Numerical solution of the conformable fractional diffusion equation
In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time frac...
Saved in:
Published in | Mathematical notes (Miskolci Egyetem (Hungary)) Vol. 23; no. 2; pp. 975 - 986 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Miskolc
University of Miskolc
2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1787-2405 1787-2413 |
DOI | 10.18514/MMN.2022.3669 |
Cover
Loading…
Abstract | In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time fractional diffusion equation with variable coefficients is reduced to a system of ordinary differential equations by using the properties of Chebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach. |
---|---|
AbstractList | In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time fractional diffusion equation with variable coefficients is reduced to a system of ordinary differential equations by using the properties of Çhebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach. In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are described in the conformable sense. The numerical approach is based on shifted Chebyshev polynomials of the second kind. The space-time fractional diffusion equation with variable coefficients is reduced to a system of ordinary differential equations by using the properties of Chebyshev polynomials. The finite difference method is applied to solve this system of equations. Numerical results are provided to verify the accuracy and efficiency of the proposed approach. |
Author | Yaslan, H. Cerdik |
Author_xml | – sequence: 1 givenname: H. Cerdik surname: Yaslan fullname: Yaslan, H. Cerdik |
BookMark | eNo9kDFPwzAQRi1UJErpyhyJOcF2HNsZUQUUqS0LzJZjn0WqJG7tZODf41DELXe6ezp9erdoMfgBELonuCCyIuxxvz8UFFNalJzXV2hJhBQ5ZaRc_M-4ukHrGI84VcW4YPUSbQ5TD6E1usui76ax9UPmXTZ-QWb84HzoddNB5oI28y1htnVuijMH50nPyzt07XQXYf3XV-jz5fljs813769vm6ddbiinYw7cYcMdcFaC5MYCq7AlgvFS1EITixttHUu5LFDtmOQNlZxx60qJXZOwFXq4_D0Ff54gjurop5AyRUUFx5XEUrBEFRfKBB9jAKdOoe11-FYEq19XKrlSsys1uyp_AJP1XgY |
ContentType | Journal Article |
Copyright | Copyright University of Miskolc 2022 |
Copyright_xml | – notice: Copyright University of Miskolc 2022 |
DBID | AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA ARAPS BENPR BGLVJ BYOGL CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
DOI | 10.18514/MMN.2022.3669 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection East Europe, Central Europe Database ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection |
DatabaseTitleList | Advanced Technologies & Aerospace Collection CrossRef |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1787-2413 |
EndPage | 986 |
ExternalDocumentID | 10_18514_MMN_2022_3669 |
Genre | Feature |
GroupedDBID | 123 29M 2WC 8FE 8FG AAKDD AAYXX ABDBF ABJCF ABUWG ACIPV ACUHS AENEX AFKRA ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BENPR BGLVJ BPHCQ BYOGL C1A CCPQU CITATION E3Z EOJEC ESX GROUPED_DOAJ HCIFZ L6V M7S OBODZ OK1 OVT P62 PHGZM PHGZT PQQKQ PROAC PTHSS RNS TR2 TUS ~8M DWQXO PKEHL PQEST PQGLB PQUKI PRINS |
ID | FETCH-LOGICAL-c262t-e6f0c6fe643e86cde450d17463797a1d0badf4467de2af486b28646df380fb463 |
IEDL.DBID | 8FG |
ISSN | 1787-2405 |
IngestDate | Fri Jul 25 11:45:29 EDT 2025 Tue Jul 01 03:13:39 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c262t-e6f0c6fe643e86cde450d17463797a1d0badf4467de2af486b28646df380fb463 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
OpenAccessLink | http://mat76.mat.uni-miskolc.hu/mnotes/download_article/3669.pdf |
PQID | 2760580874 |
PQPubID | 2049162 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2760580874 crossref_primary_10_18514_MMN_2022_3669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-00-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022-00-00 |
PublicationDecade | 2020 |
PublicationPlace | Miskolc |
PublicationPlace_xml | – name: Miskolc |
PublicationTitle | Mathematical notes (Miskolci Egyetem (Hungary)) |
PublicationYear | 2022 |
Publisher | University of Miskolc |
Publisher_xml | – name: University of Miskolc |
SSID | ssj0000546749 ssib044753291 |
Score | 2.1986504 |
Snippet | In this paper, a numerical approach for solving space-time fractional diffusion equation with variable coefficients is proposed. The fractional derivatives are... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 975 |
SubjectTerms | Chebyshev approximation Differential equations Diffusion Finite difference method Polynomials |
Title | Numerical solution of the conformable fractional diffusion equation |
URI | https://www.proquest.com/docview/2760580874 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI5gu8AB8RSDMfWAxKmsTds0PaF1tAy0dmis0m5V0yTHbbDx_7H74HHhVKmNosqO7c9O8pmQW-24YEKlMEvbra_kmIDyLTPgOih8RamQeN85Sdkkc1-W3rIpuG2bY5WtT6wctVyXWCMfUh838Czuuw-bdxO7RuHuatNCY590bYg0uMJ5_NSuJ-Syc2jDBVNzfWNvjaC6Iwm2Bf_kNTyOgDvcYZKkkDBSeu8wPP_8O079ddNV7ImPyVEDGo1RreUTsqdWp-Qw-WZc3Z6RcZrV_RunxttsmmHhyZjFxmISGeNZCqleMgqnkRHP61MjMOzxOY4zdKVGBLAWX56TLI4W44nZNEgwS8rozlRMWyXTClCF4qyUyvUsCSkGc_zAL2xpiUJqyPd8qWihXc4E5cxlUjvc0gKGXZDOar1Sl8RQQgIy1LqQQgGm8LiyBZOF4kjWUzKnR-5aceSbmgcjx_wBBZeD4HIUXI6C65F-K628sYdt_qO9q_8_X5MDnKkucvRJZ_fxqW4g7O_EoNLtgHRH4WMYwzOM0tf5FydEpSk |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV07T8MwED5BGYCBN-KNBxBTSuq4TjowQGloIUklaCSYQhzbC1KLaBGCv8Jf4cdxbhJeAxsSa2xZsj-f7zvn7jPAnnYYmlAmrKzG8pIcC1m-bTU83UhdRamQpt45jHg7ZufX9esJeC1rYUxaZXkmjg9qOcjMHfkhdc0PPNtzWZFBeaGenzA-Gx51ThHMfUr9Vq_ZtoonBKyMcjqyFNd2xrVCv6s8nknF6rZEEs4dt-GmNWmLVGqMiFypaKqZxwX1OONSO56tBXbDcSdhCqMKyiowdXLTPQvK7Wqk8hxaSM3kUuLm6Y7GuAQTTRenXC9kIpHWsMMwjDAepbTqcJNe_dUNfvcCY9fmz8NbuSh5Rstd9XEkqtnLD73If7pqCzBXUGpynNvAIkyo_hLMhh96tMNlaEZx_rplQK66QWyu5UjXJ712izS7EQbC4fFJ0CL-ZZ5Tg91OO74fG0dDWkj6zccViP9kFqtQ6Q_6ag2IEhJ5s9apFAoZV91TNcFlqjwjZZRxZx0OSjST-1wlJDHRlcE9QdwTg3ticF-HrRKopDgthsknShu_N-_CdLsXBknQiS42YcaMml8HbUFl9PCotpEgjcROsVEJ3P41yu_OMRTZ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFXs-ADiFJo6qeMeEIK2oYUmRUAkbiGO7WNZWoT4Nb6OmSZhuXDjmMTy4WXseWPPvAE4sJ6PSyhXTl73i5IcB1m-6zSlbWaB4VxpqneOYtFN_Mv7xv0UfFS1MJRWWe2Jk41aP-Z0Rl7jAV3guTLwa7ZMi7huh6dPzw51kKKb1qqdRmEiV-b9DcO30Umvjf_6kPOwc9fqOmWHASfngo8dI6ybC2vQLRspcm38hquRowsvaAZZXbsq0xYDpkAbnllfCsWl8IW2nnStwmE47zTMBvhI3RNkeFHZMunoebzUoSl0xqmvR3NSn4nrGvFolBqSyHn8WhTFGKxyfuwJyr3-6SN_u4iJ3wuXYLEkrOyssLBlmDLDFViIvtReR6vQipOid2Sf3Q76CR16sUHI7rod1hrEGGZGZ-f9DgtviowVHNbuhWFC2zjrIKWml2uQ_At06zAzfByaDWBGaWSl1mZaGeQzDWnqSujMSBIKyoW3CUcVHOlTocGRUuxCwKUIXErApQTcJuxUaKXlWhyl35az9ffnfZhDk0r7vfhqG-Zp0uKsZQdmxi-vZhfZx1jtTX4zg4f_tqtPXi3jeg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+the+conformable+fractional+diffusion+equation&rft.jtitle=Mathematical+notes+%28Miskolci+Egyetem+%28Hungary%29%29&rft.au=Yaslan%2C+H.+Cerdik&rft.date=2022&rft.issn=1787-2405&rft.eissn=1787-2413&rft.volume=23&rft.issue=2&rft.spage=975&rft_id=info:doi/10.18514%2FMMN.2022.3669&rft.externalDBID=n%2Fa&rft.externalDocID=10_18514_MMN_2022_3669 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1787-2405&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1787-2405&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1787-2405&client=summon |