Objective Quality Assessment of Interpolated Natural Images

Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 24; no. 11; pp. 4651 - 4663
Main Authors Yeganeh, Hojatollah, Rostami, Mohammad, Zhou Wang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.11.2015
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
DOI10.1109/TIP.2015.2456638

Cover

Abstract Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms.
AbstractList Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms. 1 1 Partial early results of this work were presented at IEEE International Conference on Image Processing , Orlando, FL, USA, Oct. 2012.
Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to evaluate the quality of interpolated images is not a well-resolved issue. Subjective assessment methods are useful and reliable, but are also slow and expensive. Here, we propose an objective method to assess the quality of an interpolated natural image using the available LR image as a reference. Our method adopts a natural scene statistics (NSS) framework, where image quality degradation is gauged by the deviation of its statistical features from the NSS models trained upon high-quality natural images. Two distortion measures are proposed, namely, interpolated natural image distortion (IND) and weighted IND. Validations by subjective tests show that the proposed approach performs statistically equivalent or sometimes better than an average human subject. Moreover, we demonstrate the potential application of the proposed method in parameter tuning of image interpolation algorithms.
Author Zhou Wang
Yeganeh, Hojatollah
Rostami, Mohammad
Author_xml – sequence: 1
  givenname: Hojatollah
  surname: Yeganeh
  fullname: Yeganeh, Hojatollah
  email: hyeganeh@uwaterloo.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
– sequence: 2
  givenname: Mohammad
  surname: Rostami
  fullname: Rostami, Mohammad
  email: m2rostam@uwaterloo.ca
  organization: Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA, USA
– sequence: 3
  surname: Zhou Wang
  fullname: Zhou Wang
  email: zhou.wang@uwaterloo.ca
  organization: Dept. of Electr. & Comput. Eng., Univ. of Waterloo, Waterloo, ON, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26186792$$D View this record in MEDLINE/PubMed
BookMark eNp9kMlLAzEUh4MotlXvgiADXrxMzcs2HTyJuBSKC-h5yGReZMosNckI_e-NtHrowdN7h-_3lm9C9ru-Q0JOgU4BaH71Nn-ZMgpyyoRUis_2yBhyASmlgu3HnsoszUDkIzLxfkkpCAnqkIyYgpnKcjYm18_lEk2ovzB5HXRTh3Vy4z1632IXkt4m8y6gW_WNDlglTzoMTjfJvNUf6I_JgdWNx5NtPSLv93dvt4_p4vlhfnuzSA1TLKTIqsxwyzRoLUBWtFRlJSVYS-MR1pRVxisUlsrKKD0rlTE5A2Et4yh4qfkRudzMXbn-c0Afirb2BptGd9gPvoAMeC4UhyyiFzvosh9cF6-LFMtBKUZZpM631FC2WBUrV7farYtfLRGgG8C43nuH9g8BWvyYL6L54sd8sTUfI2onYuqgQ913wem6-S94tgnWiPi3JwOp4lf8G73cjvs
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s11220_017_0155_x
crossref_primary_10_1109_TMM_2019_2914883
crossref_primary_10_1109_TIP_2022_3196815
crossref_primary_10_1109_LSP_2016_2603842
crossref_primary_10_1146_annurev_vision_100419_120301
crossref_primary_10_1109_TBC_2024_3475820
crossref_primary_10_1109_JMASS_2024_3355545
crossref_primary_10_1520_JTE20160456
crossref_primary_10_1109_TCSVT_2023_3341626
crossref_primary_10_1109_TIP_2015_2460015
crossref_primary_10_1109_TMM_2021_3102401
crossref_primary_10_1016_j_image_2023_117025
crossref_primary_10_1137_22M147637X
crossref_primary_10_1109_ACCESS_2019_2943319
crossref_primary_10_1016_j_image_2019_08_004
crossref_primary_10_1016_j_neucom_2024_129279
crossref_primary_10_1007_s11042_023_17026_w
crossref_primary_10_1016_j_aej_2024_02_007
crossref_primary_10_1016_j_jvcir_2024_104290
crossref_primary_10_1016_j_jksuci_2021_12_005
Cites_doi 10.1109/ICIP.2006.312895
10.1109/TMM.2011.2157333
10.1109/34.85668
10.1109/LSP.2010.2045550
10.1007/978-3-031-02238-8
10.1109/83.951537
10.1109/ICIP.1995.537667
10.1146/annurev.neuro.24.1.1193
10.1109/TIP.2004.823819
10.1109/MSP.2003.1203207
10.1109/TIP.2012.2191563
10.1109/TIP.2006.877407
10.1109/ACSSC.2003.1292216
10.1109/38.135915
10.1109/TIP.2003.819861
10.1109/TASSP.1978.1163154
10.1109/LSP.2012.2227726
10.1109/MSP.2011.942471
10.1109/TIP.2012.2231086
10.1109/TIP.2012.2221725
10.1037/0033-295X.113.4.700
10.1109/TIP.2011.2136352
10.1007/s11042-012-1011-6
10.1109/TIP.2010.2052820
10.1016/S0042-6989(97)00181-8
10.1109/ICIP.2002.1038064
10.1109/TIP.2012.2214050
10.1109/TIP.2008.924279
10.1109/ICIP.2012.6467151
10.1109/TIP.2012.2197011
10.1109/42.544506
10.1109/ICIP.2000.899622
10.1109/TIP.2011.2147325
10.1117/12.597306
10.1109/TIP.2005.864165
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Nov 2015
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2015.2456638
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Technology Research Database
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 4663
ExternalDocumentID 3855192021
26186792
10_1109_TIP_2015_2456638
7156139
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Steacie Memorial Award Programs
– fundername: Natural Sciences and Engineering Research Council of Canada through the Discovery, Strategic
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c262t-e2d7c3f2a1aa415d0b6bd551ff0867fcbd73de4f05dc6a8b6cc9214ff23e43ba3
IEDL.DBID RIE
ISSN 1057-7149
IngestDate Thu Sep 04 22:35:31 EDT 2025
Mon Jun 30 03:41:37 EDT 2025
Mon Jul 21 06:06:38 EDT 2025
Tue Jul 01 02:03:03 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Tue Aug 26 16:40:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Image quality assessment
natural scene statistics
image interpolation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c262t-e2d7c3f2a1aa415d0b6bd551ff0867fcbd73de4f05dc6a8b6cc9214ff23e43ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26186792
PQID 1729166202
PQPubID 85429
PageCount 13
ParticipantIDs ieee_primary_7156139
proquest_journals_1729166202
pubmed_primary_26186792
crossref_citationtrail_10_1109_TIP_2015_2456638
proquest_miscellaneous_1713946317
crossref_primary_10_1109_TIP_2015_2456638
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-Nov.
2015-11-00
2015-Nov
20151101
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-Nov.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2015
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref12
ref37
ref15
feng (ref29) 2002; 1
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref1
ref17
ref38
ref16
wang (ref18) 2006
wang (ref19) 2005; 5666
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
krogh (ref34) 1995
ref6
reibman (ref10) 2006
ref5
hou (ref2) 1978; 26
References_xml – ident: ref11
  doi: 10.1109/ICIP.2006.312895
– ident: ref12
  doi: 10.1109/TMM.2011.2157333
– ident: ref28
  doi: 10.1109/34.85668
– ident: ref36
  doi: 10.1109/LSP.2010.2045550
– year: 2006
  ident: ref18
  publication-title: Modern Image Quality Assessment
  doi: 10.1007/978-3-031-02238-8
– ident: ref3
  doi: 10.1109/83.951537
– ident: ref27
  doi: 10.1109/ICIP.1995.537667
– ident: ref21
  doi: 10.1146/annurev.neuro.24.1.1193
– ident: ref31
  doi: 10.1109/TIP.2004.823819
– ident: ref1
  doi: 10.1109/MSP.2003.1203207
– ident: ref38
  doi: 10.1109/TIP.2012.2191563
– year: 2006
  ident: ref10
  article-title: Subjective performance evaluation of super-resolution image enhancement
  publication-title: Proc 2nd Int Workshop Video Process Quality Metrics (VPQM)
– ident: ref6
  doi: 10.1109/TIP.2006.877407
– ident: ref17
  doi: 10.1109/ACSSC.2003.1292216
– ident: ref9
  doi: 10.1109/38.135915
– ident: ref16
  doi: 10.1109/TIP.2003.819861
– volume: 26
  start-page: 508
  year: 1978
  ident: ref2
  article-title: Cubic splines for image interpolation and digital filtering
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TASSP.1978.1163154
– ident: ref35
  doi: 10.1109/LSP.2012.2227726
– start-page: 231
  year: 1995
  ident: ref34
  article-title: Neural network ensembles, cross validation, and active learning
  publication-title: Advances in neural information processing systems
– ident: ref20
  doi: 10.1109/MSP.2011.942471
– ident: ref4
  doi: 10.1109/TIP.2012.2231086
– ident: ref25
  doi: 10.1109/TIP.2012.2221725
– ident: ref14
  doi: 10.1037/0033-295X.113.4.700
– ident: ref7
  doi: 10.1109/TIP.2011.2136352
– ident: ref13
  doi: 10.1007/s11042-012-1011-6
– ident: ref30
  doi: 10.1109/TIP.2010.2052820
– ident: ref26
  doi: 10.1016/S0042-6989(97)00181-8
– ident: ref33
  doi: 10.1109/ICIP.2002.1038064
– ident: ref24
  doi: 10.1109/TIP.2012.2214050
– ident: ref5
  doi: 10.1109/TIP.2008.924279
– ident: ref15
  doi: 10.1109/ICIP.2012.6467151
– volume: 1
  start-page: 478
  year: 2002
  ident: ref29
  article-title: Multiscale principal components analysis for image local orientation estimation
  publication-title: Proc Conf Rec 36th Asilomar Conf Signals Syst Comput
– ident: ref23
  doi: 10.1109/TIP.2012.2197011
– ident: ref8
  doi: 10.1109/42.544506
– ident: ref32
  doi: 10.1109/ICIP.2000.899622
– ident: ref37
  doi: 10.1109/TIP.2011.2147325
– volume: 5666
  start-page: 149
  year: 2005
  ident: ref19
  article-title: Reduced-reference image quality assessment using a wavelet-domain natural image statistic model
  publication-title: Proc SPIE
  doi: 10.1117/12.597306
– ident: ref22
  doi: 10.1109/TIP.2005.864165
SSID ssj0014516
Score 2.3583057
Snippet Image interpolation techniques that create high-resolution images from low-resolution (LR) images are widely used in real world applications, but how to...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4651
SubjectTerms Algorithms
Distortion
Humans
Image edge detection
image interpolation
Image Processing, Computer-Assisted - methods
Image quality
Image quality assessment
Interpolation
Lighting
Models, Theoretical
natural scene statistics
Quality
Quality assessment
Reproducibility of Results
Spatial resolution
Visualization
Title Objective Quality Assessment of Interpolated Natural Images
URI https://ieeexplore.ieee.org/document/7156139
https://www.ncbi.nlm.nih.gov/pubmed/26186792
https://www.proquest.com/docview/1729166202
https://www.proquest.com/docview/1713946317
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58rK_6IoIXwe6maZtYPIkoq-DjoOCt5HnwsSvu7kF_vZOmLSoq3gpNmjYzSb7pzHwDsIeniFBUCkRuysaZMiwuXKJiK1yhFZNOUJ_gfHnF-3fZxX1-PwUHbS6MtbYKPrNdf1n58s1QT_yvsp5IPNwtpmEa1SzkarUeA19wtvJs5jguwv7GJUmL3u35jY_hyrveyYf65gmAPU28KNiX06gqr_I70qxOnLMFuGzeNQSaPHYnY9XV799oHP_7MYswX0NPchx0ZQmm7KADCzUMJfUiH3Vg7hNH4TIcXauHsCmSwLfxRo5bNk8ydCSELaKFjNiVXMmKx4OcP-M-NVqBu7PT25N-XFdciDXjbBxbZoROHZOJlHiyG6q4MoipnEPLRzitjEiNzRzNjebyUHGtC5ZkzrHUZqmS6SrMDIYDuw4kSw9zLo1KU40Wp0sklxo3C0Ud1WiV2gh6zcyXuqYj91UxnsrKLKFFiWIrvdjKWmwR7Lc9XgIVxx9tl_2Mt-3qyY5gqxFuWa_VUYkQDjEyZ5RFsNvexlXmXSdyYIcT3wZ7ZxzBVgRrQSnaZze6tPHzmJsw698s5C9uwcz4dWK3EciM1U6lwR-mnuyY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1ROLQ9QAulpKVgJC5IZNdxEpuIE0KgXcpuOSwSt8ifB6C7Fbt7gF_POE4iQFBxixQ7Tjxjz5vM-A3ALloRoagUiNyUjTNlWFy4RMVWuEIrJp2g_oDzYMh7l9nZVX61APvtWRhrbZV8Zjv-sorlm4me-19lXZF4uFt8gCW0-1keTmu1MQNfcraKbeY4MgL_JihJi-6of-GzuPKOD_OhxnkKYE8ULwr2zB5VBVbexpqVzTldgUHztiHV5KYzn6mOfnhB5Pjez_kCyzX4JEdBW77Cgh2vwkoNREm9zKer8PkJS-EaHP5R12FbJIFx454ctXyeZOJISFxEHxnRKxnKismD9P_iTjX9BpenJ6PjXlzXXIg142wWW2aETh2TiZRo2w1VXBlEVc6h7yOcVkakxmaO5kZzeaC41gVLMudYarNUyXQdFseTsd0AkqUHOZdGpalGn9MlkkuN24Wijmr0S20E3WbmS10Tkvu6GLdl5ZjQokSxlV5sZS22CPbaHv8CGcd_2q75GW_b1ZMdwWYj3LJerdMSQRyiZM4oi2CnvY3rzAdP5NhO5r4N9s44wq0IvgelaJ_d6NKP18fcho-90eC8PO8Pf_-ET_4tw2nGTVic3c3tL4Q1M7VVafMjMnLv5Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Objective+Quality+Assessment+of+Interpolated+Natural+Images&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Yeganeh%2C+Hojatollah&rft.au=Rostami%2C+Mohammad&rft.au=Wang%2C+Zhou&rft.date=2015-11-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=24&rft.issue=11&rft.spage=4651&rft.epage=4663&rft_id=info:doi/10.1109%2FTIP.2015.2456638&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TIP_2015_2456638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon