Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization
Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of...
Saved in:
Published in | 2020 Prognostics and Health Management Conference (PHM-Besançon) pp. 200 - 206 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of faults, monitoring the degradation of health state and to predict the remaining useful life (RUL) of bearing. The aim of this paper, is to propose a method for bearing faults feature-extraction using adaptive neuro fuzzy inference system (ANFIS) and autogram analysis. First, times domain features are applied for the raw vibration signal. Then, the selected features are computed to will be analyzed as one of the characteristics that describes the degradation of state system. After that, the curve fitting (smoothing) is applied to normalize the amplitude of the irregular values relatively to others feature values. The calculated value of acquired signal cannot be smoothed or calculated three or more times, hence ANFIS intervenes for modeling the transfer from an indeterminate input to a more relevant value for monitoring the fault evolution. Then, the output of ANFIS estimates the days of acquisition and predict the RUL of bearing. Finally, the autogram analysis is used to identify the degraded element in the bearing. |
---|---|
AbstractList | Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of faults, monitoring the degradation of health state and to predict the remaining useful life (RUL) of bearing. The aim of this paper, is to propose a method for bearing faults feature-extraction using adaptive neuro fuzzy inference system (ANFIS) and autogram analysis. First, times domain features are applied for the raw vibration signal. Then, the selected features are computed to will be analyzed as one of the characteristics that describes the degradation of state system. After that, the curve fitting (smoothing) is applied to normalize the amplitude of the irregular values relatively to others feature values. The calculated value of acquired signal cannot be smoothed or calculated three or more times, hence ANFIS intervenes for modeling the transfer from an indeterminate input to a more relevant value for monitoring the fault evolution. Then, the output of ANFIS estimates the days of acquisition and predict the RUL of bearing. Finally, the autogram analysis is used to identify the degraded element in the bearing. |
Author | Gougam, F. Varnier, C. Rahmoune, C. Benazzouz, D. Nicod, J-M. |
Author_xml | – sequence: 1 givenname: F. surname: Gougam fullname: Gougam, F. organization: FEMTO-ST Institute, ENSMM – sequence: 2 givenname: C. surname: Rahmoune fullname: Rahmoune, C. organization: Univ. M'hamed Bougara – sequence: 3 givenname: D. surname: Benazzouz fullname: Benazzouz, D. organization: Univ. M'hamed Bougara – sequence: 4 givenname: C. surname: Varnier fullname: Varnier, C. organization: FEMTO-ST Institute, ENSMM – sequence: 5 givenname: J-M. surname: Nicod fullname: Nicod, J-M. organization: FEMTO-ST Institute, ENSMM |
BookMark | eNotjstOAjEYhavRRESewE0XLnQx2Hupu4E4QjKo8bI2pfOP1AwtmSkm8Dw-qIquTvKdLyfnFB2FGAChC0qGlBJz_TidZ2PobHAxCEOJGjLCyJAQIsgBGhg9opqNqFRakkPUY1SpTCqpTtCg6z5-NKK1EUz20NcUbJOWeB6DT7H14R3n63UbrVviWOMx2D27-aWNdzb5GH6LvLLr5D8B38OmjbjY7HZbPAs1tBAc4Odtl2CFL_P7YvZ8hevY4qfXMrvtkl_9bdhQ4XyT4ntrVzgPttl2vtuLhd00KSujs43f7eUzdFzbpoPBf_bRa3H7Mplm5cPdbJKXmWOKpcxxJQUToE1tF1YvFB0p0DVltTDMOCeoqThhC6epM5rRikteEc0kW3DgXPA-Ov_b9QDwtm5_vrbbN0OpFIbzb1Kachg |
CODEN | IEEPAD |
CitedBy_id | crossref_primary_10_3390_en16083567 crossref_primary_10_1007_s42417_022_00670_1 crossref_primary_10_1007_s40430_021_02878_w crossref_primary_10_46904_eea_23_72_2_1108007 crossref_primary_10_1177_16878132241229314 crossref_primary_10_1007_s40430_023_04451_z crossref_primary_10_1016_j_istruc_2022_12_021 crossref_primary_10_1088_1361_6501_ac346d crossref_primary_10_1007_s42417_023_01144_8 crossref_primary_10_1177_1687814020980569 crossref_primary_10_3390_su142416810 crossref_primary_10_1177_0954406220976154 crossref_primary_10_31590_ejosat_1201855 crossref_primary_10_1007_s00521_021_05798_x crossref_primary_10_1007_s40430_023_04645_5 crossref_primary_10_1177_01423312231174939 crossref_primary_10_1177_0309524X221124031 |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/PHM-Besancon49106.2020.00040 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library Online IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISBN | 9781728156750 1728156750 |
EISSN | 2166-5656 |
EndPage | 206 |
ExternalDocumentID | 9115493 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IN AAJGR ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IPLJI M43 OCL RIE RIL |
ID | FETCH-LOGICAL-c262t-c365424e79faba7b6186e7f12f4929cc419d302bc71c9721d353d07252b3e3343 |
IEDL.DBID | RIE |
IngestDate | Wed Jun 26 19:25:43 EDT 2024 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c262t-c365424e79faba7b6186e7f12f4929cc419d302bc71c9721d353d07252b3e3343 |
PageCount | 7 |
ParticipantIDs | ieee_primary_9115493 |
PublicationCentury | 2000 |
PublicationDate | 2020-May |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-May |
PublicationDecade | 2020 |
PublicationTitle | 2020 Prognostics and Health Management Conference (PHM-Besançon) |
PublicationTitleAbbrev | PHM-BESANCON |
PublicationYear | 2020 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000779425 |
Score | 1.8763686 |
Snippet | Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise.... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 200 |
SubjectTerms | Adaptive neuro fuzzy inference system (ANFIS) Adaptive systems Autogram analysis Degradation Fault diagnosis Feature extraction Features extrac tion Fuzzy logic Prognostic and health management (PHM) Time domain features (TDFs) Vibrations Wind turbines |
Title | Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization |
URI | https://ieeexplore.ieee.org/document/9115493 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcb4GD04g8w_k4PHDSxsLX7Qb0NwwIGCFFJuJGt7S6ajeh2kL_HP9S-bQw1Hrwt3bI1bdf32r7v5yHU5lYke4HjkMjmhl6gqIDwKFIE0CLa3iquBGiHJ1NnOLceFvaihm4rLYxSKg8-Ux24zM_yZSIy2CrrcmDHcFZHdZfzQqtV7acYrh5Z1N5B7RKj2Z0NJ6Sv3nXjJbGlrSIEJFAjx3MaP3Kp5KbE30eTTSWKCJKXTpaGHbH-xWf8by0PUGsr2sOzyhwdopqKj9DeN95gE30WoiNc_MhQhr2SKY6TCPf1qIeyO-xtj7XhhieDFUyLOEd5YD9brz_wqPpqQT3H197UHz3dYO0G48f5mAz07FEII3EQS-xlaR4KhjcclPxBP8heUzIGi1oqQlto7g-e74ekTNNABHVoSgSDpFeWcnkUhIEbAoFfuZFJI0v7XkJYJpfMoKFwTQGsIMlsJg2X2jRkijGLHaNGnMTqBGFGubaV3LR7Ur-QhQHjPb3gkQZVAJbnp6gJ7b1cFSSOZdnUZ38Xn6Nd6PEiPPECNdK3TF1qFyINr_Kx8wWo78bs |
link.rule.ids | 310,311,783,787,792,793,799,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPpUg8Ft7ijYcOIOGS2HnUbCkiaqGtKqASW5XYzgJKESQD_Tx8UHxJaAExsEVOlFj2xXe27_8zQEM4iWpFnkcTV1hmgqIjKpJEU0SLGH-rhZaoHe4PvM7IuXl0H2twPtPCaK2L5DPdxMtiL19NZI5LZRcC2TGCL8CiiatbXqnWmq2oWL6xLeYuQaMCaV4MO33a1m-m-SapY_wipiQwqwB0Wj9OUymcSbgG_a9qlDkkT808i5ty-ovQ-N96rsP2XLZHhjOHtAE1nW7C6jfi4BZ8lLIjUv7KWEaCiipOJglpG7vHsksSzDe28UagohccGEkB8yBhPp2-k-7sqyX3nJwGg7B7f0ZMIEzuRj16bcaPUhpJolSRIM-KZDDyRUIpHgyj_DmjPfSplSZ0G0bh9cNVh1YHNVDJPJZRyfHYK0f7IoniyI-Rwa_9xGaJY6IvKR1bKG6xWPq2RFqQ4i5Xls9cFnPNucN3oJ5OUr0LhDNhvKWw3ZYyL-RxxEXLTHmUxTSi5cUebGF7j19KFse4aur9v4tPYLnz0O-Ne93B7QGsYO-XyYqHUM9ec31kAoosPi7s6BM3j8o3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Prognostics+and+Health+Management+Conference+%28PHM-Besan%C3%A7on%29&rft.atitle=Health+Monitoring+Approach+of+Bearing+%3A+Application+of+Adaptive+Neuro+Fuzzy+Inference+System+%28ANFIS%29+for+RUL-Estimation+and+Autogram+Analysis+for+Fault-Localization&rft.au=Gougam%2C+F.&rft.au=Rahmoune%2C+C.&rft.au=Benazzouz%2C+D.&rft.au=Varnier%2C+C.&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2166-5656&rft.spage=200&rft.epage=206&rft_id=info:doi/10.1109%2FPHM-Besancon49106.2020.00040&rft.externalDocID=9115493 |