Indian News Headlines Classification using Word Embedding Techniques and LSTM Model
Newspapers introduce us to the latest happenings around the world. Going paperless creates more opportunities for newspapers, like broadcasting news coverage and presenting breaking news conveniently. News headlines are considered under the short text category and are vibrant subjects for researcher...
Saved in:
Published in | Procedia computer science Vol. 218; pp. 899 - 907 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Newspapers introduce us to the latest happenings around the world. Going paperless creates more opportunities for newspapers, like broadcasting news coverage and presenting breaking news conveniently. News headlines are considered under the short text category and are vibrant subjects for researchers. Creating a dense vector from short texts has become a challenging and essential task in many applications such as recommender systems, context analysis, decision making, text classification, etc. This work not only targeted creating a classification model for the short text but also categorized the headlines with the ‘unknown’ category. Our work uses Bidirectional Encoder Representations from Transformers (BERT), cosine similarity index, word embedding, and Long Short-Term Memory (LSTM) network to classify news headlines in multiple categories. Our proposed method outperforms labeling the unlabeled data with the help of a BERT sentence encoder. The system uses LSTM to learn the headlines as input vectors and classify the headline text by the classifier. At the end of this experiment, the designed pipeline achieves remarkable precision at the class level. |
---|---|
AbstractList | Newspapers introduce us to the latest happenings around the world. Going paperless creates more opportunities for newspapers, like broadcasting news coverage and presenting breaking news conveniently. News headlines are considered under the short text category and are vibrant subjects for researchers. Creating a dense vector from short texts has become a challenging and essential task in many applications such as recommender systems, context analysis, decision making, text classification, etc. This work not only targeted creating a classification model for the short text but also categorized the headlines with the ‘unknown’ category. Our work uses Bidirectional Encoder Representations from Transformers (BERT), cosine similarity index, word embedding, and Long Short-Term Memory (LSTM) network to classify news headlines in multiple categories. Our proposed method outperforms labeling the unlabeled data with the help of a BERT sentence encoder. The system uses LSTM to learn the headlines as input vectors and classify the headline text by the classifier. At the end of this experiment, the designed pipeline achieves remarkable precision at the class level. |
Author | Gupta, Deepa Khuntia, Madhusmita |
Author_xml | – sequence: 1 givenname: Madhusmita surname: Khuntia fullname: Khuntia, Madhusmita email: smita01madhu@gmail.com – sequence: 2 givenname: Deepa surname: Gupta fullname: Gupta, Deepa email: g_deepa@blr.amrita.edu |
BookMark | eNqFkMFOwzAMQCMEEmPsC7jkB1qSZknbAwc0DTZpg8OGOEZu4kKmLh3JBuLv6TYOiAP4Ylvys-x3QU5965GQK85Szri6XqWb0JqYZiwTKeMpy9kJ6fEizxMmWXn6oz4ngxhXrAtRFCXPe2Qx9daBpw_4EekEwTbOY6SjBmJ0tTOwda2nu-j8C31ug6XjdYXW7tslmlfv3nbdOHhLZ4vlnM5bi80lOauhiTj4zn3ydDdejibJ7PF-OrqdJSZTgiVVWSFwKwvM6oyXwCqopeKFtFwWSoLKOc-FGJYAQ8XzYalA5lIUwJmqK8VEn5THvSa0MQastXHbw8HbAK7RnOm9IL3SB0F6L0gzrjtBHSt-sZvg1hA-_6FujhR2b707DDoah96gdQHNVtvW_cl_AXtWgZs |
CitedBy_id | crossref_primary_10_1016_j_procs_2024_04_273 crossref_primary_10_1016_j_procs_2024_10_221 crossref_primary_10_2298_FUEE2404703J crossref_primary_10_1016_j_procs_2024_04_013 |
Cites_doi | 10.1016/j.csl.2020.101182 10.1007/s10844-018-0541-4 10.1162/089976600300015015 10.1162/neco.1997.9.8.1735 10.1016/j.knosys.2020.105918 10.1016/j.eswa.2021.115905 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2023.01.070 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 907 |
ExternalDocumentID | 10_1016_j_procs_2023_01_070 S1877050923000704 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION |
ID | FETCH-LOGICAL-c2630-b9bea1d58e2f219a0baf56185d15865a671173349aa4617496a57538a106fb603 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Apr 24 22:53:57 EDT 2025 Tue Jul 01 01:53:25 EDT 2025 Tue Jul 16 04:31:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | News headlines LSTM BiLSTM Multi-label classification Word Embeddings |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2630-b9bea1d58e2f219a0baf56185d15865a671173349aa4617496a57538a106fb603 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050923000704 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1016_j_procs_2023_01_070 crossref_primary_10_1016_j_procs_2023_01_070 elsevier_sciencedirect_doi_10_1016_j_procs_2023_01_070 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – year: 2023 text: 2023 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | T. Mikolov, K. Chen, G. Corrado, and J. Dean, (2013) “Efficient estimation of word representations in vector space.” Mikolov, Sutskever, Chen, Corrado, Dean (bib0024) 2013 Gers, Schmidhuber, Cummins (bib0026) 2000 Trueman, Kumar, Narayanasamy, Vidya (bib0002) 2021 Kilimci, Akyokuş (bib0009) 2019 Pillai, V., Gupta (bib0015) 2018 Usmani, Shamsi (bib0027) 2020 Sharma, Panigrahi, Paul, Panigrahi (bib0008) 2018 V., Gupta, Anil, A. (bib0016) 2019 Wensen, Zewen, Jun, Xiaoyi (bib0017) 2016 Li, Gao, Zhou, Huang, Zhang, Li (bib0006) 2019 Anantharaman, Jadiya, Siri, Adikar, Mohan (bib0012) 2019 Fuks (bib0018) 2018 Sun, Chu (bib0003) 2020 Meng, Shao (bib0022) 2021 Manna, Phongpanangam (bib0011) 2018 Ma, Liu, Zhao, Liang, Zhang, Jin (bib0021) 2022 Veena, Athulya, Shaji, Gupta (bib0014) 2017 Kozlowski, Rybinski (bib0001) 2019; 53 Fan, Zhang, Li (bib0007) 2015 Reimers, Gurevych (bib0029) 2019 Chen, Yao, Yang (bib0010) 2016 Ge, Wang, Fang (bib0019) 2020 47-49. Naveenkumar, Vinayakumar, Soman (bib0028) 2019 Deng, Cheng, Wang (bib0005) 2021; 68 Zuo, S.-Z & Wu, C.-H & Zhou, Y.-Q & He, H.-C. (2006). “Chinese short-text categorization based on the key classification dictionary words.” 13 Liu, Lee, Lee (bib0004) 2020; 197 Hochreiter, Schmidhuber (bib0025) 1997; 9 Seki, Toriyama (bib0020) 2019 Hochreiter (10.1016/j.procs.2023.01.070_bib0025) 1997; 9 Sharma (10.1016/j.procs.2023.01.070_bib0008) 2018 Mikolov (10.1016/j.procs.2023.01.070_bib0024) 2013 Veena (10.1016/j.procs.2023.01.070_bib0014) 2017 Reimers (10.1016/j.procs.2023.01.070_bib0029) 2019 Naveenkumar (10.1016/j.procs.2023.01.070_bib0028) 2019 10.1016/j.procs.2023.01.070_bib0013 Ma (10.1016/j.procs.2023.01.070_bib0021) 2022 Liu (10.1016/j.procs.2023.01.070_bib0004) 2020; 197 Meng (10.1016/j.procs.2023.01.070_bib0022) 2021 Sun (10.1016/j.procs.2023.01.070_bib0003) 2020 Deng (10.1016/j.procs.2023.01.070_bib0005) 2021; 68 Fuks (10.1016/j.procs.2023.01.070_bib0018) 2018 Kilimci (10.1016/j.procs.2023.01.070_bib0009) 2019 Fan (10.1016/j.procs.2023.01.070_bib0007) 2015 Gers (10.1016/j.procs.2023.01.070_bib0026) 2000 Chen (10.1016/j.procs.2023.01.070_bib0010) 2016 Anantharaman (10.1016/j.procs.2023.01.070_bib0012) 2019 Wensen (10.1016/j.procs.2023.01.070_bib0017) 2016 Seki (10.1016/j.procs.2023.01.070_bib0020) 2019 Trueman (10.1016/j.procs.2023.01.070_bib0002) 2021 Li (10.1016/j.procs.2023.01.070_bib0006) 2019 Manna (10.1016/j.procs.2023.01.070_bib0011) 2018 Kozlowski (10.1016/j.procs.2023.01.070_bib0001) 2019; 53 Ge (10.1016/j.procs.2023.01.070_bib0019) 2020 Pillai (10.1016/j.procs.2023.01.070_bib0015) 2018 10.1016/j.procs.2023.01.070_bib0023 Usmani (10.1016/j.procs.2023.01.070_bib0027) 2020 V. (10.1016/j.procs.2023.01.070_bib0016) 2019 |
References_xml | – start-page: 749 year: 2020 end-page: 752 ident: bib0003 article-title: Text Sentiment Analysis Based on CNN-BiLSTM-Attention Model publication-title: 2020 International Conference on Robots & Intelligent System (ICRIS – start-page: 539 year: 2021 end-page: 544 ident: bib0022 article-title: Overview of Chinese Text Classification publication-title: Advancements in Mechatronics and Intelligent Robotics – start-page: 548 year: 2019 end-page: 553 ident: bib0009 article-title: The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification publication-title: 4th International Conference on ComputerScience and Engineering (UBMK) – start-page: 704 year: 2019 end-page: 708 ident: bib0012 article-title: Performance Evaluation of Topic Modeling Algorithms for Text Classification publication-title: 3rd International Conference on Trends in Electronics and Informatics (ICOEI) – start-page: 53 year: 2019 end-page: 58 ident: bib0020 article-title: On Term Similarity Measures for Short Text Classification publication-title: IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA) – year: 2000 ident: bib0026 article-title: Learning to forget: Continual prediction with lstm publication-title: Neural Comput – start-page: 1 year: 2021 end-page: 6 ident: bib0002 article-title: Attention-based C-BiLSTM for fake news detection publication-title: Applied Soft Computing – volume: 68 year: 2021 ident: bib0005 article-title: Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification publication-title: Computer Speech & Language – year: 2022 ident: bib0021 article-title: Hybrid embedding-based text representation for hierarchical multi-label text classification publication-title: Expert Systems with Applications – start-page: 774 year: 2019 end-page: 777 ident: bib0006 article-title: The automatic text classification method based on bert and feature union publication-title: IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS) – year: 2018 ident: bib0018 article-title: Classification of News Dataset – start-page: 3982 year: 2019 end-page: 3992 ident: bib0029 article-title: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks publication-title: Proceedings of the Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) – start-page: 1 year: 2019 end-page: 5 ident: bib0028 article-title: Amrita-CEN-SentiDB 1: Improved Twitter Dataset for Sentimental Analysis and Application of Deep learning publication-title: 10th International Conference on Computing, Communication and Networking Technologies (ICCCNT) – start-page: 944 year: 2017 end-page: 949 ident: bib0014 article-title: A graph-based relation extraction method for question answering system publication-title: International Conference on Advances in Computing, Communications and Informatics (ICACCI) – start-page: 947 year: 2019 end-page: 951 ident: bib0016 article-title: An Ontology Driven Question Answering System for Legal Documents publication-title: 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies (ICICICT) – start-page: 1195 year: 2016 end-page: 1200 ident: bib0017 article-title: Short text classification based on Wikipedia and Word2vec publication-title: 2nd IEEE International Conference on Computer and Communications (ICCC) – volume: 197 year: 2020 ident: bib0004 article-title: Document-level multi-topic sentiment classification of Email data with BiLSTM and data augmentation publication-title: Knowledge-Based Systems – reference: Zuo, S.-Z & Wu, C.-H & Zhou, Y.-Q & He, H.-C. (2006). “Chinese short-text categorization based on the key classification dictionary words.” 13 – volume: 53 start-page: 69 year: 2019 end-page: 92 ident: bib0001 article-title: Clustering of semantically enriched short texts publication-title: J Intell Inf Syst – start-page: 151 year: 2018 end-page: 154 ident: bib0008 article-title: Detection of Topic from Unstructured Text With Mixed Languages publication-title: International Conference on Information Technology (ICIT) – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib0025 article-title: Long short-term memory publication-title: Neural Computation – start-page: 1487 year: 2015 end-page: 1492 ident: bib0007 article-title: Word similarity computation based on HowNet publication-title: 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD) – start-page: 377 year: 2018 end-page: 382 ident: bib0011 article-title: Exploring Topic Models on Short Texts: A Case Study with Crisis Data publication-title: Second IEEE International Conference on Robotic Computing (IRC) – start-page: 749 year: 2016 end-page: 753 ident: bib0010 article-title: Short text classification based on LDA topic model publication-title: International Conference on Audio, Language and Image Processing (ICALIP) – start-page: 1 year: 2018 end-page: 6 ident: bib0015 article-title: A Combined Approach Using Semantic Role Labelling and Word Sense Disambiguation for Question Generation and Answer Extraction publication-title: Second International Conference on Advances in Electronics, Computers, and Communications (ICAECC) – reference: T. Mikolov, K. Chen, G. Corrado, and J. Dean, (2013) “Efficient estimation of word representations in vector space.” – start-page: 1994 year: 2020 end-page: 1997 ident: bib0019 article-title: Short Text Classification Method Combining Word Vector and WTTM publication-title: IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC) – reference: 47-49. – start-page: 1 year: 2020 end-page: 6 ident: bib0027 article-title: News Headlines Categorization Scheme for Unlabelled Data publication-title: International Conference on Emerging Trends in Smart Technologies (ICETST) – year: 2013 ident: bib0024 article-title: Distributed representations of words and phrases and their compositionality – volume: 68 year: 2021 ident: 10.1016/j.procs.2023.01.070_bib0005 article-title: Attention-based BiLSTM fused CNN with gating mechanism model for Chinese long text classification publication-title: Computer Speech & Language doi: 10.1016/j.csl.2020.101182 – start-page: 749 year: 2016 ident: 10.1016/j.procs.2023.01.070_bib0010 article-title: Short text classification based on LDA topic model – volume: 53 start-page: 69 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0001 article-title: Clustering of semantically enriched short texts publication-title: J Intell Inf Syst doi: 10.1007/s10844-018-0541-4 – ident: 10.1016/j.procs.2023.01.070_bib0023 – year: 2000 ident: 10.1016/j.procs.2023.01.070_bib0026 article-title: Learning to forget: Continual prediction with lstm publication-title: Neural Comput doi: 10.1162/089976600300015015 – start-page: 947 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0016 article-title: An Ontology Driven Question Answering System for Legal Documents – start-page: 53 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0020 article-title: On Term Similarity Measures for Short Text Classification – start-page: 539 year: 2021 ident: 10.1016/j.procs.2023.01.070_bib0022 article-title: Overview of Chinese Text Classification – start-page: 1 year: 2021 ident: 10.1016/j.procs.2023.01.070_bib0002 article-title: Attention-based C-BiLSTM for fake news detection publication-title: Applied Soft Computing – ident: 10.1016/j.procs.2023.01.070_bib0013 – start-page: 151 year: 2018 ident: 10.1016/j.procs.2023.01.070_bib0008 article-title: Detection of Topic from Unstructured Text With Mixed Languages – start-page: 749 year: 2020 ident: 10.1016/j.procs.2023.01.070_bib0003 article-title: Text Sentiment Analysis Based on CNN-BiLSTM-Attention Model – start-page: 548 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0009 article-title: The Evaluation of Word Embedding Models and Deep Learning Algorithms for Turkish Text Classification – start-page: 1487 year: 2015 ident: 10.1016/j.procs.2023.01.070_bib0007 article-title: Word similarity computation based on HowNet – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.procs.2023.01.070_bib0025 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – start-page: 774 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0006 article-title: The automatic text classification method based on bert and feature union – start-page: 1994 year: 2020 ident: 10.1016/j.procs.2023.01.070_bib0019 article-title: Short Text Classification Method Combining Word Vector and WTTM – volume: 197 year: 2020 ident: 10.1016/j.procs.2023.01.070_bib0004 article-title: Document-level multi-topic sentiment classification of Email data with BiLSTM and data augmentation publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.105918 – start-page: 1195 year: 2016 ident: 10.1016/j.procs.2023.01.070_bib0017 article-title: Short text classification based on Wikipedia and Word2vec – start-page: 3982 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0029 article-title: Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks – start-page: 944 year: 2017 ident: 10.1016/j.procs.2023.01.070_bib0014 article-title: A graph-based relation extraction method for question answering system – year: 2013 ident: 10.1016/j.procs.2023.01.070_bib0024 – start-page: 1 year: 2018 ident: 10.1016/j.procs.2023.01.070_bib0015 article-title: A Combined Approach Using Semantic Role Labelling and Word Sense Disambiguation for Question Generation and Answer Extraction – year: 2018 ident: 10.1016/j.procs.2023.01.070_bib0018 – start-page: 704 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0012 article-title: Performance Evaluation of Topic Modeling Algorithms for Text Classification – start-page: 1 year: 2019 ident: 10.1016/j.procs.2023.01.070_bib0028 article-title: Amrita-CEN-SentiDB 1: Improved Twitter Dataset for Sentimental Analysis and Application of Deep learning – start-page: 1 year: 2020 ident: 10.1016/j.procs.2023.01.070_bib0027 article-title: News Headlines Categorization Scheme for Unlabelled Data – year: 2022 ident: 10.1016/j.procs.2023.01.070_bib0021 article-title: Hybrid embedding-based text representation for hierarchical multi-label text classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2021.115905 – start-page: 377 year: 2018 ident: 10.1016/j.procs.2023.01.070_bib0011 article-title: Exploring Topic Models on Short Texts: A Case Study with Crisis Data |
SSID | ssj0000388917 |
Score | 2.280417 |
Snippet | Newspapers introduce us to the latest happenings around the world. Going paperless creates more opportunities for newspapers, like broadcasting news coverage... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 899 |
SubjectTerms | BiLSTM LSTM Multi-label classification News headlines Word Embeddings |
Title | Indian News Headlines Classification using Word Embedding Techniques and LSTM Model |
URI | https://dx.doi.org/10.1016/j.procs.2023.01.070 |
Volume | 218 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4IXrz424g_SA8eXVi3ru2OSCAo4kEgcGta1hoMTiL4_9vXbUQTw8Hjlr5keX1772vz3vchdKt1alwOtAGNDAvoPIsCRawOXOho7uLBCA7TyMNn1p_Qx1kyq6FONQsDbZVl7i9yus_W5ZtW6c3WarFojYjgHNhLHIgG0hrgBI2p8EN8s_vtPQuwnaReeBfWB2BQkQ_5Ni-oE0DbHcWevhNEi_8qUD-KTu8IHZRoEbeLDzpGNZOfoMNKiQGXP-YpGj3ksM8YUhbuu20D8LjGXvESeoG8-zH0uL_iqTtu4u67NhmULTyuSFzXWOUZfhqNhxgE0pZnaNLrjjv9oJRLCOYRi8NAp9ookiXCRNblIRVqZR06EklGEsESxTghPI5pqhR1uIWmTDmsFgvlToVWszA-R_X8IzcXCHMHvJR1O2cjSzVhSmsRcuD2Cy2fc9pAUeUjOS-5xEHSYimrprE36R0rwbEyJNI5toHutkargkpj93JWOV_-igjpkv0uw8v_Gl6hfXgqLliuUX3z-WVuHOTY6Cbaaw9epoOmj61veKDUVA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOcCFHVFWHzgSNYtjJ0eoWqXQ9tJU9GbZjY2KSqho-X9msiCQUA9ck4wUjSdvnqPxe4Tcah0bwEDrMN9wh80y31Ge1Q6UjhZQDyYSeBp5OOLJhD1Ow2mDdOqzMDhWWWF_iekFWldX2lU228v5vD32IiFQvQRINIrWsC2yDWxAoH9Df_rw_aMF5U7iwnkXAxyMqNWHijkvbBSo2-0HhX4nuhb_1aF-dJ3eAdmr6CK9L9_okDRMfkT2aysGWn2Zx2Tcz3GhKWIWTWDdkD2uaGF5icNARf4pDrm_0GfYb9LumzYZ9i2a1iquK6ryjA7G6ZCiQ9rihEx63bSTOJVfgjPzeeA6OtZGeVkYGd8CEClXKwv0KAozL4x4qLjwPBEELFaKAXFhMVdA1oJIwbbQau4Gp6SZv-fmjFABzEtZWDrrW6Y9rrSOXIHifq4VM8FaxK9zJGeVmDh6WixkPTX2KovESkysdD0JiW2Ru--gZamlsflxXidf_ioJCWi_KfD8v4E3ZCdJhwM56I-eLsgu3in_tlyS5vrj01wB_1jr66K-vgCA6NXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Indian+News+Headlines+Classification+using+Word+Embedding+Techniques+and+LSTM+Model&rft.jtitle=Procedia+computer+science&rft.au=Khuntia%2C+Madhusmita&rft.au=Gupta%2C+Deepa&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=218&rft.spage=899&rft.epage=907&rft_id=info:doi/10.1016%2Fj.procs.2023.01.070&rft.externalDocID=S1877050923000704 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |