The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media
Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little...
Saved in:
Published in | Nanoscale Vol. 17; no. 11; pp. 684 - 6814 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
13.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/d4nr04135f |
Cover
Loading…
Abstract | Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V
vs.
Ag/Ag
+
with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.
Reductive electrochemical coupling of carbon dioxide with organic molecules in aprotic media is affected significantly by the surface chemistry of the electocatalyst. |
---|---|
AbstractList | Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V Ag/Ag with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC.Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of -1.5 V vs. Ag/Ag+ with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic acids and serves as a promising strategy for carbon footprint mitigation. Despite the industrial prospects of this synthetic process, little has been done towards the optimization of cathode materials at the nanoscale. Herein, we pave the way towards the use of metal nanoparticles (NPs) as electrocatalysts in EC by demonstrating the effects of NP surface chemistry on electroorganic transformations and the evolution of surface functionalization in the course of reductive electrosynthesis in aprotic media. Using spherical Au NPs capped with citrate or cetylpyridinium chloride (CPC) as our study subjects, we examined the effect of Au NP surface chemistry on the selectivity of EC of benzyl bromide in acetonitrile and determined the fate of the surface adsorbates of Au NPs in the course of the reaction using Raman spectroscopy and X-ray photoelectron spectroscopy. We show that the CPC-stabilized Au NPs outperform the citrate-stabilized NPs at a low applied potential of −1.5 V vs. Ag/Ag + with the former showing an almost two-fold increase in the faradaic efficiency towards phenylacetic acid. This higher selectivity is attributed to the reaction on the liberated Au surface stemming from the stripping of CPC molecules. In contrast to the CPC-functionalized NPs, the citrate-stabilized Au NPs retain their adsorbates during the reaction, which undergo electrochemical transformations during EC. Reductive electrochemical coupling of carbon dioxide with organic molecules in aprotic media is affected significantly by the surface chemistry of the electocatalyst. |
Author | Medvedeva, Xenia V Smith, Elena Medvedev, Jury J Klinkova, Anna Zhao, Xingya |
AuthorAffiliation | Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo |
AuthorAffiliation_xml | – name: Department of Chemistry and Waterloo Institute for Nanotechnology University of Waterloo |
Author_xml | – sequence: 1 givenname: Xenia V surname: Medvedeva fullname: Medvedeva, Xenia V – sequence: 2 givenname: Jury J surname: Medvedev fullname: Medvedev, Jury J – sequence: 3 givenname: Xingya surname: Zhao fullname: Zhao, Xingya – sequence: 4 givenname: Elena surname: Smith fullname: Smith, Elena – sequence: 5 givenname: Anna surname: Klinkova fullname: Klinkova, Anna |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39964028$$D View this record in MEDLINE/PubMed |
BookMark | eNpd0c9LwzAUB_AgE_dDL96VgBcRqkmTps1RplNhKMg8SkmTV9fRpTNphf33Zm5O8PTe4cPLe_kOUc82FhA6peSaEiZvDLeOcMqS8gANYsJJxFga9_a94H009H5BiJBMsCPUZ1IKTuJsgN5nc8ClagE3JbbKNivl2krXgH3nSqUB6zksK9-6NTadq-wHdmA63VZfgKEG3brGr207B195XFmsVq4JA_ASTKWO0WGpag8nuzpCb5P72fgxmr48PI1vp5GORdxGBQegQhVCUmJEKrhKUlYwkCZNKecs40ZybgQzWgtD4gABisQkikqeZcBG6HI7Nzz-2YFv87CyhrpWFprO54yKjMSCcRnoxT-6aDpnw3ZBpUKQLEk26nynuiJckq9ctVRunf9-XABXW6DD_d5BuSeU5JtU8jv-_PqTyiTgsy12Xu_dX2rsG6aFiJM |
Cites_doi | 10.1002/aesr.202100001 10.1126/sciadv.aay3111 10.1021/acs.chemrev.7b00397 10.1021/acs.accounts.3c00116 10.1021/acscatal.0c04118 10.1007/s40820-023-01024-6 10.1039/D0TA02633F 10.1021/jacs.1c11500 10.1016/0022-0728(86)90030-6 10.1080/00397910500328811 10.1021/acscatal.9b00818 10.1149/1945-7111/ace0dc 10.1021/ja804115r 10.1002/1099-0690(200107)2001:13<2507::AID-EJOC2507>3.0.CO;2-P 10.1016/j.jelechem.2007.02.014 10.1021/acscentsci.0c01532 10.1021/acs.accounts.3c00101 10.1016/j.tet.2014.01.054 10.1016/j.joule.2020.10.002 10.1021/jo00933a001 10.1021/acsaem.0c02527 10.1016/j.greenca.2024.02.001 10.1039/D0GC01247E 10.1021/acs.chemrev.3c00712 10.1021/acsnano.0c03050 10.1016/j.isci.2020.101720 10.1016/j.jelechem.2011.11.001 10.1016/j.jelechem.2011.10.011 10.1021/acsnano.7b01669 10.1038/physci241020a0 10.1016/j.electacta.2007.09.023 10.1021/jo00108a047 10.1021/jacs.6b02878 10.1021/cr0680843 10.1039/df9511100055 10.1021/acssuschemeng.9b04647 10.1016/j.tetlet.2006.09.130 10.1002/asia.202200543 10.1016/j.tet.2008.08.093 10.1021/jacs.5b04641 10.1016/j.jelechem.2017.10.046 10.1016/j.electacta.2013.11.001 10.1039/D1NA00514F 10.1021/acscatal.3c02791 10.1007/s11237-008-9038-5 10.1590/S0103-50532009000300002 10.1016/j.gce.2021.12.001 10.1039/D0MA00807A 10.1016/j.jfluchem.2008.06.010 10.1002/anie.202005745 10.1039/C9OB01752F 10.1039/C4CP01337A 10.1039/C7RE00149E 10.1016/0008-6223(95)00030-H 10.1039/D0SC01848A 10.1002/cjoc.201090285 10.1002/poc.365 10.1021/acsanm.3c01236 10.1016/j.jelechem.2020.114015 10.1021/acsomega.8b02715 10.1021/jp061667w 10.1039/C6CP01076H 10.20964/2018.01.85 10.1021/acscatal.6b01719 10.1055/s-2001-11417 10.1016/j.electacta.2021.138528 10.1016/j.gee.2023.04.004 10.1039/C9RA07147D 10.1021/ja106049c 10.1126/sciadv.1701823 10.1021/acs.chemmater.6b00936 10.1039/C2NR32781C 10.1002/celc.201900200 10.3762/bjoc.10.260 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d4nr04135f |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 6814 |
ExternalDocumentID | 39964028 10_1039_D4NR04135F d4nr04135f |
Genre | Journal Article |
GroupedDBID | --- 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ALUYA ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RSCEA RVUXY AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c262t-b4ee16ab6910d6764a573b3e9d77144384d944d63dcc6d02b69eeb5d5a19488e3 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Thu Jul 10 18:15:21 EDT 2025 Mon Jun 30 12:12:41 EDT 2025 Sat Mar 15 01:20:47 EDT 2025 Tue Jul 01 05:14:28 EDT 2025 Tue May 27 12:02:02 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c262t-b4ee16ab6910d6764a573b3e9d77144384d944d63dcc6d02b69eeb5d5a19488e3 |
Notes | Electronic supplementary information (ESI) available: Additional electrode characterization for Au-LE and electrochemical electrode stability data. See DOI https://doi.org/10.1039/d4nr04135f ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9960-8408 0000-0003-0337-0579 0000-0002-4156-7455 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2025/NR/D4NR04135F |
PMID | 39964028 |
PQID | 3176608559 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_39964028 proquest_journals_3176608559 crossref_primary_10_1039_D4NR04135F rsc_primary_d4nr04135f proquest_miscellaneous_3168026349 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-13 |
PublicationDateYYYYMMDD | 2025-03-13 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Lin-Vein (D4NR04135F/cit69/1) 1991 Tanbouza (D4NR04135F/cit6/1) 2020; 23 Niu (D4NR04135F/cit18/1) 2008; 64 Yuan (D4NR04135F/cit34/1) 2008; 53 Klinkova (D4NR04135F/cit48/1) 2016; 6 Batanero (D4NR04135F/cit22/1) 2006; 47 Zhu (D4NR04135F/cit56/1) 2022; 144 Kimling (D4NR04135F/cit63/1) 2006; 110 Huang (D4NR04135F/cit66/1) 2010; 132 Schotten (D4NR04135F/cit5/1) 2020; 22 Liu (D4NR04135F/cit9/1) 2022; 3 Matthessen (D4NR04135F/cit10/1) 2014; 10 Chan (D4NR04135F/cit26/1) 1995; 60 Xiao (D4NR04135F/cit47/1) 2020; 4 Yang (D4NR04135F/cit21/1) 2019; 9 Baig (D4NR04135F/cit54/1) 2021; 2 Farcau (D4NR04135F/cit68/1) 2012; 4 Grys (D4NR04135F/cit73/1) 2020; 14 Dmitrieva (D4NR04135F/cit29/1) 2023; 170 Medvedev (D4NR04135F/cit16/1) 2019; 7 Han (D4NR04135F/cit49/1) 2024; 9 Sequeira (D4NR04135F/cit7/1) 2009; 20 Qu (D4NR04135F/cit30/1) 2017; 2 Klinkova (D4NR04135F/cit53/1) 2016; 28 Choi (D4NR04135F/cit42/1) 2020; 8 Terekhina (D4NR04135F/cit50/1) 2023; 6 Galati (D4NR04135F/cit61/1) 2017; 11 Rosso (D4NR04135F/cit67/1) 2001; 14 Mosquera (D4NR04135F/cit51/1) 2023; 56 Jansen (D4NR04135F/cit74/1) 1995; 33 Zhu (D4NR04135F/cit4/1) 2021; 7 Senboku (D4NR04135F/cit35/1) 2001 D4NR04135F/cit71/1 Koshechko (D4NR04135F/cit32/1) 2008; 129 Cleary (D4NR04135F/cit39/1) 1986; 198 Linnemann (D4NR04135F/cit43/1) 2021; 11 Mao (D4NR04135F/cit11/1) 2024; 2 Heard (D4NR04135F/cit41/1) 2020; 59 Medvedeva (D4NR04135F/cit8/1) 2021; 2 Fan (D4NR04135F/cit44/1) 2020; 6 Gisbert-González (D4NR04135F/cit72/1) 2020; 875 Chen (D4NR04135F/cit24/1) 2014; 116 Feidenhans'l (D4NR04135F/cit45/1) 2024; 124 Titov (D4NR04135F/cit33/1) 2008; 44 Medvedev (D4NR04135F/cit57/1) 2019; 7 Rajagopal (D4NR04135F/cit17/1) 2018; 3 Li (D4NR04135F/cit31/1) 2014; 70 Meena (D4NR04135F/cit77/1) 2016; 18 Kwan Li (D4NR04135F/cit76/1) 2023; 56 Min (D4NR04135F/cit65/1) 2014; 16 Turkevich (D4NR04135F/cit60/1) 1951; 11 Cao (D4NR04135F/cit55/1) 2016; 138 Yimin (D4NR04135F/cit15/1) 2018; 13 Cao (D4NR04135F/cit13/1) 2023; 13 Yan (D4NR04135F/cit2/1) 2017; 117 Scialdone (D4NR04135F/cit27/1) 2007; 609 Wan (D4NR04135F/cit58/1) 2017; 3 Niu (D4NR04135F/cit62/1) 2009; 131 Xia (D4NR04135F/cit52/1) 2015; 137 Zhu (D4NR04135F/cit59/1) 2021; 3 Zhao (D4NR04135F/cit25/1) 2012; 664 Pollok (D4NR04135F/cit3/1) 2020; 11 Bazzi (D4NR04135F/cit19/1) 2019; 17 Frens (D4NR04135F/cit78/1) 1973; 241 Khaja Lateef (D4NR04135F/cit28/1) 2006; 36 Mondal (D4NR04135F/cit64/1) 2021; 4 Wang (D4NR04135F/cit46/1) 2023; 15 Li (D4NR04135F/cit37/1) 2010; 28 Köster (D4NR04135F/cit38/1) 2001; 2001 Salvarezza (D4NR04135F/cit75/1) 2018; 819 Yoshida (D4NR04135F/cit1/1) 2008; 108 Gorup (D4NR04135F/cit70/1) 2020; 10 Tyssee (D4NR04135F/cit36/1) 1974; 39 Isse (D4NR04135F/cit14/1) 2003; 42 Wang (D4NR04135F/cit12/1) 2022; 17 Lan (D4NR04135F/cit20/1) 2012; 664 Senboku (D4NR04135F/cit23/1) 2019; 6 Medvedev (D4NR04135F/cit40/1) 2021; 387 |
References_xml | – issn: 1991 publication-title: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules doi: Lin-Vein Colthup Fateley Grasselli – volume: 2 start-page: 2100001 year: 2021 ident: D4NR04135F/cit8/1 publication-title: Adv. Energy Sustainability Res. doi: 10.1002/aesr.202100001 – volume: 6 start-page: eaay3111 year: 2020 ident: D4NR04135F/cit44/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aay3111 – volume: 117 start-page: 13230 year: 2017 ident: D4NR04135F/cit2/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00397 – volume: 56 start-page: 1517 year: 2023 ident: D4NR04135F/cit76/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00116 – volume: 11 start-page: 5318 year: 2021 ident: D4NR04135F/cit43/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04118 – volume: 15 start-page: 52 year: 2023 ident: D4NR04135F/cit46/1 publication-title: Nano-Micro Lett. doi: 10.1007/s40820-023-01024-6 – volume: 8 start-page: 15341 year: 2020 ident: D4NR04135F/cit42/1 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02633F – volume: 144 start-page: 2829 year: 2022 ident: D4NR04135F/cit56/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11500 – volume: 198 start-page: 107 year: 1986 ident: D4NR04135F/cit39/1 publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/0022-0728(86)90030-6 – volume: 36 start-page: 31 year: 2006 ident: D4NR04135F/cit28/1 publication-title: Synth. Commun. doi: 10.1080/00397910500328811 – volume: 9 start-page: 4699 year: 2019 ident: D4NR04135F/cit21/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b00818 – volume: 170 start-page: 075501 year: 2023 ident: D4NR04135F/cit29/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/ace0dc – volume: 131 start-page: 697 year: 2009 ident: D4NR04135F/cit62/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja804115r – volume-title: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules year: 1991 ident: D4NR04135F/cit69/1 – volume: 2001 start-page: 2507 year: 2001 ident: D4NR04135F/cit38/1 publication-title: Eur. J. Org. Chem. doi: 10.1002/1099-0690(200107)2001:13<2507::AID-EJOC2507>3.0.CO;2-P – volume: 609 start-page: 8 year: 2007 ident: D4NR04135F/cit27/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2007.02.014 – ident: D4NR04135F/cit71/1 – volume: 7 start-page: 415 year: 2021 ident: D4NR04135F/cit4/1 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.0c01532 – volume: 56 start-page: 1204 year: 2023 ident: D4NR04135F/cit51/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.3c00101 – volume: 70 start-page: 1855 year: 2014 ident: D4NR04135F/cit31/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2014.01.054 – volume: 4 start-page: 2562 year: 2020 ident: D4NR04135F/cit47/1 publication-title: Joule doi: 10.1016/j.joule.2020.10.002 – volume: 39 start-page: 2819 year: 1974 ident: D4NR04135F/cit36/1 publication-title: J. Org. Chem. doi: 10.1021/jo00933a001 – volume: 4 start-page: 3017 year: 2021 ident: D4NR04135F/cit64/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02527 – volume: 2 start-page: 45 year: 2024 ident: D4NR04135F/cit11/1 publication-title: Green Carbon doi: 10.1016/j.greenca.2024.02.001 – volume: 22 start-page: 3358 year: 2020 ident: D4NR04135F/cit5/1 publication-title: Green Chem. doi: 10.1039/D0GC01247E – volume: 124 start-page: 5617 year: 2024 ident: D4NR04135F/cit45/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.3c00712 – volume: 14 start-page: 8689 year: 2020 ident: D4NR04135F/cit73/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c03050 – volume: 23 start-page: 101720 year: 2020 ident: D4NR04135F/cit6/1 publication-title: iScience doi: 10.1016/j.isci.2020.101720 – volume: 664 start-page: 105 year: 2012 ident: D4NR04135F/cit25/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.11.001 – volume: 664 start-page: 33 year: 2012 ident: D4NR04135F/cit20/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.10.011 – volume: 11 start-page: 4995 year: 2017 ident: D4NR04135F/cit61/1 publication-title: ACS Nano doi: 10.1021/acsnano.7b01669 – volume: 241 start-page: 20 year: 1973 ident: D4NR04135F/cit78/1 publication-title: Nat. Phys. Sci. doi: 10.1038/physci241020a0 – volume: 53 start-page: 2170 year: 2008 ident: D4NR04135F/cit34/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.09.023 – volume: 60 start-page: 742 year: 1995 ident: D4NR04135F/cit26/1 publication-title: J. Org. Chem. doi: 10.1021/jo00108a047 – volume: 138 start-page: 8120 year: 2016 ident: D4NR04135F/cit55/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02878 – volume: 108 start-page: 2265 year: 2008 ident: D4NR04135F/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr0680843 – volume: 11 start-page: 55 year: 1951 ident: D4NR04135F/cit60/1 publication-title: Discuss. Faraday Soc. doi: 10.1039/df9511100055 – volume: 7 start-page: 19631 year: 2019 ident: D4NR04135F/cit16/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04647 – volume: 47 start-page: 8201 year: 2006 ident: D4NR04135F/cit22/1 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2006.09.130 – volume: 17 start-page: e202200543 year: 2022 ident: D4NR04135F/cit12/1 publication-title: Chem.– Asian J. doi: 10.1002/asia.202200543 – volume: 64 start-page: 10517 year: 2008 ident: D4NR04135F/cit18/1 publication-title: Tetrahedron doi: 10.1016/j.tet.2008.08.093 – volume: 42 start-page: 751 year: 2003 ident: D4NR04135F/cit14/1 publication-title: Indian J. Chem., Sect. A – volume: 137 start-page: 7947 year: 2015 ident: D4NR04135F/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04641 – volume: 819 start-page: 234 year: 2018 ident: D4NR04135F/cit75/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.10.046 – volume: 116 start-page: 475 year: 2014 ident: D4NR04135F/cit24/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.11.001 – volume: 3 start-page: 6330 year: 2021 ident: D4NR04135F/cit59/1 publication-title: Nanoscale Adv. doi: 10.1039/D1NA00514F – volume: 13 start-page: 11902 year: 2023 ident: D4NR04135F/cit13/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c02791 – volume: 44 start-page: 271 year: 2008 ident: D4NR04135F/cit33/1 publication-title: Theor. Exp. Chem. doi: 10.1007/s11237-008-9038-5 – volume: 20 start-page: 387 year: 2009 ident: D4NR04135F/cit7/1 publication-title: J. Braz. Chem. Soc. doi: 10.1590/S0103-50532009000300002 – volume: 3 start-page: 125 year: 2022 ident: D4NR04135F/cit9/1 publication-title: Green Chem. Eng. doi: 10.1016/j.gce.2021.12.001 – volume: 2 start-page: 1821 year: 2021 ident: D4NR04135F/cit54/1 publication-title: Mater. Adv. doi: 10.1039/D0MA00807A – volume: 7 start-page: 19631 year: 2019 ident: D4NR04135F/cit57/1 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.9b04647 – volume: 129 start-page: 701 year: 2008 ident: D4NR04135F/cit32/1 publication-title: J. Fluorine Chem. doi: 10.1016/j.jfluchem.2008.06.010 – volume: 59 start-page: 18866 year: 2020 ident: D4NR04135F/cit41/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202005745 – volume: 17 start-page: 8546 year: 2019 ident: D4NR04135F/cit19/1 publication-title: Org. Biomol. Chem. doi: 10.1039/C9OB01752F – volume: 16 start-page: 13601 year: 2014 ident: D4NR04135F/cit65/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP01337A – volume: 2 start-page: 871 year: 2017 ident: D4NR04135F/cit30/1 publication-title: React. Chem. Eng. doi: 10.1039/C7RE00149E – volume: 33 start-page: 1021 year: 1995 ident: D4NR04135F/cit74/1 publication-title: Carbon doi: 10.1016/0008-6223(95)00030-H – volume: 11 start-page: 12386 year: 2020 ident: D4NR04135F/cit3/1 publication-title: Chem. Sci. doi: 10.1039/D0SC01848A – volume: 28 start-page: 1685 year: 2010 ident: D4NR04135F/cit37/1 publication-title: Chin. J. Chem. doi: 10.1002/cjoc.201090285 – volume: 14 start-page: 300 year: 2001 ident: D4NR04135F/cit67/1 publication-title: J. Phys. Org. Chem. doi: 10.1002/poc.365 – volume: 6 start-page: 11211 year: 2023 ident: D4NR04135F/cit50/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.3c01236 – volume: 875 start-page: 114015 year: 2020 ident: D4NR04135F/cit72/1 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2020.114015 – volume: 3 start-page: 17125 year: 2018 ident: D4NR04135F/cit17/1 publication-title: ACS Omega doi: 10.1021/acsomega.8b02715 – volume: 110 start-page: 15700 year: 2006 ident: D4NR04135F/cit63/1 publication-title: J. Phys. Chem. B doi: 10.1021/jp061667w – volume: 18 start-page: 13246 year: 2016 ident: D4NR04135F/cit77/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP01076H – volume: 13 start-page: 1084 year: 2018 ident: D4NR04135F/cit15/1 publication-title: Int. J. Electrochem. Sci. doi: 10.20964/2018.01.85 – volume: 6 start-page: 8115 year: 2016 ident: D4NR04135F/cit48/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b01719 – start-page: 0418 year: 2001 ident: D4NR04135F/cit35/1 publication-title: Synlett doi: 10.1055/s-2001-11417 – volume: 387 start-page: 138528 year: 2021 ident: D4NR04135F/cit40/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2021.138528 – volume: 9 start-page: 1314 year: 2024 ident: D4NR04135F/cit49/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2023.04.004 – volume: 10 start-page: 6259 year: 2020 ident: D4NR04135F/cit70/1 publication-title: RSC Adv. doi: 10.1039/C9RA07147D – volume: 132 start-page: 17199 year: 2010 ident: D4NR04135F/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106049c – volume: 3 start-page: e1701823 year: 2017 ident: D4NR04135F/cit58/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701823 – volume: 28 start-page: 3196 year: 2016 ident: D4NR04135F/cit53/1 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00936 – volume: 4 start-page: 7870 year: 2012 ident: D4NR04135F/cit68/1 publication-title: Nanoscale doi: 10.1039/C2NR32781C – volume: 6 start-page: 4158 year: 2019 ident: D4NR04135F/cit23/1 publication-title: ChemElectroChem doi: 10.1002/celc.201900200 – volume: 10 start-page: 2484 year: 2014 ident: D4NR04135F/cit10/1 publication-title: Beilstein J. Org. Chem. doi: 10.3762/bjoc.10.260 |
SSID | ssj0069363 |
Score | 2.4578815 |
Snippet | Reductive electrochemical coupling of carbon dioxide with organic molecules (electrocarboxylation, EC) represents a green route towards value-added carboxylic... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 684 |
SubjectTerms | Acetonitrile Adsorbates Benzyl bromide Carbon dioxide Carboxylic acids Coupling (molecular) Electrocatalysts Electrode materials Nanoparticles Organic chemistry Phenylacetic acid Photoelectrons Raman spectroscopy Surface chemistry X ray photoelectron spectroscopy |
Title | The fate of nanoparticle surface chemistry during reductive electrosynthesis in aprotic media |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39964028 https://www.proquest.com/docview/3176608559 https://www.proquest.com/docview/3168026349 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZKd4HDxK9Bx5iM4DZlJLbj1McBLRMbRUKtyAVFduxKvbgobSeNv57nOE4C22HjEkWO5UR-X57fs7_3HkLvuOKGG6YioV1Ijk5pJEElgM-TldoICja7i0b-OuPnC_YlT_PB4KLHWtpt1Wn5-9a4kv-RKrSBXF2U7D0k2w4KDXAP8oUrSBiud5bxUvqDfist-L--z8lmVy0l_LFlKOcWwhErl6m1Zgs19W821xZMQJeVZGVPpMvasCp9OEnfbAUdvN6ANDuirNFXRpur2vTMHWGvY8uGZz7ow5HyervT9c5sDp9y3a4H7ebOBFZA2d-GIKnjYfkoUq-tiKMmUurr8JyaW9qCus36sEp6ypOPfSXiG1o9pi4pqma2imHNTZfd2hXO62ffiuni8rKYT_L5A7RHwGcgQ7R3dvHh84-wMHNAniMctF8VstVS8b4b-2_75IbTASZIFUrD1CbI_DHab3wHfOaF_AQNjH2KHvUySj5DPwES2EECr5e4DwncQAK3kMAeEriFBP4XEnhlcQMJXEPiOVpMJ_OP51FTQSMqCSfbSDFjEi4VB6NQ84wzmWZUUSN0loEnTcdMC8Y0p7osuY4JdDRGpTqViQDNbugBGtq1NS8RluD7UqVd-KJiRCvFMh1rFSdjVSYizUbobZi34pdPlFLUBAcqik9s9r2e3ekIHYUpLZofaVNQl6TU8SXFCL1pH8NcuLMrac165_oAOginDPq88KJoXwM2NmdgJ4_QAcimbe5keniHYV-hhx2sj9BwW-3Ma7A3t-q4wdEf97WEFQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+fate+of+nanoparticle+surface+chemistry+during+reductive+electrosynthesis+in+aprotic+media&rft.jtitle=Nanoscale&rft.au=Medvedeva%2C+Xenia+V&rft.au=Medvedev%2C+Jury+J&rft.au=Zhao%2C+Xingya&rft.au=Smith%2C+Elena&rft.date=2025-03-13&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=17&rft.issue=11&rft.spage=6804&rft_id=info:doi/10.1039%2Fd4nr04135f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |