Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity

Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there...

Full description

Saved in:
Bibliographic Details
Published inShanghai jiao tong da xue xue bao Vol. 20; no. 2; pp. 143 - 148
Main Author 苏柏桦 王英林
Format Journal Article
LanguageEnglish
Published Heidelberg Shanghai Jiaotong University Press 01.04.2015
Subjects
Online AccessGet full text
ISSN1007-1172
1995-8188
DOI10.1007/s12204-015-1602-2

Cover

Abstract Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance.
AbstractList Semantic textual similarity (STS) is a common task in natural language processing (NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression (SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result. Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm (GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance.
Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance.
Author 苏柏桦 王英林
AuthorAffiliation Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China
Author_xml – sequence: 1
  fullname: 苏柏桦 王英林
BookMark eNp9kMFO3TAQRSNEpQLlA7qzWHWTdmwndrJ8RYVWQgL1UbaW40weRokdbEcq_YP-dR0eYtEFq_Fo7rnXusfFofMOi-Ijhc8UQH6JlDGoSqB1SQWwkh0UR7Rt67KhTXOY31lUUirZ--I4xgeACjhvj4q_l-gwWUM2484Hm-4n8lVH7MkF6rQEJFsc0STrHdGuJzc66AkTBnI9JzvZP_r5NPhAtss8-5DIXZbn9SfuAsa4XjfzPNpsmXx2m7Rb427xd1r0SLbZZNQ5-OlD8W7QY8TTl3lS_Lr4dnv-vby6vvxxvrkqDROclXXf8Vb2FTQt1FoMg2nRDNjprtE17XphNDNGyI72VLfAu0YK0UInKegeeM1Pik973zn4xwVjUpONBsdRO_RLVFRyAFE1zSqle6kJPsaAg5qDnXR4UhTU2qja165y7WqtXbHMyP8YY9NzSyloO75Jsj0Zc4rbYVAPfgkud_EmdPYSd-_d7jFzr38UouKVbCXwf5DbpuY
CitedBy_id crossref_primary_10_1007_s42979_023_02306_x
crossref_primary_10_3390_w13070920
crossref_primary_10_1007_s42979_023_02243_9
crossref_primary_10_3390_app10093227
Cites_doi 10.1145/1961189.1961199
10.1109/TAI.2003.1250182
10.1016/j.eswa.2005.09.024
10.1016/S0004-3702(97)00043-X
10.1023/A:1009752403260
10.1080/10556789208805504
10.1007/978-1-4757-3264-1
10.1023/B:STCO.0000035301.49549.88
ContentType Journal Article
Copyright Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015
Copyright_xml – notice: Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2015
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s12204-015-1602-2
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
Architecture
Computer Science
DocumentTitleAlternate Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity
EISSN 1995-8188
EndPage 148
ExternalDocumentID 10_1007_s12204_015_1602_2
664347970
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8TC
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P9P
PF0
PT4
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TSV
TUC
U2A
UG4
UGNYK
UNUBA
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
W92
WK8
YLTOR
Z7R
Z7Z
Z85
ZMTXR
~A9
~WA
-SC
-S~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEC
H13
Q--
SJYHP
U1G
U5M
UY8
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
ABRTQ
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c2632-5db397d408905a6ffc9ecfebab8a51bd6ca2cc67b1d1a903b876690b710ad0353
IEDL.DBID AGYKE
ISSN 1007-1172
IngestDate Thu Sep 04 21:55:13 EDT 2025
Thu Apr 24 23:04:53 EDT 2025
Tue Jul 01 02:23:55 EDT 2025
Fri Feb 21 02:37:21 EST 2025
Wed Feb 14 10:30:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords TP 311.5
support vector regression (SVR)
semantic textural similarity (STS)
feature selection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2632-5db397d408905a6ffc9ecfebab8a51bd6ca2cc67b1d1a903b876690b710ad0353
Notes 31-1943/U
support vector regression(SVR),feature selection,semantic textural similarity(STS)
SU Bai-hua, WANG Ying-lin(1.Department of Computer Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China ; 2. Department of Computer Science and Technology, Shanghai University of Finance and Economics, Shanghai 200433, China)
Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets. Recently, machine learning methods have been applied to this task, including methods based on support vector regression(SVR). However, there exist amounts of features involved in the learning process, part of which are noisy features and irrelative to the result.Furthermore, different parameters will significantly influence the prediction performance of the SVR model. In this paper, we propose genetic algorithm(GA) to select the effective features and optimize the parameters in the learning process, simultaneously. To evaluate the proposed approach, we adopt the STS-2012 dataset in the experiment. Compared with the grid search, the proposed GA-based approach has better regression performance.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1730064885
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1730064885
crossref_primary_10_1007_s12204_015_1602_2
crossref_citationtrail_10_1007_s12204_015_1602_2
springer_journals_10_1007_s12204_015_1602_2
chongqing_primary_664347970
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150400
PublicationDateYYYYMMDD 2015-04-01
PublicationDate_xml – month: 4
  year: 2015
  text: 20150400
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Shanghai jiao tong da xue xue bao
PublicationTitleAbbrev J. Shanghai Jiaotong Univ. (Sci.)
PublicationTitleAlternate Journal of Shanghai Jiaotong university
PublicationYear 2015
Publisher Shanghai Jiaotong University Press
Publisher_xml – name: Shanghai Jiaotong University Press
References Huang, Wang (CR4) 2006; 31
Hsu, Chang, Lin (CR16) 2003
Chang, Lin (CR17) 2011; 2
Witten, Frank (CR7) 2005
Smola, Schölkopf (CR11) 2004; 14
Bennett, Mangasarian (CR13) 1992; 1
Vapnik, Golowich, Smola (CR12) 1997; 9
Kohavi, John (CR6) 1997; 97
Bär, Biemann, Gurevych (CR2) 2012
Schölkopf, Smola (CR10) 2002
Drucker, Burges, Kaufman (CR9) 1997; 9
Vapnik (CR8) 2000
Cortes, Vapnik (CR14) 1995; 20
Salzberg (CR15) 1997; 1
Fröhlich, Chapelle, Schölkopf (CR3) 2003
Šarić, Glavaš, Karan (CR1) 2012
John, Kohavi, Pfleger (CR5) 1994
H Drucker (1602_CR9) 1997; 9
V Vapnik (1602_CR8) 2000
B Schölkopf (1602_CR10) 2002
S L Salzberg (1602_CR15) 1997; 1
V Vapnik (1602_CR12) 1997; 9
G H John (1602_CR5) 1994
I H Witten (1602_CR7) 2005
C W Hsu (1602_CR16) 2003
H Fröhlich (1602_CR3) 2003
C Cortes (1602_CR14) 1995; 20
C C Chang (1602_CR17) 2011; 2
A J Smola (1602_CR11) 2004; 14
R Kohavi (1602_CR6) 1997; 97
F Šarić (1602_CR1) 2012
C L Huang (1602_CR4) 2006; 31
K P Bennett (1602_CR13) 1992; 1
D Bär (1602_CR2) 2012
References_xml – volume: 9
  start-page: 281
  year: 1997
  end-page: 287
  ident: CR12
  article-title: Support vector method for function approximation, regression estimation, and signal processing [J]
  publication-title: Advances in Neural Information Processing Systems
– start-page: 121
  year: 1994
  end-page: 129
  ident: CR5
  article-title: Irrelevant features and the subset selection problem [C]
  publication-title: Proceedings on Machine Learning’94
– year: 2003
  ident: CR16
  publication-title: A practical guide to support vector classification [R]
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: CR17
  article-title: LIBSVM: A library for support vector machines [J]
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– start-page: 142
  year: 2003
  end-page: 148
  ident: CR3
  article-title: Feature selection for support vector machines by means of genetic algorithm [C]
  publication-title: Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence
  doi: 10.1109/TAI.2003.1250182
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  end-page: 240
  ident: CR4
  article-title: A GA-based feature selection and parameters optimization for support vector machines [J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.024
– year: 2005
  ident: CR7
  publication-title: Data mining: Practical machine learning tools and techniques [M]
– start-page: 435
  year: 2012
  end-page: 440
  ident: CR2
  article-title: Ukp: Computing semantic textual similarity by combining multiple content similarity measures [C]
  publication-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  end-page: 324
  ident: CR6
  article-title: Wrappers for feature subset selection [J]
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 1
  start-page: 317
  issue: 3
  year: 1997
  end-page: 328
  ident: CR15
  article-title: On comparing classifiers: Pitfalls to avoid and a recommended approach [J]
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009752403260
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR14
  article-title: Support-vector networks [J]
  publication-title: Machine Learning
– year: 2002
  ident: CR10
  publication-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond [M]
– volume: 1
  start-page: 23
  issue: 1
  year: 1992
  end-page: 34
  ident: CR13
  article-title: Robust linear programming discrimination of two linearly inseparable sets [J]
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789208805504
– year: 2000
  ident: CR8
  publication-title: The nature of statistical learning theory [M]
  doi: 10.1007/978-1-4757-3264-1
– start-page: 441
  year: 2012
  end-page: 448
  ident: CR1
  article-title: Takelab: Systems for measuring semantic text similarity [C]
  publication-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR11
  article-title: A tutorial on support vector regression [J]
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 9
  start-page: 155
  year: 1997
  end-page: 161
  ident: CR9
  article-title: Support vector regression machines [J]
  publication-title: Advances in Neural Information Processing Systems
– start-page: 121
  volume-title: Proceedings on Machine Learning’94
  year: 1994
  ident: 1602_CR5
– volume: 97
  start-page: 273
  issue: 1
  year: 1997
  ident: 1602_CR6
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 142
  volume-title: Proceedings of 15th IEEE International Conference on Tools with Artificial Intelligence
  year: 2003
  ident: 1602_CR3
  doi: 10.1109/TAI.2003.1250182
– start-page: 441
  volume-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics
  year: 2012
  ident: 1602_CR1
– volume-title: A practical guide to support vector classification [R]
  year: 2003
  ident: 1602_CR16
– start-page: 435
  volume-title: Proceedings of the First Joint Conference on Lexical and Computational Semantics
  year: 2012
  ident: 1602_CR2
– volume: 9
  start-page: 281
  year: 1997
  ident: 1602_CR12
  publication-title: Advances in Neural Information Processing Systems
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 1602_CR11
  publication-title: Statistics and Computing
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume-title: The nature of statistical learning theory [M]
  year: 2000
  ident: 1602_CR8
  doi: 10.1007/978-1-4757-3264-1
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 1602_CR17
  publication-title: ACM Transactions on Intelligent Systems and Technology
  doi: 10.1145/1961189.1961199
– volume-title: Learning with kernels: Support vector machines, regularization, optimization, and beyond [M]
  year: 2002
  ident: 1602_CR10
– volume: 1
  start-page: 23
  issue: 1
  year: 1992
  ident: 1602_CR13
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556789208805504
– volume: 9
  start-page: 155
  year: 1997
  ident: 1602_CR9
  publication-title: Advances in Neural Information Processing Systems
– volume: 31
  start-page: 231
  issue: 2
  year: 2006
  ident: 1602_CR4
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2005.09.024
– volume-title: Data mining: Practical machine learning tools and techniques [M]
  year: 2005
  ident: 1602_CR7
– volume: 1
  start-page: 317
  issue: 3
  year: 1997
  ident: 1602_CR15
  publication-title: Data Mining and Knowledge Discovery
  doi: 10.1023/A:1009752403260
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 1602_CR14
  publication-title: Machine Learning
SSID ssj0040339
Score 1.9703958
Snippet Semantic textual similarity(STS) is a common task in natural language processing(NLP). STS measures the degree of semantic equivalence of two textual snippets....
Semantic textual similarity (STS) is a common task in natural language processing (NLP). STS measures the degree of semantic equivalence of two textual...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 143
SubjectTerms Architecture
Computer Science
Electrical Engineering
Engineering
Genetic algorithms
Learning
Life Sciences
Materials Science
Mathematical analysis
Mathematical models
Regression
Semantics
Similarity
Tasks
Title Genetic Algorithm Based Feature Selection and Parameter Optimization for Support Vector Regression Applied to Semantic Textual Similarity
URI http://lib.cqvip.com/qk/85391X/201502/664347970.html
https://link.springer.com/article/10.1007/s12204-015-1602-2
https://www.proquest.com/docview/1730064885
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7QWQKF1ALIXKSBx4KFWcxE5yXKGWCgSnrlROll_ZVnSTskk48A_414wTu1sqQOotiuJxLH-eGWtmvgF4xQxazbxkEecyjbKsVJHKKhUlkiquqaJmIEn6_IUfL7KPp-zU13G3Ids9hCQHTb0pdkuSIWOCRZS7muIt2Ga0KIsJbM8_fP10GBRwFqdDAzE3KqJooEMw829CHKXCWVMvv-OEf5qmjb95I0Q6WJ6jHTgJ_zwmnHw76Dt1oH_eoHO85aIewgPviZL5CJ1duGPrKdyfXwssTGEnNH0gXgdM4d41BsMp7Pr3LXntCazfPIJf7hGlEnmxbNbn3dmKOGNpSGUHGlHSDs13EBFE1oY49vGVy8ohDeqvlS8MJehNk7a_dPcD8mOILZC1XY5puzhw9J5J16C0FcIDp3NJLD0uqUUheGHH-8VjWBwdnrw_jnzLh0g74viIGYUOksniooyZ5FWlS6srq6QqJKPKcC0TrXmOGKKyjFOFyhzv9wr9JGnilKVPYFI3tX0KJKdVopRNjZUyy5ktdC7LiplEytjwNJvB3tXOi8uR2kNwdNCyvMzjGcQBC0J7tnTXtONCbHie3dYJ3Drhtk4kM3h7NSTI-8_HLwPABB5oF6WRtW36VlDXQYCjXmUzeBdAI7xmaf8t8dmtvt6Du4lD3QC-5zDp1r19ge5Vp_b9cdqHrUUy_w0R1h6Z
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BOQCVCl1A3ZYPI3EAKkuJYzub4wpRLdD21JV6s_yVLVI3aTe7_Af-dcdep1sQIHGLonii6Nkzz5nxG4B3wmHULCtBpdQF5bwy1PDaUKZzI21uchdFkk5O5WTKv56L83SOu-ur3fuUZPTUm8NujMWKCUFzGc4U34cHyAVGoW3BlI1798uzIrYPC2NojuG5T2X-yUQQVLhom9k1vu7XwLRhm78lSGPcOXoKO4kwkvEa4V2455sBbI_v_P8fwJO-NwNJS3UAj-8IDQ5gN93vyPukM_3hGfwMl2iV6MtZu_i-vJiTENMcqX1U-yRd7JGDwBHdOBJEwueheIa06Gbm6fwmQdJLutVVoPHkR0wBkIWfratrceCa5JJli9bmiCK-LtSarPCTOjSC-2rcBjyH6dHns08TmjozUBv03alwBnmM49moyoSWdW0rb2tvtBlpkRsnrWbWyhKhznWVFQZ9Lm7DDdIZ7bJCFC9gq2kbvwekzGtmjC-c15qXwo9sqataOKZ15mTBh3BwC5G6WitwKIk8ipdVmQ0h60FTNomah94al2ojxxwwV4i5CpgrNoSPt0N6e_94-G0_ExSuu5BM0Y1vV53Kg9C_RPcnhnDYTxGVHED3d4v7__X0G3g4OTs5VsdfTr8dwCMWpm6cwS9ha7lY-VfIiJbmdVwBN_7wA9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED7BkBAgDVZAlA0wEg_8ULTYiZ3msdqoxq-JByrtzbJjp0Nak9Kk_A_819wl8ToQIPFWRfFF1Xe--6w7fwfwQjrMmlkuI6VMEqVpbiObljYShltVcMtdJ5L06VSdzNP3Z_JsmHPahG73UJLs7zSQSlPVHq5cebi9-CZE1z0hI67ofvF1uIHRmJOjz8U0hOI0TrpRYrQm4piqQ1nzTyZIXOG8rhbf8NO_Jqkt8_ytWNrloNk92B3II5v2aO_BNV-N4M70Si1gBHfDnAY2bNsR3L4iOjiCveF5w14OmtOv7sMP-olWmblY1Ouv7fmSUX5zrPSd8idrunk5CCIzlWMkGL6kRhpWY8hZDnc5GRJg1mxWROnZ964cwNZ-0Xfa4sKe8LK2RmtLRBQ_R30nG_xLDRrBMzYeCR7AfPb2y9FJNExpiArSeo-ks8hpXBpP8lgaVZZF7ovSW2MnRnLrVGFEUagMYecmjxOL8ReP5BapjXFxIpOHsFPVlX8ELOOlsNYnzhuTZtJPiszkpXTCmNipJB3D_iVEetWrcWiFnCrN8iweQxxA08UgcE5zNi70VpqZMNeIuSbMtRjD68slwd4_Xn4ePEHjHqTCiql8vWk0J9F_haFQjuFNcBE9BIPm7xYf_9fbz-Dm5-OZ_vju9MM-3BLkuZ0DH8BOu974J0iOWvu02wA_AaH9CBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+Algorithm+Based+Feature+Selection+and+Parameter+Optimization+for+Support+Vector+Regression+Applied+to+Semantic+Textual+Similarity&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=SU%2C+Bai-hua&rft.au=WANG%2C+Ying-lin&rft.date=2015-04-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=20&rft.issue=2&rft.spage=143&rft.epage=148&rft_id=info:doi/10.1007%2Fs12204-015-1602-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85391X%2F85391X.jpg