Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity
Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there...
Saved in:
Published in | Shanghai jiao tong da xue xue bao Vol. 20; no. 2; pp. 143 - 148 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Shanghai Jiaotong University Press
01.04.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1007-1172 1995-8188 |
DOI | 10.1007/s12204-015-1602-2 |
Cover
Abstract | Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance. |
---|---|
AbstractList | Semantic textual similarity (STS) is a common task in natural language processing (NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression (SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result. Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm (GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance. Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance. |
Author | 苏柏桦 王英林 |
AuthorAffiliation | Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China |
Author_xml | – sequence: 1 fullname: 苏柏桦 王英林 |
BookMark | eNp9kMFO3TAQRSNEpQLlA7qzWHWTdmwndrJ8RYVWQgL1UbaW40weRokdbEcq_YP-dR0eYtEFq_Fo7rnXusfFofMOi-Ijhc8UQH6JlDGoSqB1SQWwkh0UR7Rt67KhTXOY31lUUirZ--I4xgeACjhvj4q_l-gwWUM2484Hm-4n8lVH7MkF6rQEJFsc0STrHdGuJzc66AkTBnI9JzvZP_r5NPhAtss8-5DIXZbn9SfuAsa4XjfzPNpsmXx2m7Rb427xd1r0SLbZZNQ5-OlD8W7QY8TTl3lS_Lr4dnv-vby6vvxxvrkqDROclXXf8Vb2FTQt1FoMg2nRDNjprtE17XphNDNGyI72VLfAu0YK0UInKegeeM1Pik973zn4xwVjUpONBsdRO_RLVFRyAFE1zSqle6kJPsaAg5qDnXR4UhTU2qja165y7WqtXbHMyP8YY9NzSyloO75Jsj0Zc4rbYVAPfgkud_EmdPYSd-_d7jFzr38UouKVbCXwf5DbpuY |
CitedBy_id | crossref_primary_10_1007_s42979_023_02306_x crossref_primary_10_3390_w13070920 crossref_primary_10_1007_s42979_023_02243_9 crossref_primary_10_3390_app10093227 |
Cites_doi | 10.1145/1961189.1961199 10.1109/TAI.2003.1250182 10.1016/j.eswa.2005.09.024 10.1016/S0004-3702(97)00043-X 10.1023/A:1009752403260 10.1080/10556789208805504 10.1007/978-1-4757-3264-1 10.1023/B:STCO.0000035301.49549.88 |
ContentType | Journal Article |
Copyright | Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015 |
Copyright_xml | – notice: Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015 |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s12204-015-1602-2 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Engineering Architecture Computer Science |
DocumentTitleAlternate | Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity |
EISSN | 1995-8188 |
EndPage | 148 |
ExternalDocumentID | 10_1007_s12204_015_1602_2 664347970 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CCEZO CEKLB CHBEP COF CQIGP CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U2A UG4 UGNYK UNUBA UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 W92 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 ~WA -SC -S~ AACDK AAJBT AASML AAXDM AAYZH ABAKF ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEC H13 Q-- SJYHP U1G U5M UY8 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD ABRTQ FR3 JG9 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c2632-5db397d408905a6ffc9ecfebab8a51bd6ca2cc67b1d1a903b876690b710ad0353 |
IEDL.DBID | AGYKE |
ISSN | 1007-1172 |
IngestDate | Thu Sep 04 21:55:13 EDT 2025 Thu Apr 24 23:04:53 EDT 2025 Tue Jul 01 02:23:55 EDT 2025 Fri Feb 21 02:37:21 EST 2025 Wed Feb 14 10:30:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | TP 311.5 support vector regression (SVR) semantic textural similarity (STS) feature selection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2632-5db397d408905a6ffc9ecfebab8a51bd6ca2cc67b1d1a903b876690b710ad0353 |
Notes | 31-1943/U support vector regression(SVR),feature selection,semantic textural similarity(STS) SU Bai-hua, WANG Ying-lin(1.Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China ; 2. Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China) Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1730064885 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1730064885 crossref_primary_10_1007_s12204_015_1602_2 crossref_citationtrail_10_1007_s12204_015_1602_2 springer_journals_10_1007_s12204_015_1602_2 chongqing_primary_664347970 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150400 |
PublicationDateYYYYMMDD | 2015-04-01 |
PublicationDate_xml | – month: 4 year: 2015 text: 20150400 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Shanghai jiao tong da xue xue bao |
PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) |
PublicationTitleAlternate | Journal of Shanghai Jiaotong university |
PublicationYear | 2015 |
Publisher | Shanghai Jiaotong University Press |
Publisher_xml | – name: Shanghai Jiaotong University Press |
References | Huang, Wang (CR4) 2006; 31 Hsu, Chang, Lin (CR16) 2003 Chang, Lin (CR17) 2011; 2 Witten, Frank (CR7) 2005 Smola, Schölkopf (CR11) 2004; 14 Bennett, Mangasarian (CR13) 1992; 1 Vapnik, Golowich, Smola (CR12) 1997; 9 Kohavi, John (CR6) 1997; 97 Bär, Biemann, Gurevych (CR2) 2012 Schölkopf, Smola (CR10) 2002 Drucker, Burges, Kaufman (CR9) 1997; 9 Vapnik (CR8) 2000 Cortes, Vapnik (CR14) 1995; 20 Salzberg (CR15) 1997; 1 Fröhlich, Chapelle, Schölkopf (CR3) 2003 Šarić, Glavaš, Karan (CR1) 2012 John, Kohavi, Pfleger (CR5) 1994 H Drucker (1602_CR9) 1997; 9 V Vapnik (1602_CR8) 2000 B Schölkopf (1602_CR10) 2002 S L Salzberg (1602_CR15) 1997; 1 V Vapnik (1602_CR12) 1997; 9 G H John (1602_CR5) 1994 I H Witten (1602_CR7) 2005 C W Hsu (1602_CR16) 2003 H Fröhlich (1602_CR3) 2003 C Cortes (1602_CR14) 1995; 20 C C Chang (1602_CR17) 2011; 2 A J Smola (1602_CR11) 2004; 14 R Kohavi (1602_CR6) 1997; 97 F Šarić (1602_CR1) 2012 C L Huang (1602_CR4) 2006; 31 K P Bennett (1602_CR13) 1992; 1 D Bär (1602_CR2) 2012 |
References_xml | – volume: 9 start-page: 281 year: 1997 end-page: 287 ident: CR12 article-title: Support vector method for function approximation, regression estimation, and signal processing [J] publication-title: Advances in Neural Information Processing Systems – start-page: 121 year: 1994 end-page: 129 ident: CR5 article-title: Irrelevant features and the subset selection problem [C] publication-title: Proceedings on Machine Learning’94 – year: 2003 ident: CR16 publication-title: A practical guide to support vector classification [R] – volume: 2 start-page: 27 issue: 3 year: 2011 ident: CR17 article-title: LIBSVM: A library for support vector machines [J] publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – start-page: 142 year: 2003 end-page: 148 ident: CR3 article-title: Feature selection for support vector machines by means of genetic algorithm [C] publication-title: Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence doi: 10.1109/TAI.2003.1250182 – volume: 31 start-page: 231 issue: 2 year: 2006 end-page: 240 ident: CR4 article-title: A GA-based feature selection and parameters optimization for support vector machines [J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.024 – year: 2005 ident: CR7 publication-title: Data mining: Practical machine learning tools and techniques [M] – start-page: 435 year: 2012 end-page: 440 ident: CR2 article-title: Ukp: Computing semantic textual similarity by combining multiple content similarity measures [C] publication-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics – volume: 97 start-page: 273 issue: 1 year: 1997 end-page: 324 ident: CR6 article-title: Wrappers for feature subset selection [J] publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – volume: 1 start-page: 317 issue: 3 year: 1997 end-page: 328 ident: CR15 article-title: On comparing classifiers: Pitfalls to avoid and a recommended approach [J] publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009752403260 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR14 article-title: Support-vector networks [J] publication-title: Machine Learning – year: 2002 ident: CR10 publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond [M] – volume: 1 start-page: 23 issue: 1 year: 1992 end-page: 34 ident: CR13 article-title: Robust linear programming discrimination of two linearly inseparable sets [J] publication-title: Optimization Methods and Software doi: 10.1080/10556789208805504 – year: 2000 ident: CR8 publication-title: The nature of statistical learning theory [M] doi: 10.1007/978-1-4757-3264-1 – start-page: 441 year: 2012 end-page: 448 ident: CR1 article-title: Takelab: Systems for measuring semantic text similarity [C] publication-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 ident: CR11 article-title: A tutorial on support vector regression [J] publication-title: Statistics and Computing doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 9 start-page: 155 year: 1997 end-page: 161 ident: CR9 article-title: Support vector regression machines [J] publication-title: Advances in Neural Information Processing Systems – start-page: 121 volume-title: Proceedings on Machine Learning’94 year: 1994 ident: 1602_CR5 – volume: 97 start-page: 273 issue: 1 year: 1997 ident: 1602_CR6 publication-title: Artificial Intelligence doi: 10.1016/S0004-3702(97)00043-X – start-page: 142 volume-title: Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence year: 2003 ident: 1602_CR3 doi: 10.1109/TAI.2003.1250182 – start-page: 441 volume-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics year: 2012 ident: 1602_CR1 – volume-title: A practical guide to support vector classification [R] year: 2003 ident: 1602_CR16 – start-page: 435 volume-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics year: 2012 ident: 1602_CR2 – volume: 9 start-page: 281 year: 1997 ident: 1602_CR12 publication-title: Advances in Neural Information Processing Systems – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 1602_CR11 publication-title: Statistics and Computing doi: 10.1023/B:STCO.0000035301.49549.88 – volume-title: The nature of statistical learning theory [M] year: 2000 ident: 1602_CR8 doi: 10.1007/978-1-4757-3264-1 – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 1602_CR17 publication-title: ACM Transactions on Intelligent Systems and Technology doi: 10.1145/1961189.1961199 – volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond [M] year: 2002 ident: 1602_CR10 – volume: 1 start-page: 23 issue: 1 year: 1992 ident: 1602_CR13 publication-title: Optimization Methods and Software doi: 10.1080/10556789208805504 – volume: 9 start-page: 155 year: 1997 ident: 1602_CR9 publication-title: Advances in Neural Information Processing Systems – volume: 31 start-page: 231 issue: 2 year: 2006 ident: 1602_CR4 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2005.09.024 – volume-title: Data mining: Practical machine learning tools and techniques [M] year: 2005 ident: 1602_CR7 – volume: 1 start-page: 317 issue: 3 year: 1997 ident: 1602_CR15 publication-title: Data Mining and Knowledge Discovery doi: 10.1023/A:1009752403260 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 1602_CR14 publication-title: Machine Learning |
SSID | ssj0040339 |
Score | 1.9703958 |
Snippet | Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets.... Semantic textual similarity (STS) is a common task in natural language processing (NLP). STS measures the degree of semantic equivalence of two textual... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 143 |
SubjectTerms | Architecture Computer Science Electrical Engineering Engineering Genetic algorithms Learning Life Sciences Materials Science Mathematical analysis Mathematical models Regression Semantics Similarity Tasks |
Title | Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity |
URI | http://lib.cqvip.com/qk/85391X/201502/664347970.html https://link.springer.com/article/10.1007/s12204-015-1602-2 https://www.proquest.com/docview/1730064885 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QWQKF1ALIXKSBx4KFWcxE5yXKGWCgSnrlROll_ZVnSTskk48A_414wTu1sqQOotiuJxLH-eGWtmvgF4xQxazbxkEecyjbKsVJHKKhUlkiquqaJmIEn6_IUfL7KPp-zU13G3Ids9hCQHTb0pdkuSIWOCRZS7muIt2Ga0KIsJbM8_fP10GBRwFqdDAzE3KqJooEMw829CHKXCWVMvv-OEf5qmjb95I0Q6WJ6jHTgJ_zwmnHw76Dt1oH_eoHO85aIewgPviZL5CJ1duGPrKdyfXwssTGEnNH0gXgdM4d41BsMp7Pr3LXntCazfPIJf7hGlEnmxbNbn3dmKOGNpSGUHGlHSDs13EBFE1oY49vGVy8ohDeqvlS8MJehNk7a_dPcD8mOILZC1XY5puzhw9J5J16C0FcIDp3NJLD0uqUUheGHH-8VjWBwdnrw_jnzLh0g74viIGYUOksniooyZ5FWlS6srq6QqJKPKcC0TrXmOGKKyjFOFyhzv9wr9JGnilKVPYFI3tX0KJKdVopRNjZUyy5ktdC7LiplEytjwNJvB3tXOi8uR2kNwdNCyvMzjGcQBC0J7tnTXtONCbHie3dYJ3Drhtk4kM3h7NSTI-8_HLwPABB5oF6WRtW36VlDXQYCjXmUzeBdAI7xmaf8t8dmtvt6Du4lD3QC-5zDp1r19ge5Vp_b9cdqHrUUy_w0R1h6Z |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOQCVCl1A3ZYPI3EAKkuJYzub4wpRLdD21JV6s_yVLVI3aTe7_Af-dcdep1sQIHGLonii6Nkzz5nxG4B3wmHULCtBpdQF5bwy1PDaUKZzI21uchdFkk5O5WTKv56L83SOu-ur3fuUZPTUm8NujMWKCUFzGc4U34cHyAVGoW3BlI1798uzIrYPC2NojuG5T2X-yUQQVLhom9k1vu7XwLRhm78lSGPcOXoKO4kwkvEa4V2455sBbI_v_P8fwJO-NwNJS3UAj-8IDQ5gN93vyPukM_3hGfwMl2iV6MtZu_i-vJiTENMcqX1U-yRd7JGDwBHdOBJEwueheIa06Gbm6fwmQdJLutVVoPHkR0wBkIWfratrceCa5JJli9bmiCK-LtSarPCTOjSC-2rcBjyH6dHns08TmjozUBv03alwBnmM49moyoSWdW0rb2tvtBlpkRsnrWbWyhKhznWVFQZ9Lm7DDdIZ7bJCFC9gq2kbvwekzGtmjC-c15qXwo9sqataOKZ15mTBh3BwC5G6WitwKIk8ipdVmQ0h60FTNomah94al2ojxxwwV4i5CpgrNoSPt0N6e_94-G0_ExSuu5BM0Y1vV53Kg9C_RPcnhnDYTxGVHED3d4v7__X0G3g4OTs5VsdfTr8dwCMWpm6cwS9ha7lY-VfIiJbmdVwBN_7wA9w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkBAgDVZAlA0wEg_8ULTYiZ3msdqoxq-JByrtzbJjp0Nak9Kk_A_819wl8ToQIPFWRfFF1Xe--6w7fwfwQjrMmlkuI6VMEqVpbiObljYShltVcMtdJ5L06VSdzNP3Z_JsmHPahG73UJLs7zSQSlPVHq5cebi9-CZE1z0hI67ofvF1uIHRmJOjz8U0hOI0TrpRYrQm4piqQ1nzTyZIXOG8rhbf8NO_Jqkt8_ytWNrloNk92B3II5v2aO_BNV-N4M70Si1gBHfDnAY2bNsR3L4iOjiCveF5w14OmtOv7sMP-olWmblY1Ouv7fmSUX5zrPSd8idrunk5CCIzlWMkGL6kRhpWY8hZDnc5GRJg1mxWROnZ964cwNZ-0Xfa4sKe8LK2RmtLRBQ_R30nG_xLDRrBMzYeCR7AfPb2y9FJNExpiArSeo-ks8hpXBpP8lgaVZZF7ovSW2MnRnLrVGFEUagMYecmjxOL8ReP5BapjXFxIpOHsFPVlX8ELOOlsNYnzhuTZtJPiszkpXTCmNipJB3D_iVEetWrcWiFnCrN8iweQxxA08UgcE5zNi70VpqZMNeIuSbMtRjD68slwd4_Xn4ePEHjHqTCiql8vWk0J9F_haFQjuFNcBE9BIPm7xYf_9fbz-Dm5-OZ_vju9MM-3BLkuZ0DH8BOu974J0iOWvu02wA_AaH9CBg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+Based+Feature+Selection+and+Parameter+Optimization+for+Support+Vector+Regression+Applied+to+Semantic+Textual+Similarity&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=SU%2C+Bai-hua&rft.au=WANG%2C+Ying-lin&rft.date=2015-04-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=20&rft.issue=2&rft.spage=143&rft.epage=148&rft_id=info:doi/10.1007%2Fs12204-015-1602-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85391X%2F85391X.jpg |