The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media

Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 17; no. 11; pp. 684 - 6814
Main Authors Medvedeva, Xenia V, Medvedev, Jury J, Zhao, Xingya, Smith, Elena, Klinkova, Anna
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 13.03.2025
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d4nr04135f

Cover

Loading…
Abstract Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V vs. Ag/Ag + with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules in aprotic media is affected significantly by the surface chemistry of the electocatalyst.
AbstractList Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V Ag/Ag with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V vs. Ag/Ag + with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules in aprotic media is affected significantly by the surface chemistry of the electocatalyst.
Author Medvedeva, Xenia V
Smith, Elena
Medvedev, Jury J
Klinkova, Anna
Zhao, Xingya
AuthorAffiliation Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo
AuthorAffiliation_xml – name: Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo
Author_xml – sequence: 1
  givenname: Xenia V
  surname: Medvedeva
  fullname: Medvedeva, Xenia V
– sequence: 2
  givenname: Jury J
  surname: Medvedev
  fullname: Medvedev, Jury J
– sequence: 3
  givenname: Xingya
  surname: Zhao
  fullname: Zhao, Xingya
– sequence: 4
  givenname: Elena
  surname: Smith
  fullname: Smith, Elena
– sequence: 5
  givenname: Anna
  surname: Klinkova
  fullname: Klinkova, Anna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39964028$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9LwzAUB_AgE_dDL96VgBcRqkmTps1RplNhKMg8SkmTV9fRpTNphf33Zm5O8PTe4cPLe_kOUc82FhA6peSaEiZvDLeOcMqS8gANYsJJxFga9_a94H009H5BiJBMsCPUZ1IKTuJsgN5nc8ClagE3JbbKNivl2krXgH3nSqUB6zksK9-6NTadq-wHdmA63VZfgKEG3brGr207B195XFmsVq4JA_ASTKWO0WGpag8nuzpCb5P72fgxmr48PI1vp5GORdxGBQegQhVCUmJEKrhKUlYwkCZNKecs40ZybgQzWgtD4gABisQkikqeZcBG6HI7Nzz-2YFv87CyhrpWFprO54yKjMSCcRnoxT-6aDpnw3ZBpUKQLEk26nynuiJckq9ctVRunf9-XABXW6DD_d5BuSeU5JtU8jv-_PqTyiTgsy12Xu_dX2rsG6aFiJM
Cites_doi 10.1002/aesr.202100001
10.1126/sciadv.aay3111
10.1021/acs.chemrev.7b00397
10.1021/acs.accounts.3c00116
10.1021/acscatal.0c04118
10.1007/s40820-023-01024-6
10.1039/D0TA02633F
10.1021/jacs.1c11500
10.1016/0022-0728(86)90030-6
10.1080/00397910500328811
10.1021/acscatal.9b00818
10.1149/1945-7111/ace0dc
10.1021/ja804115r
10.1002/1099-0690(200107)2001:13<2507::AID-EJOC2507>3.0.CO;2-P
10.1016/j.jelechem.2007.02.014
10.1021/acscentsci.0c01532
10.1021/acs.accounts.3c00101
10.1016/j.tet.2014.01.054
10.1016/j.joule.2020.10.002
10.1021/jo00933a001
10.1021/acsaem.0c02527
10.1016/j.greenca.2024.02.001
10.1039/D0GC01247E
10.1021/acs.chemrev.3c00712
10.1021/acsnano.0c03050
10.1016/j.isci.2020.101720
10.1016/j.jelechem.2011.11.001
10.1016/j.jelechem.2011.10.011
10.1021/acsnano.7b01669
10.1038/physci241020a0
10.1016/j.electacta.2007.09.023
10.1021/jo00108a047
10.1021/jacs.6b02878
10.1021/cr0680843
10.1039/df9511100055
10.1021/acssuschemeng.9b04647
10.1016/j.tetlet.2006.09.130
10.1002/asia.202200543
10.1016/j.tet.2008.08.093
10.1021/jacs.5b04641
10.1016/j.jelechem.2017.10.046
10.1016/j.electacta.2013.11.001
10.1039/D1NA00514F
