLXs8wD2q1TnFzxcYkSgwEsnJVdd5Cmu_5nGN0OSioYlZbyzVoRiuXURwy4PDLoljAdBwDYwWrrRXyfiqM4A77d7BMK5v_yDSzN6ZChlPcVfgEFriw4ZOpPEg52ujwZGpNjt-bQIQU61F0zeEJ-1xyxSKNLgEuMrPy0nn_B3War4orn8yKNnJgzKtKpzIeYae3I8wlbZ6b8VSnJGHc5jn_2uxTfFvIOrYymIRVuoS42f1wvc7uB9crNnjT4MP53SVdVSW6AF21PquSMZfUhqKhLapi3419Fdbdgc-ykPjxwBiMIlUSdIOj2zTdIDddcFeka3_c0pjF4LQZVivHPWjm2SHb5smLZtE1vo60eaZ3yG3trNA3Cnl3SY-Xu2R7osWzS27J-OFsdY_8aqFIWyjSTShSDUVqoEgNFKmEIlVQpAAe2oEiBSjSFooUoEg3oUihSzh9TTeBKMdCIFIAIl0ICkCkEoj3yem7w-lobOt6IHaGVQVs4YEyDiMwFeCVIieXEwrfzQX3GWhJXwiP-07mp1GYRVykTDDwlT0RZG4asBwM8wdkq1yU_BGhnGNdiCiHIeGBOI84KDvusJTHSGgY9skrI47E_A6s2TJPFM23m4AQEynEPnnRdF0qhpirOu0ZmSZ6AVklLji2QQwOOzQ_b5phecczOybfL_QZBEOkpBr2yUOFhWYWg53H17Y8ITvtn2aPbNXVmj8FI7pOn0mE_gEXCc_f |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+compatible+subject-specific+dynamic+parallel+transmit+pulse+design+for+homogeneous+fat+saturation+and+water-excitation+at+7T%3A+Proof-of-concept+for+CEST+MRI+of+the+brain&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=L%C3%A9vy%2C+Simon&rft.au=Herrler%2C+J%C3%BCrgen&rft.au=Liebert%2C+Andrzej&rft.au=Tkotz%2C+Katharina&rft.date=2023-01-01&rft.eissn=1522-2594&rft.volume=89&rft.issue=1&rft.spage=77&rft_id=info:doi/10.1002%2Fmrm.29412&rft_id=info%3Apmid%2F36128895&rft.externalDocID=36128895 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |