Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization

Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of...

Full description

Saved in:
Bibliographic Details
Published in2020 Prognostics and Health Management Conference (PHM-Besançon) pp. 200 - 206
Main Authors Gougam, F., Rahmoune, C., Benazzouz, D., Varnier, C., Nicod, J-M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of faults, monitoring the degradation of health state and to predict the remaining useful life (RUL) of bearing. The aim of this paper, is to propose a method for bearing faults feature-extraction using adaptive neuro fuzzy inference system (ANFIS) and autogram analysis. First, times domain features are applied for the raw vibration signal. Then, the selected features are computed to will be analyzed as one of the characteristics that describes the degradation of state system. After that, the curve fitting (smoothing) is applied to normalize the amplitude of the irregular values relatively to others feature values. The calculated value of acquired signal cannot be smoothed or calculated three or more times, hence ANFIS intervenes for modeling the transfer from an indeterminate input to a more relevant value for monitoring the fault evolution. Then, the output of ANFIS estimates the days of acquisition and predict the RUL of bearing. Finally, the autogram analysis is used to identify the degraded element in the bearing.
AbstractList Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise. Therefore, bearing fault diagnosis and prognosis become difficult since the purpose is to extract robust features able to detect the appearance of faults, monitoring the degradation of health state and to predict the remaining useful life (RUL) of bearing. The aim of this paper, is to propose a method for bearing faults feature-extraction using adaptive neuro fuzzy inference system (ANFIS) and autogram analysis. First, times domain features are applied for the raw vibration signal. Then, the selected features are computed to will be analyzed as one of the characteristics that describes the degradation of state system. After that, the curve fitting (smoothing) is applied to normalize the amplitude of the irregular values relatively to others feature values. The calculated value of acquired signal cannot be smoothed or calculated three or more times, hence ANFIS intervenes for modeling the transfer from an indeterminate input to a more relevant value for monitoring the fault evolution. Then, the output of ANFIS estimates the days of acquisition and predict the RUL of bearing. Finally, the autogram analysis is used to identify the degraded element in the bearing.
Author Gougam, F.
Varnier, C.
Rahmoune, C.
Benazzouz, D.
Nicod, J-M.
Author_xml – sequence: 1
  givenname: F.
  surname: Gougam
  fullname: Gougam, F.
  organization: FEMTO-ST Institute, ENSMM
– sequence: 2
  givenname: C.
  surname: Rahmoune
  fullname: Rahmoune, C.
  organization: Univ. M'hamed Bougara
– sequence: 3
  givenname: D.
  surname: Benazzouz
  fullname: Benazzouz, D.
  organization: Univ. M'hamed Bougara
– sequence: 4
  givenname: C.
  surname: Varnier
  fullname: Varnier, C.
  organization: FEMTO-ST Institute, ENSMM
– sequence: 5
  givenname: J-M.
  surname: Nicod
  fullname: Nicod, J-M.
  organization: FEMTO-ST Institute, ENSMM
BookMark eNotjstOAjEYhavRRESewE0XLnQx2Hupu4E4QjKo8bI2pfOP1AwtmSkm8Dw-qIquTvKdLyfnFB2FGAChC0qGlBJz_TidZ2PobHAxCEOJGjLCyJAQIsgBGhg9opqNqFRakkPUY1SpTCqpTtCg6z5-NKK1EUz20NcUbJOWeB6DT7H14R3n63UbrVviWOMx2D27-aWNdzb5GH6LvLLr5D8B38OmjbjY7HZbPAs1tBAc4Odtl2CFL_P7YvZ8hevY4qfXMrvtkl_9bdhQ4XyT4ntrVzgPttl2vtuLhd00KSujs43f7eUzdFzbpoPBf_bRa3H7Mplm5cPdbJKXmWOKpcxxJQUToE1tF1YvFB0p0DVltTDMOCeoqThhC6epM5rRikteEc0kW3DgXPA-Ov_b9QDwtm5_vrbbN0OpFIbzb1Kachg
CODEN IEEPAD
CitedBy_id crossref_primary_10_3390_en16083567
crossref_primary_10_1007_s42417_022_00670_1
crossref_primary_10_1007_s40430_021_02878_w
crossref_primary_10_46904_eea_23_72_2_1108007
crossref_primary_10_1177_16878132241229314
crossref_primary_10_1007_s40430_023_04451_z
crossref_primary_10_1016_j_istruc_2022_12_021
crossref_primary_10_1088_1361_6501_ac346d
crossref_primary_10_1007_s42417_023_01144_8
crossref_primary_10_1177_1687814020980569
crossref_primary_10_3390_su142416810
crossref_primary_10_1177_0954406220976154
crossref_primary_10_31590_ejosat_1201855
crossref_primary_10_1007_s00521_021_05798_x
crossref_primary_10_1007_s40430_023_04645_5
crossref_primary_10_1177_01423312231174939
crossref_primary_10_1177_0309524X221124031
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/PHM-Besancon49106.2020.00040
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library Online
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 9781728156750
1728156750
EISSN 2166-5656
EndPage 206
ExternalDocumentID 9115493
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IN
AAJGR
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IPLJI
M43
OCL
RIE
RIL
ID FETCH-LOGICAL-c262t-c365424e79faba7b6186e7f12f4929cc419d302bc71c9721d353d07252b3e3343
IEDL.DBID RIE
IngestDate Wed Jun 26 19:25:43 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c262t-c365424e79faba7b6186e7f12f4929cc419d302bc71c9721d353d07252b3e3343
PageCount 7
ParticipantIDs ieee_primary_9115493
PublicationCentury 2000
PublicationDate 2020-May
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-May
PublicationDecade 2020
PublicationTitle 2020 Prognostics and Health Management Conference (PHM-Besançon)
PublicationTitleAbbrev PHM-BESANCON
PublicationYear 2020
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000779425
Score 1.8763686
Snippet Bearings usually operate under harsh conditions which result in a dynamic behavior generating non-stationary vibration signals and overwhelmed by noise....
SourceID ieee
SourceType Publisher
StartPage 200
SubjectTerms Adaptive neuro fuzzy inference system (ANFIS)
Adaptive systems
Autogram analysis
Degradation
Fault diagnosis
Feature extraction
Features extrac tion
Fuzzy logic
Prognostic and health management (PHM)
Time domain features (TDFs)
Vibrations
Wind turbines
Title Health Monitoring Approach of Bearing : Application of Adaptive Neuro Fuzzy Inference System (ANFIS) for RUL-Estimation and Autogram Analysis for Fault-Localization
URI https://ieeexplore.ieee.org/document/9115493
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ3PT8IwFMcb4GD04g8w_k4PHDSxsLX7Qb0NwwIGCFFJuJGt7S6ajeh2kL_HP9S-bQw1Hrwt3bI1bdf32r7v5yHU5lYke4HjkMjmhl6gqIDwKFIE0CLa3iquBGiHJ1NnOLceFvaihm4rLYxSKg8-Ux24zM_yZSIy2CrrcmDHcFZHdZfzQqtV7acYrh5Z1N5B7RKj2Z0NJ6Sv3nXjJbGlrSIEJFAjx3MaP3Kp5KbE30eTTSWKCJKXTpaGHbH-xWf8by0PUGsr2sOzyhwdopqKj9DeN95gE30WoiNc_MhQhr2SKY6TCPf1qIeyO-xtj7XhhieDFUyLOEd5YD9brz_wqPpqQT3H197UHz3dYO0G48f5mAz07FEII3EQS-xlaR4KhjcclPxBP8heUzIGi1oqQlto7g-e74ekTNNABHVoSgSDpFeWcnkUhIEbAoFfuZFJI0v7XkJYJpfMoKFwTQGsIMlsJg2X2jRkijGLHaNGnMTqBGFGubaV3LR7Ur-QhQHjPb3gkQZVAJbnp6gJ7b1cFSSOZdnUZ38Xn6Nd6PEiPPECNdK3TF1qFyINr_Kx8wWo78bs
link.rule.ids 310,311,783,787,792,793,799,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjZ07T8MwEMdPpUg8Ft7ijYcOIOGS2HnUbCkiaqGtKqASW5XYzgJKESQD_Tx8UHxJaAExsEVOlFj2xXe27_8zQEM4iWpFnkcTV1hmgqIjKpJEU0SLGH-rhZaoHe4PvM7IuXl0H2twPtPCaK2L5DPdxMtiL19NZI5LZRcC2TGCL8CiiatbXqnWmq2oWL6xLeYuQaMCaV4MO33a1m-m-SapY_wipiQwqwB0Wj9OUymcSbgG_a9qlDkkT808i5ty-ovQ-N96rsP2XLZHhjOHtAE1nW7C6jfi4BZ8lLIjUv7KWEaCiipOJglpG7vHsksSzDe28UagohccGEkB8yBhPp2-k-7sqyX3nJwGg7B7f0ZMIEzuRj16bcaPUhpJolSRIM-KZDDyRUIpHgyj_DmjPfSplSZ0G0bh9cNVh1YHNVDJPJZRyfHYK0f7IoniyI-Rwa_9xGaJY6IvKR1bKG6xWPq2RFqQ4i5Xls9cFnPNucN3oJ5OUr0LhDNhvKWw3ZYyL-RxxEXLTHmUxTSi5cUebGF7j19KFse4aur9v4tPYLnz0O-Ne93B7QGsYO-XyYqHUM9ec31kAoosPi7s6BM3j8o3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2020+Prognostics+and+Health+Management+Conference+%28PHM-Besan%C3%A7on%29&rft.atitle=Health+Monitoring+Approach+of+Bearing+%3A+Application+of+Adaptive+Neuro+Fuzzy+Inference+System+%28ANFIS%29+for+RUL-Estimation+and+Autogram+Analysis+for+Fault-Localization&rft.au=Gougam%2C+F.&rft.au=Rahmoune%2C+C.&rft.au=Benazzouz%2C+D.&rft.au=Varnier%2C+C.&rft.date=2020-05-01&rft.pub=IEEE&rft.eissn=2166-5656&rft.spage=200&rft.epage=206&rft_id=info:doi/10.1109%2FPHM-Besancon49106.2020.00040&rft.externalDocID=9115493