10.1021/acscatal.3c02791
10.1007/s11237-008-9038-5
10.1590/S0103-50532009000300002
10.1016/j.gce.2021.12.001
10.1039/D0MA00807A
10.1016/j.jfluchem.2008.06.010
10.1002/anie.202005745
10.1039/C9OB01752F
10.1039/C4CP01337A
10.1039/C7RE00149E
10.1016/0008-6223(95)00030-H
10.1039/D0SC01848A
10.1002/cjoc.201090285
10.1002/poc.365
10.1021/acsanm.3c01236
10.1016/j.jelechem.2020.114015
10.1021/acsomega.8b02715
10.1021/jp061667w
10.1039/C6CP01076H
10.20964/2018.01.85
10.1021/acscatal.6b01719
10.1055/s-2001-11417
10.1016/j.electacta.2021.138528
10.1016/j.gee.2023.04.004
10.1039/C9RA07147D
10.1021/ja106049c
10.1126/sciadv.1701823
10.1021/acs.chemmater.6b00936
10.1039/C2NR32781C
10.1002/celc.201900200
10.3762/bjoc.10.260
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d4nr04135f
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed
MEDLINE - Academic

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 6814
ExternalDocumentID 39964028
10_1039_D4NR04135F
d4nr04135f
Genre Journal Article
GroupedDBID ---
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALUYA
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RSCEA
RVUXY
AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c262t-b4ee16ab6910d6764a573b3e9d77144384d944d63dcc6d02b69eeb5d5a19488e3
ISSN 2040-3364
2040-3372
IngestDate Thu Jul 10 18:15:21 EDT 2025
Mon Jun 30 12:12:41 EDT 2025
Sat Mar 15 01:20:47 EDT 2025
Tue Jul 01 05:14:28 EDT 2025
Tue May 27 12:02:02 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c262t-b4ee16ab6910d6764a573b3e9d77144384d944d63dcc6d02b69eeb5d5a19488e3
Notes Electronic supplementary information (ESI) available: Additional electrode characterization for Au-LE and electrochemical electrode stability data. See DOI
https://doi.org/10.1039/d4nr04135f
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9960-8408
0000-0003-0337-0579
0000-0002-4156-7455
OpenAccessLink http://pubs.rsc.org/en/content/articlepdf/2025/NR/D4NR04135F
PMID 39964028
PQID 3176608559
PQPubID 2047485
PageCount 11
ParticipantIDs pubmed_primary_39964028
proquest_journals_3176608559
crossref_primary_10_1039_D4NR04135F
rsc_primary_d4nr04135f
proquest_miscellaneous_3168026349
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Lin-Vein (D4NR04135F/cit69/1) 1991
Tanbouza (D4NR04135F/cit6/1) 2020; 23
Niu (D4NR04135F/cit18/1) 2008; 64
Yuan (D4NR04135F/cit34/1) 2008; 53
Klinkova (D4NR04135F/cit48/1) 2016; 6
Batanero (D4NR04135F/cit22/1) 2006; 47
Zhu (D4NR04135F/cit56/1) 2022; 144
Kimling (D4NR04135F/cit63/1) 2006; 110
Huang (D4NR04135F/cit66/1) 2010; 132
Schotten (D4NR04135F/cit5/1) 2020; 22
Liu (D4NR04135F/cit9/1) 2022; 3
Matthessen (D4NR04135F/cit10/1) 2014; 10
Chan (D4NR04135F/cit26/1) 1995; 60
Xiao (D4NR04135F/cit47/1) 2020; 4
Yang (D4NR04135F/cit21/1) 2019; 9
Baig (D4NR04135F/cit54/1) 2021; 2
Farcau (D4NR04135F/cit68/1) 2012; 4
Grys (D4NR04135F/cit73/1) 2020; 14
Dmitrieva (D4NR04135F/cit29/1) 2023; 170
Medvedev (D4NR04135F/cit16/1) 2019; 7
Han (D4NR04135F/cit49/1) 2024; 9
Sequeira (D4NR04135F/cit7/1) 2009; 20
Qu (D4NR04135F/cit30/1) 2017; 2
Klinkova (D4NR04135F/cit53/1) 2016; 28
Choi (D4NR04135F/cit42/1) 2020; 8
Terekhina (D4NR04135F/cit50/1) 2023; 6
Galati (D4NR04135F/cit61/1) 2017; 11
Rosso (D4NR04135F/cit67/1) 2001; 14
Mosquera (D4NR04135F/cit51/1) 2023; 56
Jansen (D4NR04135F/cit74/1) 1995; 33
Zhu (D4NR04135F/cit4/1) 2021; 7
Senboku (D4NR04135F/cit35/1) 2001
D4NR04135F/cit71/1
Koshechko (D4NR04135F/cit32/1) 2008; 129
Cleary (D4NR04135F/cit39/1) 1986; 198
Linnemann (D4NR04135F/cit43/1) 2021; 11
Mao (D4NR04135F/cit11/1) 2024; 2
Heard (D4NR04135F/cit41/1) 2020; 59
Medvedeva (D4NR04135F/cit8/1) 2021; 2
Fan (D4NR04135F/cit44/1) 2020; 6
Gisbert-González (D4NR04135F/cit72/1) 2020; 875
Chen (D4NR04135F/cit24/1) 2014; 116
Feidenhans'l (D4NR04135F/cit45/1) 2024; 124
Titov (D4NR04135F/cit33/1) 2008; 44
Medvedev (D4NR04135F/cit57/1) 2019; 7
Rajagopal (D4NR04135F/cit17/1) 2018; 3
Li (D4NR04135F/cit31/1) 2014; 70
Meena (D4NR04135F/cit77/1) 2016; 18
Kwan Li (D4NR04135F/cit76/1) 2023; 56
Min (D4NR04135F/cit65/1) 2014; 16
Turkevich (D4NR04135F/cit60/1) 1951; 11
Cao (D4NR04135F/cit55/1) 2016; 138
Yimin (D4NR04135F/cit15/1) 2018; 13
Cao (D4NR04135F/cit13/1) 2023; 13
Yan (D4NR04135F/cit2/1) 2017; 117
Scialdone (D4NR04135F/cit27/1) 2007; 609
Wan (D4NR04135F/cit58/1) 2017; 3
Niu (D4NR04135F/cit62/1) 2009; 131
Xia (D4NR04135F/cit52/1) 2015; 137
Zhu (D4NR04135F/cit59/1) 2021; 3
Zhao (D4NR04135F/cit25/1) 2012; 664
Pollok (D4NR04135F/cit3/1) 2020; 11
Bazzi (D4NR04135F/cit19/1) 2019; 17
Frens (D4NR04135F/cit78/1) 1973; 241
Khaja Lateef (D4NR04135F/cit28/1) 2006; 36
Mondal (D4NR04135F/cit64/1) 2021; 4
Wang (D4NR04135F/cit46/1) 2023; 15
Li (D4NR04135F/cit37/1) 2010; 28
Köster (D4NR04135F/cit38/1) 2001; 2001
Salvarezza (D4NR04135F/cit75/1) 2018; 819
Yoshida (D4NR04135F/cit1/1) 2008; 108
Gorup (D4NR04135F/cit70/1) 2020; 10
Tyssee (D4NR04135F/cit36/1) 1974; 39
Isse (D4NR04135F/cit14/1) 2003; 42
Wang (D4NR04135F/cit12/1) 2022; 17
Lan (D4NR04135F/cit20/1) 2012; 664
Senboku (D4NR04135F/cit23/1) 2019; 6
Medvedev (D4NR04135F/cit40/1) 2021; 387
References_xml – issn: 1991
  publication-title: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules
  doi: Lin-Vein Colthup Fateley Grasselli
– volume: 2
  start-page: 2100001
  year: 2021
  ident: D4NR04135F/cit8/1
  publication-title: Adv. Energy Sustainability Res.
  doi: 10.1002/aesr.202100001
– volume: 6
  start-page: eaay3111
  year: 2020
  ident: D4NR04135F/cit44/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aay3111
– volume: 117
  start-page: 13230
  year: 2017
  ident: D4NR04135F/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00397
– volume: 56
  start-page: 1517
  year: 2023
  ident: D4NR04135F/cit76/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00116
– volume: 11
  start-page: 5318
  year: 2021
  ident: D4NR04135F/cit43/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04118
– volume: 15
  start-page: 52
  year: 2023
  ident: D4NR04135F/cit46/1
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-023-01024-6
– volume: 8
  start-page: 15341
  year: 2020
  ident: D4NR04135F/cit42/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02633F
– volume: 144
  start-page: 2829
  year: 2022
  ident: D4NR04135F/cit56/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11500
– volume: 198
  start-page: 107
  year: 1986
  ident: D4NR04135F/cit39/1
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/0022-0728(86)90030-6
– volume: 36
  start-page: 31
  year: 2006
  ident: D4NR04135F/cit28/1
  publication-title: Synth. Commun.
  doi: 10.1080/00397910500328811
– volume: 9
  start-page: 4699
  year: 2019
  ident: D4NR04135F/cit21/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b00818
– volume: 170
  start-page: 075501
  year: 2023
  ident: D4NR04135F/cit29/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/ace0dc
– volume: 131
  start-page: 697
  year: 2009
  ident: D4NR04135F/cit62/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja804115r
– volume-title: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules
  year: 1991
  ident: D4NR04135F/cit69/1
– volume: 2001
  start-page: 2507
  year: 2001
  ident: D4NR04135F/cit38/1
  publication-title: Eur. J. Org. Chem.
  doi: 10.1002/1099-0690(200107)2001:13<2507::AID-EJOC2507>3.0.CO;2-P
– volume: 609
  start-page: 8
  year: 2007
  ident: D4NR04135F/cit27/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2007.02.014
– ident: D4NR04135F/cit71/1
– volume: 7
  start-page: 415
  year: 2021
  ident: D4NR04135F/cit4/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.0c01532
– volume: 56
  start-page: 1204
  year: 2023
  ident: D4NR04135F/cit51/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.3c00101
– volume: 70
  start-page: 1855
  year: 2014
  ident: D4NR04135F/cit31/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2014.01.054
– volume: 4
  start-page: 2562
  year: 2020
  ident: D4NR04135F/cit47/1
  publication-title: Joule
  doi: 10.1016/j.joule.2020.10.002
– volume: 39
  start-page: 2819
  year: 1974
  ident: D4NR04135F/cit36/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00933a001
– volume: 4
  start-page: 3017
  year: 2021
  ident: D4NR04135F/cit64/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c02527
– volume: 2
  start-page: 45
  year: 2024
  ident: D4NR04135F/cit11/1
  publication-title: Green Carbon
  doi: 10.1016/j.greenca.2024.02.001
– volume: 22
  start-page: 3358
  year: 2020
  ident: D4NR04135F/cit5/1
  publication-title: Green Chem.
  doi: 10.1039/D0GC01247E
– volume: 124
  start-page: 5617
  year: 2024
  ident: D4NR04135F/cit45/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.3c00712
– volume: 14
  start-page: 8689
  year: 2020
  ident: D4NR04135F/cit73/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03050
– volume: 23
  start-page: 101720
  year: 2020
  ident: D4NR04135F/cit6/1
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101720
– volume: 664
  start-page: 105
  year: 2012
  ident: D4NR04135F/cit25/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.11.001
– volume: 664
  start-page: 33
  year: 2012
  ident: D4NR04135F/cit20/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.10.011
– volume: 11
  start-page: 4995
  year: 2017
  ident: D4NR04135F/cit61/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b01669
– volume: 241
  start-page: 20
  year: 1973
  ident: D4NR04135F/cit78/1
  publication-title: Nat. Phys. Sci.
  doi: 10.1038/physci241020a0
– volume: 53
  start-page: 2170
  year: 2008
  ident: D4NR04135F/cit34/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.09.023
– volume: 60
  start-page: 742
  year: 1995
  ident: D4NR04135F/cit26/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo00108a047
– volume: 138
  start-page: 8120
  year: 2016
  ident: D4NR04135F/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02878
– volume: 108
  start-page: 2265
  year: 2008
  ident: D4NR04135F/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr0680843
– volume: 11
  start-page: 55
  year: 1951
  ident: D4NR04135F/cit60/1
  publication-title: Discuss. Faraday Soc.
  doi: 10.1039/df9511100055
– volume: 7
  start-page: 19631
  year: 2019
  ident: D4NR04135F/cit16/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04647
– volume: 47
  start-page: 8201
  year: 2006
  ident: D4NR04135F/cit22/1
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2006.09.130
– volume: 17
  start-page: e202200543
  year: 2022
  ident: D4NR04135F/cit12/1
  publication-title: Chem.– Asian J.
  doi: 10.1002/asia.202200543
– volume: 64
  start-page: 10517
  year: 2008
  ident: D4NR04135F/cit18/1
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2008.08.093
– volume: 42
  start-page: 751
  year: 2003
  ident: D4NR04135F/cit14/1
  publication-title: Indian J. Chem., Sect. A
– volume: 137
  start-page: 7947
  year: 2015
  ident: D4NR04135F/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04641
– volume: 819
  start-page: 234
  year: 2018
  ident: D4NR04135F/cit75/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.10.046
– volume: 116
  start-page: 475
  year: 2014
  ident: D4NR04135F/cit24/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2013.11.001
– volume: 3
  start-page: 6330
  year: 2021
  ident: D4NR04135F/cit59/1
  publication-title: Nanoscale Adv.
  doi: 10.1039/D1NA00514F
– volume: 13
  start-page: 11902
  year: 2023
  ident: D4NR04135F/cit13/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.3c02791
– volume: 44
  start-page: 271
  year: 2008
  ident: D4NR04135F/cit33/1
  publication-title: Theor. Exp. Chem.
  doi: 10.1007/s11237-008-9038-5
– volume: 20
  start-page: 387
  year: 2009
  ident: D4NR04135F/cit7/1
  publication-title: J. Braz. Chem. Soc.
  doi: 10.1590/S0103-50532009000300002
– volume: 3
  start-page: 125
  year: 2022
  ident: D4NR04135F/cit9/1
  publication-title: Green Chem. Eng.
  doi: 10.1016/j.gce.2021.12.001
– volume: 2
  start-page: 1821
  year: 2021
  ident: D4NR04135F/cit54/1
  publication-title: Mater. Adv.
  doi: 10.1039/D0MA00807A
– volume: 7
  start-page: 19631
  year: 2019
  ident: D4NR04135F/cit57/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04647
– volume: 129
  start-page: 701
  year: 2008
  ident: D4NR04135F/cit32/1
  publication-title: J. Fluorine Chem.
  doi: 10.1016/j.jfluchem.2008.06.010
– volume: 59
  start-page: 18866
  year: 2020
  ident: D4NR04135F/cit41/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202005745
– volume: 17
  start-page: 8546
  year: 2019
  ident: D4NR04135F/cit19/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C9OB01752F
– volume: 16
  start-page: 13601
  year: 2014
  ident: D4NR04135F/cit65/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP01337A
– volume: 2
  start-page: 871
  year: 2017
  ident: D4NR04135F/cit30/1
  publication-title: React. Chem. Eng.
  doi: 10.1039/C7RE00149E
– volume: 33
  start-page: 1021
  year: 1995
  ident: D4NR04135F/cit74/1
  publication-title: Carbon
  doi: 10.1016/0008-6223(95)00030-H
– volume: 11
  start-page: 12386
  year: 2020
  ident: D4NR04135F/cit3/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01848A
– volume: 28
  start-page: 1685
  year: 2010
  ident: D4NR04135F/cit37/1
  publication-title: Chin. J. Chem.
  doi: 10.1002/cjoc.201090285
– volume: 14
  start-page: 300
  year: 2001
  ident: D4NR04135F/cit67/1
  publication-title: J. Phys. Org. Chem.
  doi: 10.1002/poc.365
– volume: 6
  start-page: 11211
  year: 2023
  ident: D4NR04135F/cit50/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.3c01236
– volume: 875
  start-page: 114015
  year: 2020
  ident: D4NR04135F/cit72/1
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2020.114015
– volume: 3
  start-page: 17125
  year: 2018
  ident: D4NR04135F/cit17/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02715
– volume: 110
  start-page: 15700
  year: 2006
  ident: D4NR04135F/cit63/1
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp061667w
– volume: 18
  start-page: 13246
  year: 2016
  ident: D4NR04135F/cit77/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP01076H
– volume: 13
  start-page: 1084
  year: 2018
  ident: D4NR04135F/cit15/1
  publication-title: Int. J. Electrochem. Sci.
  doi: 10.20964/2018.01.85
– volume: 6
  start-page: 8115
  year: 2016
  ident: D4NR04135F/cit48/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b01719
– start-page: 0418
  year: 2001
  ident: D4NR04135F/cit35/1
  publication-title: Synlett
  doi: 10.1055/s-2001-11417
– volume: 387
  start-page: 138528
  year: 2021
  ident: D4NR04135F/cit40/1
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2021.138528
– volume: 9
  start-page: 1314
  year: 2024
  ident: D4NR04135F/cit49/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2023.04.004
– volume: 10
  start-page: 6259
  year: 2020
  ident: D4NR04135F/cit70/1
  publication-title: RSC Adv.
  doi: 10.1039/C9RA07147D
– volume: 132
  start-page: 17199
  year: 2010
  ident: D4NR04135F/cit66/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106049c
– volume: 3
  start-page: e1701823
  year: 2017
  ident: D4NR04135F/cit58/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701823
– volume: 28
  start-page: 3196
  year: 2016
  ident: D4NR04135F/cit53/1
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00936
– volume: 4
  start-page: 7870
  year: 2012
  ident: D4NR04135F/cit68/1
  publication-title: Nanoscale
  doi: 10.1039/C2NR32781C
– volume: 6
  start-page: 4158
  year: 2019
  ident: D4NR04135F/cit23/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201900200
– volume: 10
  start-page: 2484
  year: 2014
  ident: D4NR04135F/cit10/1
  publication-title: Beilstein J. Org. Chem.
  doi: 10.3762/bjoc.10.260
SSID ssj0069363
Score 2.4578815
Snippet Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 684
SubjectTerms Acetonitrile
Adsorbates
Benzyl bromide
Carbon dioxide
Carboxylic acids
Coupling (molecular)
Electrocatalysts
Electrode materials
Nanoparticles
Organic chemistry
Phenylacetic acid
Photoelectrons
Raman spectroscopy
Surface chemistry
X ray photoelectron spectroscopy
Title The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media
URI https://www.ncbi.nlm.nih.gov/pubmed/39964028
https://www.proquest.com/docview/3176608559
https://www.proquest.com/docview/3168026349
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4HDxK9Bx5iM4DZlJLbj1McBLRMbRUKtyAVFduxKvbgobSeNv57nOE4C22HjEkWO5UR-X57fs7_3HkLvuOKGG6YioV1Ijk5pJEElgM-TldoICja7i0b-OuPnC_YlT_PB4KLHWtpt1Wn5-9a4kv-RKrSBXF2U7D0k2w4KDXAP8oUrSBiud5bxUvqDfist-L--z8lmVy0l_LFlKOcWwhErl6m1Zgs19W821xZMQJeVZGVPpMvasCp9OEnfbAUdvN6ANDuirNFXRpur2vTMHWGvY8uGZz7ow5HyervT9c5sDp9y3a4H7ebOBFZA2d-GIKnjYfkoUq-tiKMmUurr8JyaW9qCus36sEp6ypOPfSXiG1o9pi4pqma2imHNTZfd2hXO62ffiuni8rKYT_L5A7RHwGcgQ7R3dvHh84-wMHNAniMctF8VstVS8b4b-2_75IbTASZIFUrD1CbI_DHab3wHfOaF_AQNjH2KHvUySj5DPwES2EECr5e4DwncQAK3kMAeEriFBP4XEnhlcQMJXEPiOVpMJ_OP51FTQSMqCSfbSDFjEi4VB6NQ84wzmWZUUSN0loEnTcdMC8Y0p7osuY4JdDRGpTqViQDNbugBGtq1NS8RluD7UqVd-KJiRCvFMh1rFSdjVSYizUbobZi34pdPlFLUBAcqik9s9r2e3ekIHYUpLZofaVNQl6TU8SXFCL1pH8NcuLMrac165_oAOginDPq88KJoXwM2NmdgJ4_QAcimbe5keniHYV-hhx2sj9BwW-3Ma7A3t-q4wdEf97WEFQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+of+nanoparticle+surface+chemistry+during+reductive+electrosynthesis+in+aprotic+media&rft.jtitle=Nanoscale&rft.au=Medvedeva%2C+Xenia+V&rft.au=Medvedev%2C+Jury+J&rft.au=Zhao%2C+Xingya&rft.au=Smith%2C+Elena&rft.date=2025-03-13&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=17&rft.issue=11&rft.spage=6804&rft_id=info:doi/10.1039%2Fd4nr04135f&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon