Objective Quality Assessment of Interpolated Natural Images
Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow...
Saved in:
Published in | IEEE transactions on image processing Vol. 24; no. 11; pp. 4651 - 4663 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1057-7149 1941-0042 |
DOI | 10.1109/TIP.2015.2456638 |
Cover
Abstract | Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms. |
---|---|
AbstractList | Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms. 1 1 Partial early results of this work were presented at IEEE International Conference on Image Processing , Orlando, FL, USA, Oct. 2012. Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms. |
Author | Zhou Wang Yeganeh, Hojatollah Rostami, Mohammad |
Author_xml | – sequence: 1 givenname: Hojatollah surname: Yeganeh fullname: Yeganeh, Hojatollah email: hyeganeh@uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada – sequence: 2 givenname: Mohammad surname: Rostami fullname: Rostami, Mohammad email: m2rostam@uwaterloo.ca organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA – sequence: 3 surname: Zhou Wang fullname: Zhou Wang email: zhou.wang@uwaterloo.ca organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26186792$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMlLAzEUh4MotlXvgiADXrxMzcs2HTyJuBSKC-h5yGReZMosNckI_e-NtHrowdN7h-_3lm9C9ru-Q0JOgU4BaH71Nn-ZMgpyyoRUis_2yBhyASmlgu3HnsoszUDkIzLxfkkpCAnqkIyYgpnKcjYm18_lEk2ovzB5HXRTh3Vy4z1632IXkt4m8y6gW_WNDlglTzoMTjfJvNUf6I_JgdWNx5NtPSLv93dvt4_p4vlhfnuzSA1TLKTIqsxwyzRoLUBWtFRlJSVYS-MR1pRVxisUlsrKKD0rlTE5A2Et4yh4qfkRudzMXbn-c0Afirb2BptGd9gPvoAMeC4UhyyiFzvosh9cF6-LFMtBKUZZpM631FC2WBUrV7farYtfLRGgG8C43nuH9g8BWvyYL6L54sd8sTUfI2onYuqgQ913wem6-S94tgnWiPi3JwOp4lf8G73cjvs |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1007_s11220_017_0155_x crossref_primary_10_1109_TMM_2019_2914883 crossref_primary_10_1109_TIP_2022_3196815 crossref_primary_10_1109_LSP_2016_2603842 crossref_primary_10_1146_annurev_vision_100419_120301 crossref_primary_10_1109_TBC_2024_3475820 crossref_primary_10_1109_JMASS_2024_3355545 crossref_primary_10_1520_JTE20160456 crossref_primary_10_1109_TCSVT_2023_3341626 crossref_primary_10_1109_TIP_2015_2460015 crossref_primary_10_1109_TMM_2021_3102401 crossref_primary_10_1016_j_image_2023_117025 crossref_primary_10_1137_22M147637X crossref_primary_10_1109_ACCESS_2019_2943319 crossref_primary_10_1016_j_image_2019_08_004 crossref_primary_10_1016_j_neucom_2024_129279 crossref_primary_10_1007_s11042_023_17026_w crossref_primary_10_1016_j_aej_2024_02_007 crossref_primary_10_1016_j_jvcir_2024_104290 crossref_primary_10_1016_j_jksuci_2021_12_005 |
Cites_doi | 10.1109/ICIP.2006.312895 10.1109/TMM.2011.2157333 10.1109/34.85668 10.1109/LSP.2010.2045550 10.1007/978-3-031-02238-8 10.1109/83.951537 10.1109/ICIP.1995.537667 10.1146/annurev.neuro.24.1.1193 10.1109/TIP.2004.823819 10.1109/MSP.2003.1203207 10.1109/TIP.2012.2191563 10.1109/TIP.2006.877407 10.1109/ACSSC.2003.1292216 10.1109/38.135915 10.1109/TIP.2003.819861 10.1109/TASSP.1978.1163154 10.1109/LSP.2012.2227726 10.1109/MSP.2011.942471 10.1109/TIP.2012.2231086 10.1109/TIP.2012.2221725 10.1037/0033-295X.113.4.700 10.1109/TIP.2011.2136352 10.1007/s11042-012-1011-6 10.1109/TIP.2010.2052820 10.1016/S0042-6989(97)00181-8 10.1109/ICIP.2002.1038064 10.1109/TIP.2012.2214050 10.1109/TIP.2008.924279 10.1109/ICIP.2012.6467151 10.1109/TIP.2012.2197011 10.1109/42.544506 10.1109/ICIP.2000.899622 10.1109/TIP.2011.2147325 10.1117/12.597306 10.1109/TIP.2005.864165 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2015.2456638 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | Technology Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 4663 |
ExternalDocumentID | 3855192021 26186792 10_1109_TIP_2015_2456638 7156139 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Steacie Memorial Award Programs – fundername: Natural Sciences and Engineering Research Council of Canada through the Discovery, Strategic |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c262t-e2d7c3f2a1aa415d0b6bd551ff0867fcbd73de4f05dc6a8b6cc9214ff23e43ba3 |
IEDL.DBID | RIE |
ISSN | 1057-7149 |
IngestDate | Thu Sep 04 22:35:31 EDT 2025 Mon Jun 30 03:41:37 EDT 2025 Mon Jul 21 06:06:38 EDT 2025 Tue Jul 01 02:03:03 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Tue Aug 26 16:40:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Image quality assessment natural scene statistics image interpolation |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c262t-e2d7c3f2a1aa415d0b6bd551ff0867fcbd73de4f05dc6a8b6cc9214ff23e43ba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26186792 |
PQID | 1729166202 |
PQPubID | 85429 |
PageCount | 13 |
ParticipantIDs | ieee_primary_7156139 proquest_journals_1729166202 pubmed_primary_26186792 crossref_citationtrail_10_1109_TIP_2015_2456638 proquest_miscellaneous_1713946317 crossref_primary_10_1109_TIP_2015_2456638 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-Nov. 2015-11-00 2015-Nov 20151101 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-Nov. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2015 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref12 ref37 ref15 feng (ref29) 2002; 1 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref1 ref17 ref38 ref16 wang (ref18) 2006 wang (ref19) 2005; 5666 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 krogh (ref34) 1995 ref6 reibman (ref10) 2006 ref5 hou (ref2) 1978; 26 |
References_xml | – ident: ref11 doi: 10.1109/ICIP.2006.312895 – ident: ref12 doi: 10.1109/TMM.2011.2157333 – ident: ref28 doi: 10.1109/34.85668 – ident: ref36 doi: 10.1109/LSP.2010.2045550 – year: 2006 ident: ref18 publication-title: Modern Image Quality Assessment doi: 10.1007/978-3-031-02238-8 – ident: ref3 doi: 10.1109/83.951537 – ident: ref27 doi: 10.1109/ICIP.1995.537667 – ident: ref21 doi: 10.1146/annurev.neuro.24.1.1193 – ident: ref31 doi: 10.1109/TIP.2004.823819 – ident: ref1 doi: 10.1109/MSP.2003.1203207 – ident: ref38 doi: 10.1109/TIP.2012.2191563 – year: 2006 ident: ref10 article-title: Subjective performance evaluation of super-resolution image enhancement publication-title: Proc 2nd Int Workshop Video Process Quality Metrics (VPQM) – ident: ref6 doi: 10.1109/TIP.2006.877407 – ident: ref17 doi: 10.1109/ACSSC.2003.1292216 – ident: ref9 doi: 10.1109/38.135915 – ident: ref16 doi: 10.1109/TIP.2003.819861 – volume: 26 start-page: 508 year: 1978 ident: ref2 article-title: Cubic splines for image interpolation and digital filtering publication-title: IEEE Trans Signal Process doi: 10.1109/TASSP.1978.1163154 – ident: ref35 doi: 10.1109/LSP.2012.2227726 – start-page: 231 year: 1995 ident: ref34 article-title: Neural network ensembles, cross validation, and active learning publication-title: Advances in neural information processing systems – ident: ref20 doi: 10.1109/MSP.2011.942471 – ident: ref4 doi: 10.1109/TIP.2012.2231086 – ident: ref25 doi: 10.1109/TIP.2012.2221725 – ident: ref14 doi: 10.1037/0033-295X.113.4.700 – ident: ref7 doi: 10.1109/TIP.2011.2136352 – ident: ref13 doi: 10.1007/s11042-012-1011-6 – ident: ref30 doi: 10.1109/TIP.2010.2052820 – ident: ref26 doi: 10.1016/S0042-6989(97)00181-8 – ident: ref33 doi: 10.1109/ICIP.2002.1038064 – ident: ref24 doi: 10.1109/TIP.2012.2214050 – ident: ref5 doi: 10.1109/TIP.2008.924279 – ident: ref15 doi: 10.1109/ICIP.2012.6467151 – volume: 1 start-page: 478 year: 2002 ident: ref29 article-title: Multiscale principal components analysis for image local orientation estimation publication-title: Proc Conf Rec 36th Asilomar Conf Signals Syst Comput – ident: ref23 doi: 10.1109/TIP.2012.2197011 – ident: ref8 doi: 10.1109/42.544506 – ident: ref32 doi: 10.1109/ICIP.2000.899622 – ident: ref37 doi: 10.1109/TIP.2011.2147325 – volume: 5666 start-page: 149 year: 2005 ident: ref19 article-title: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model publication-title: Proc SPIE doi: 10.1117/12.597306 – ident: ref22 doi: 10.1109/TIP.2005.864165 |
SSID | ssj0014516 |
Score | 2.3583057 |
Snippet | Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4651 |
SubjectTerms | Algorithms Distortion Humans Image edge detection image interpolation Image Processing, Computer-Assisted - methods Image quality Image quality assessment Interpolation Lighting Models, Theoretical natural scene statistics Quality Quality assessment Reproducibility of Results Spatial resolution Visualization |
Title | Objective Quality Assessment of Interpolated Natural Images |
URI | https://ieeexplore.ieee.org/document/7156139 https://www.ncbi.nlm.nih.gov/pubmed/26186792 https://www.proquest.com/docview/1729166202 https://www.proquest.com/docview/1713946317 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rK_6IoIXwe6maZtYPIkoq-DjoOCt5HnwsSvu7kF_vZOmLSoq3gpNmjYzSb7pzHwDsIeniFBUCkRuysaZMiwuXKJiK1yhFZNOUJ_gfHnF-3fZxX1-PwUHbS6MtbYKPrNdf1n58s1QT_yvsp5IPNwtpmEa1SzkarUeA19wtvJs5jguwv7GJUmL3u35jY_hyrveyYf65gmAPU28KNiX06gqr_I70qxOnLMFuGzeNQSaPHYnY9XV799oHP_7MYswX0NPchx0ZQmm7KADCzUMJfUiH3Vg7hNH4TIcXauHsCmSwLfxRo5bNk8ydCSELaKFjNiVXMmKx4OcP-M-NVqBu7PT25N-XFdciDXjbBxbZoROHZOJlHiyG6q4MoipnEPLRzitjEiNzRzNjebyUHGtC5ZkzrHUZqmS6SrMDIYDuw4kSw9zLo1KU40Wp0sklxo3C0Ud1WiV2gh6zcyXuqYj91UxnsrKLKFFiWIrvdjKWmwR7Lc9XgIVxx9tl_2Mt-3qyY5gqxFuWa_VUYkQDjEyZ5RFsNvexlXmXSdyYIcT3wZ7ZxzBVgRrQSnaZze6tPHzmJsw698s5C9uwcz4dWK3EciM1U6lwR-mnuyY |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLQ9QAulpKVgJC5IZNdxEpuIE0KgXcpuOSwSt8ifB6C7Fbt7gF_POE4iQFBxixQ7Tjxjz5vM-A3ALloRoagUiNyUjTNlWFy4RMVWuEIrJp2g_oDzYMh7l9nZVX61APvtWRhrbZV8Zjv-sorlm4me-19lXZF4uFt8gCW0-1keTmu1MQNfcraKbeY4MgL_JihJi-6of-GzuPKOD_OhxnkKYE8ULwr2zB5VBVbexpqVzTldgUHztiHV5KYzn6mOfnhB5Pjez_kCyzX4JEdBW77Cgh2vwkoNREm9zKer8PkJS-EaHP5R12FbJIFx454ctXyeZOJISFxEHxnRKxnKismD9P_iTjX9BpenJ6PjXlzXXIg142wWW2aETh2TiZRo2w1VXBlEVc6h7yOcVkakxmaO5kZzeaC41gVLMudYarNUyXQdFseTsd0AkqUHOZdGpalGn9MlkkuN24Wijmr0S20E3WbmS10Tkvu6GLdl5ZjQokSxlV5sZS22CPbaHv8CGcd_2q75GW_b1ZMdwWYj3LJerdMSQRyiZM4oi2CnvY3rzAdP5NhO5r4N9s44wq0IvgelaJ_d6NKP18fcho-90eC8PO8Pf_-ET_4tw2nGTVic3c3tL4Q1M7VVafMjMnLv5Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Quality+Assessment+of+Interpolated+Natural+Images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yeganeh%2C+Hojatollah&rft.au=Rostami%2C+Mohammad&rft.au=Wang%2C+Zhou&rft.date=2015-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=11&rft.spage=4651&rft.epage=4663&rft_id=info:doi/10.1109%2FTIP.2015.2456638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2015_2456638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |