Electrocatalytic formate and alcohol oxidation by hydride transfer at first-row transition metal complexes

The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst desi...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 53; no. 28; pp. 11644 - 11654
Main Authors White, Navar M, Waldie, Kate M
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 16.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design. This Frontier article highlights the key advances in electrocatalytic formate and alcohol oxidation using first-row transition metal-hydride catalysts, and offers insights into the remaining challenges and future research directions for this field.
AbstractList The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate via hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design. This Frontier article highlights the key advances in electrocatalytic formate and alcohol oxidation using first-row transition metal-hydride catalysts, and offers insights into the remaining challenges and future research directions for this field.
The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition. Molecular electrocatalysts based on transition metal complexes provide the opportunity to explore the interplay between precise catalyst design and electrocatalytic activity. Recent advances have seen the development of first-row transition metal electrocatalysts for these transformations that operate hydride transfer between the substrate and catalyst. In this Frontier article, we present the key contributions to this field and discuss the proposed mechanisms for each case. These studies also reveal the remaining challenges for formate and alcohol oxidation with first-row transition metal systems, for which we provide perspectives on future directions for next-generation electrocatalyst design.
Author Waldie, Kate M
White, Navar M
AuthorAffiliation Rutgers
The State University of New Jersey
Department of Chemistry and Chemical Biology
AuthorAffiliation_xml – name: Rutgers
– name: The State University of New Jersey
– name: Department of Chemistry and Chemical Biology
Author_xml – sequence: 1
  givenname: Navar M
  surname: White
  fullname: White, Navar M
– sequence: 2
  givenname: Kate M
  surname: Waldie
  fullname: Waldie, Kate M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38896286$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9LwzAUB_AgE_dDL96VgBcRqmnSNulRtvkDBl7muaTJK-tom5lkuP73duuc4CmPvA9fHu-N0aAxDSB0HZLHkLD0STPtScRIBGdoFEacByll0eBU02SIxs6tCaGUxPQCDZkQaUJFMkLreQXKW6Okl1XrS4ULY2vpActGY1kpszIVNrtSS1-aBuctXrXalhqwt7JxBVgsPS5K63xgzXf_Wx5sDV0mVqbeVLADd4nOC1k5uDq-E_T5Ml9O34LFx-v79HkRKJpQH4iY5CrmUZzrnCZxGKeFlITqSPJCQywoCykRiisOcQ6CEpXKnEmikxSKlDM2Qfd97saary04n9WlU1BVsgGzdRkjnAgS0TTs6N0_ujZb23TTdUrsl5uIpFMPvVLWOGehyDa2rKVts5Bke5TN2Gx5uMC8w7fHyG1egz7R35V34KYH1qlT9--E7AeYsI3m
Cites_doi 10.1039/c2ee03341k
10.1021/acsenergylett.3c01098
10.1016/j.ijhydene.2018.11.089
10.1038/nchem.2157
10.1038/s41560-019-0374-6
10.1039/D2DT00333C
10.1021/jo010721w
10.1021/acsenergylett.6b00574
10.1039/B801197B
10.1021/acscatal.1c00781
10.1021/jacs.1c03132
10.3389/fenrg.2023.1207208
10.1016/0013-4686(93)87021-5
10.1021/ja204489e
10.1021/jp210690q
10.1021/acs.chemrev.6b00168
10.1021/ja4055564
10.1073/pnas.1213442109
10.1016/j.jorganchem.2013.04.022
10.1021/cs5009656
10.1021/ic00111a035
10.1021/ja210718u
10.1021/ja0122804
10.1002/jcc.23944
10.1021/ja00230a016
10.1038/nature18008
10.1039/c0gc00382d
10.1002/anie.201402542
10.1039/D0CS00405G
10.1039/C7CS00334J
10.1021/acscatal.7b03396
10.1021/ja991888y
10.26434/chemrxiv-2023-tfn6t
10.1021/acsaem.9b01820
10.1021/ja504523b
10.1002/adsu.202300205
10.1021/jacs.6b09705
10.1002/celc.202100576
10.1126/science.1224581
10.1021/acscatal.5b00137
10.1021/jacs.0c03861
10.1021/acs.organomet.6b00251
10.1021/jacs.3c09824
10.1039/C5CC01107H
10.1038/s41467-020-18461-1
10.1038/s41467-019-12744-y
10.1021/ja00237a019
10.1021/jacs.6b07014
10.1021/jacs.8b07102
10.1021/ic020610v
10.1021/acscatal.0c03240
10.1021/ic971027v
10.1021/acssuschemeng.8b00628
10.1039/D0CY00699H
10.1039/DT9910001909
10.1021/jacs.0c07965
10.1021/acscatal.1c03283
10.1002/anie.201913198
10.1021/ja00379a011
10.1021/acs.jpclett.1c00406
10.1073/pnas.0603395103
10.1039/C7CS00171A
10.1039/D2EE01458K
10.1002/anie.201307224
10.1021/acs.chemrev.7b00397
10.1021/ja504034q
10.1038/s41467-023-36726-3
10.1021/ic010064q
10.1055/a-1645-3254
10.1021/ic4027317
10.1073/pnas.1420199112
10.1002/celc.202100617
10.1021/jacs.2c07192
10.1021/ja505241x
10.1021/jacs.0c09605
10.1021/acscatal.7b01791
10.1073/pnas.1201026109
10.1126/sciadv.aaz3318
10.1021/acs.accounts.9b00544
10.1021/ja0116829
10.1039/D2SC04533H
10.1021/acscentsci.6b00091
10.1016/j.checat.2023.100561
10.1039/DT9910001901
10.1021/acs.chemrev.1c01001
10.1002/chem.202002075
10.1021/cs400862x
10.1021/jacs.9b06760
10.1016/j.ccr.2021.213967
10.1021/acs.chemrev.8b00555
10.1021/acs.organomet.3c00333
10.1002/cctc.201900083
10.1038/s41467-019-10928-0
10.1021/ja056442y
10.1021/jacs.7b05642
10.1021/ic1024923
10.1039/c2ee21928j
10.1016/j.jpowsour.2016.04.082
10.1021/acs.inorgchem.9b03230
10.1073/pnas.1118333109
10.1021/acscatal.1c05509
10.1021/cs200660v
10.1021/cs500853f
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
DOI 10.1039/d3dt04304e
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1477-9234
EndPage 11654
ExternalDocumentID 10_1039_D3DT04304E
38896286
d3dt04304e
Genre Journal Article
Review
GroupedDBID ---
-DZ
-JG
-~X
0-7
0R~
29F
4.4
53G
5GY
70~
7~J
AAEMU
AAIWI
AANOJ
AAXHV
AAXPP
ABASK
ABDVN
ABJNI
ABPDG
ABRYZ
ACGFS
ACIWK
ACLDK
ACNCT
ADMRA
AENEX
AETIL
AFOGI
AFVBQ
AGEGJ
AGKEF
AGRSR
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
D0L
DU5
EBS
ECGLT
EE0
EF-
F5P
GNO
HZ~
H~N
IDZ
J3G
J3H
J3I
M4U
O9-
R7B
R7C
RAOCF
RCNCU
RNS
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UCJ
UPT
VH6
VQA
WH7
AAJAE
AAMEH
AAWGC
ABEMK
ABXOH
ADSRN
AEFDR
AENGV
AESAV
AFLYV
AFRDS
AHGCF
APEMP
GGIMP
H13
NPM
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
ID FETCH-LOGICAL-c262t-850bc5745bdb265159faa02d4a7fde58231208c7c7e5be820c9ab3a0d69ef9733
ISSN 1477-9226
1477-9234
IngestDate Sat Aug 17 04:30:36 EDT 2024
Thu Oct 10 22:51:04 EDT 2024
Fri Aug 23 05:13:10 EDT 2024
Wed Oct 23 10:02:18 EDT 2024
Wed Jul 17 04:12:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 28
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c262t-850bc5745bdb265159faa02d4a7fde58231208c7c7e5be820c9ab3a0d69ef9733
Notes Navar Mercer White received his B.A. in Chemistry with a Minor in Geometrical Mathematics from Vassar College in 2015. Mercer is currently pursuing his Ph.D. in Chemistry at Rutgers, The State University of New Jersey (New Brunswick) under the guidance of Prof. Kate M. Waldie. His current research focuses on the development of organometallic catalysts for electrocatalytic transformations and their application for sustainable chemical synthesis and renewable energy conversion.
Kate M. Waldie received her Ph.D. in Chemistry from Stanford University in 2016 under the guidance of Prof. Robert M. Waymouth. She completed her postdoctoral research with Professor Clifford P. Kubiak at the University of California San Diego. She is currently Assistant Professor in the Department of Chemistry and Chemical Biology at Rutgers, The State University of New Jersey (New Brunswick), where her group focuses on the design and study of molecular transition metal complexes for renewable energy storage & conversion and organic synthesis.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0001-6444-6122
0000-0002-1493-319X
OpenAccessLink https://doi.org/10.1039/d3dt04304e
PMID 38896286
PQID 3081039686
PQPubID 2047498
PageCount 11
ParticipantIDs rsc_primary_d3dt04304e
crossref_primary_10_1039_D3DT04304E
proquest_journals_3081039686
pubmed_primary_38896286
proquest_miscellaneous_3070804291
PublicationCentury 2000
PublicationDate 2024-07-16
PublicationDateYYYYMMDD 2024-07-16
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-16
  day: 16
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Dalton transactions : an international journal of inorganic chemistry
PublicationTitleAlternate Dalton Trans
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Stratakes (D3DT04304E/cit106/1) 2021; 8
Pegis (D3DT04304E/cit53/1) 2017; 139
Calvin (D3DT04304E/cit56/1) 2002; 124
Na (D3DT04304E/cit15/1) 2019; 10
Marinescu (D3DT04304E/cit82/1) 2012; 109
Jiao (D3DT04304E/cit74/1) 2016; 37
Grasemann (D3DT04304E/cit2/1) 2012; 5
Lewis (D3DT04304E/cit1/1) 2006; 103
Bender (D3DT04304E/cit13/1) 2020; 11
Li (D3DT04304E/cit25/1) 1991
Chakraborty (D3DT04304E/cit70/1) 2014; 136
Brownell (D3DT04304E/cit75/1) 2013; 135
Katipamula (D3DT04304E/cit37/1) 2023; 3
Fokin (D3DT04304E/cit34/1) 2022; 54
Curtis (D3DT04304E/cit62/1) 2003; 42
Bonitatibus, Jr. (D3DT04304E/cit66/1) 2015; 112
Martin (D3DT04304E/cit98/1) 2021; 143
Nguyen (D3DT04304E/cit6/1) 2023; 7
Chakraborty (D3DT04304E/cit71/1) 2014; 136
Yang (D3DT04304E/cit104/1) 2020; 142
Alberico (D3DT04304E/cit67/1) 2013; 52
Bielinski (D3DT04304E/cit94/1) 2014; 136
Cunningham (D3DT04304E/cit48/1) 2020; 59
Wiedner (D3DT04304E/cit35/1) 2016; 116
Dub (D3DT04304E/cit43/1) 2017; 7
Verma (D3DT04304E/cit14/1) 2019; 4
Li (D3DT04304E/cit49/1) 2023; 145
Yadav (D3DT04304E/cit9/1) 2021; 11
Waldie (D3DT04304E/cit76/1) 2017; 139
Horn (D3DT04304E/cit18/1) 2016; 2
Huang (D3DT04304E/cit102/1) 2017; 140
Trincado (D3DT04304E/cit32/1) 2021; 443
Yang (D3DT04304E/cit73/1) 2013; 3
Nie (D3DT04304E/cit100/1) 2022; 51
Eppinger (D3DT04304E/cit10/1) 2017; 2
Wang (D3DT04304E/cit12/1) 2019; 10
Mathis (D3DT04304E/cit90/1) 2019; 141
McLoughlin (D3DT04304E/cit103/1) 2020; 10
Rodriguez (D3DT04304E/cit29/1) 2001; 40
Wilson (D3DT04304E/cit50/1) 2005; 128
An (D3DT04304E/cit3/1) 2016; 320
Tocqueville (D3DT04304E/cit89/1) 2022; 13
Catalano (D3DT04304E/cit28/1) 1998; 37
Budweg (D3DT04304E/cit78/1) 2020; 10
Noyori (D3DT04304E/cit42/1) 2001; 66
Alig (D3DT04304E/cit79/1) 2019; 119
Galan (D3DT04304E/cit45/1) 2011; 133
Askevold (D3DT04304E/cit91/1) 2013; 744
Costentin (D3DT04304E/cit92/1) 2012; 338
Badalyan (D3DT04304E/cit105/1) 2016; 535
Vannucci (D3DT04304E/cit31/1) 2012; 134
Ciancanelli (D3DT04304E/cit81/1) 2002; 124
Seu (D3DT04304E/cit46/1) 2012; 5
Thompson (D3DT04304E/cit21/1) 1982; 104
Berning (D3DT04304E/cit55/1) 1999; 121
McLoughlin (D3DT04304E/cit65/1) 2020; 59
Fokin (D3DT04304E/cit39/1) 2020; 26
Xue (D3DT04304E/cit54/1) 2014; 53
Speelman (D3DT04304E/cit40/1) 2022; 15
Martin (D3DT04304E/cit96/1) 2020; 6
Bi (D3DT04304E/cit47/1) 2019; 11
Esquivel-Elizondo (D3DT04304E/cit8/1) 2024; 11
(D3DT04304E/cit41/1) 2000
Espinosa (D3DT04304E/cit86/1) 2022; 144
Ilic (D3DT04304E/cit85/1) 2018; 47
Roecker (D3DT04304E/cit22/1) 1987; 109
Azcarate (D3DT04304E/cit93/1) 2016; 138
Pan (D3DT04304E/cit16/1) 2023; 14
Yan (D3DT04304E/cit19/1) 2017; 117
Elsby (D3DT04304E/cit87/1) 2023; 42
Frontana-Uribe (D3DT04304E/cit17/1) 2010; 12
Filonenko (D3DT04304E/cit77/1) 2018; 47
Loewen (D3DT04304E/cit99/1) 2021; 12
Heins (D3DT04304E/cit80/1) 2021; 11
Seok (D3DT04304E/cit23/1) 1988; 110
Muckerman (D3DT04304E/cit38/1) 2012; 109
Fernandez (D3DT04304E/cit63/1) 2012; 116
Rakowski DuBois (D3DT04304E/cit51/1) 2009; 38
Katipamula (D3DT04304E/cit57/1) 2023
Cook (D3DT04304E/cit7/1) 2020; 3
Dutta (D3DT04304E/cit11/1) 2023; 8
Siwal (D3DT04304E/cit5/1) 2019; 14
von Wolff (D3DT04304E/cit33/1) 2021; 8
Bielinski (D3DT04304E/cit95/1) 2015; 5
Bourrez (D3DT04304E/cit101/1) 2015; 7
Chakraborty (D3DT04304E/cit69/1) 2014; 4
Weiss (D3DT04304E/cit59/1) 2015; 51
Gerli (D3DT04304E/cit27/1) 1995; 34
Galvin (D3DT04304E/cit83/1) 2020; 142
Weiss (D3DT04304E/cit58/1) 2014; 4
Zhang (D3DT04304E/cit97/1) 2020; 142
Gunasekara (D3DT04304E/cit61/1) 2022; 12
Horvath (D3DT04304E/cit64/1) 2012; 109
Paul (D3DT04304E/cit30/1) 2011; 50
Waldie (D3DT04304E/cit36/1) 2018; 8
Brereton (D3DT04304E/cit84/1) 2020; 49
Lyaskovskyy (D3DT04304E/cit88/1) 2012; 2
Fadzillah (D3DT04304E/cit4/1) 2019; 44
Lai (D3DT04304E/cit26/1) 1993; 38
Schneck (D3DT04304E/cit72/1) 2016; 35
Chakraborty (D3DT04304E/cit44/1) 2023
Wiedner (D3DT04304E/cit60/1) 2022; 122
Waldie (D3DT04304E/cit52/1) 2018; 6
Werkmeister (D3DT04304E/cit68/1) 2014; 53
Che (D3DT04304E/cit24/1) 1991
Wang (D3DT04304E/cit20/1) 2020; 53
References_xml – issn: 2023
  publication-title: Topics in Organometallic Chemistry
  doi: Chakraborty Pradhan Sundararaji
– issn: 2000
  publication-title: CRC Handbook of Chemistry and Physics
– volume: 5
  start-page: 6480
  year: 2012
  ident: D3DT04304E/cit46/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03341k
  contributor:
    fullname: Seu
– volume: 14
  start-page: 100182
  year: 2019
  ident: D3DT04304E/cit5/1
  publication-title: Mater. Today Adv.
  contributor:
    fullname: Siwal
– volume: 8
  start-page: 3251
  year: 2023
  ident: D3DT04304E/cit11/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.3c01098
  contributor:
    fullname: Dutta
– volume: 44
  start-page: 3031
  year: 2019
  ident: D3DT04304E/cit4/1
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.11.089
  contributor:
    fullname: Fadzillah
– volume: 7
  start-page: 140
  year: 2015
  ident: D3DT04304E/cit101/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2157
  contributor:
    fullname: Bourrez
– volume: 4
  start-page: 466
  year: 2019
  ident: D3DT04304E/cit14/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0374-6
  contributor:
    fullname: Verma
– volume: 51
  start-page: 6993
  year: 2022
  ident: D3DT04304E/cit100/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00333C
  contributor:
    fullname: Nie
– volume: 66
  start-page: 7931
  year: 2001
  ident: D3DT04304E/cit42/1
  publication-title: J. Org. Chem.
  doi: 10.1021/jo010721w
  contributor:
    fullname: Noyori
– volume: 2
  start-page: 188
  year: 2017
  ident: D3DT04304E/cit10/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.6b00574
  contributor:
    fullname: Eppinger
– volume: 38
  start-page: 62
  year: 2009
  ident: D3DT04304E/cit51/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B801197B
  contributor:
    fullname: Rakowski DuBois
– volume: 11
  start-page: 6384
  year: 2021
  ident: D3DT04304E/cit80/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00781
  contributor:
    fullname: Heins
– volume: 143
  start-page: 11423
  year: 2021
  ident: D3DT04304E/cit98/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c03132
  contributor:
    fullname: Martin
– volume: 11
  start-page: 1207208
  year: 2024
  ident: D3DT04304E/cit8/1
  publication-title: Front. Energy Res.
  doi: 10.3389/fenrg.2023.1207208
  contributor:
    fullname: Esquivel-Elizondo
– volume: 38
  start-page: 1015
  year: 1993
  ident: D3DT04304E/cit26/1
  publication-title: Electrochim. Acta
  doi: 10.1016/0013-4686(93)87021-5
  contributor:
    fullname: Lai
– volume: 133
  start-page: 12767
  year: 2011
  ident: D3DT04304E/cit45/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja204489e
  contributor:
    fullname: Galan
– volume: 116
  start-page: 3171
  year: 2012
  ident: D3DT04304E/cit63/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp210690q
  contributor:
    fullname: Fernandez
– volume: 116
  start-page: 8655
  year: 2016
  ident: D3DT04304E/cit35/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00168
  contributor:
    fullname: Wiedner
– volume: 135
  start-page: 14299
  year: 2013
  ident: D3DT04304E/cit75/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4055564
  contributor:
    fullname: Brownell
– volume: 109
  start-page: 15127
  year: 2012
  ident: D3DT04304E/cit82/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1213442109
  contributor:
    fullname: Marinescu
– volume: 744
  start-page: 35
  year: 2013
  ident: D3DT04304E/cit91/1
  publication-title: J. Organomet. Chem.
  doi: 10.1016/j.jorganchem.2013.04.022
  contributor:
    fullname: Askevold
– volume: 4
  start-page: 3994
  year: 2014
  ident: D3DT04304E/cit69/1
  publication-title: ACS Catal.
  doi: 10.1021/cs5009656
  contributor:
    fullname: Chakraborty
– volume: 34
  start-page: 1836
  year: 1995
  ident: D3DT04304E/cit27/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic00111a035
  contributor:
    fullname: Gerli
– volume: 134
  start-page: 3972
  year: 2012
  ident: D3DT04304E/cit31/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja210718u
  contributor:
    fullname: Vannucci
– volume: 124
  start-page: 2984
  year: 2002
  ident: D3DT04304E/cit81/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0122804
  contributor:
    fullname: Ciancanelli
– volume: 37
  start-page: 168
  year: 2016
  ident: D3DT04304E/cit74/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23944
  contributor:
    fullname: Jiao
– volume: 110
  start-page: 7358
  year: 1988
  ident: D3DT04304E/cit23/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00230a016
  contributor:
    fullname: Seok
– volume: 535
  start-page: 406
  year: 2016
  ident: D3DT04304E/cit105/1
  publication-title: Nature
  doi: 10.1038/nature18008
  contributor:
    fullname: Badalyan
– volume: 12
  start-page: 2099
  year: 2010
  ident: D3DT04304E/cit17/1
  publication-title: Green Chem.
  doi: 10.1039/c0gc00382d
  contributor:
    fullname: Frontana-Uribe
– volume: 53
  start-page: 8722
  year: 2014
  ident: D3DT04304E/cit68/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201402542
  contributor:
    fullname: Werkmeister
– volume: 49
  start-page: 7929
  year: 2020
  ident: D3DT04304E/cit84/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00405G
  contributor:
    fullname: Brereton
– volume: 47
  start-page: 1459
  year: 2018
  ident: D3DT04304E/cit77/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00334J
  contributor:
    fullname: Filonenko
– volume: 8
  start-page: 1313
  year: 2018
  ident: D3DT04304E/cit36/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b03396
  contributor:
    fullname: Waldie
– volume: 121
  start-page: 11432
  year: 1999
  ident: D3DT04304E/cit55/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja991888y
  contributor:
    fullname: Berning
– year: 2023
  ident: D3DT04304E/cit57/1
  publication-title: ChemRxiv
  doi: 10.26434/chemrxiv-2023-tfn6t
  contributor:
    fullname: Katipamula
– volume: 3
  start-page: 38
  year: 2020
  ident: D3DT04304E/cit7/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01820
  contributor:
    fullname: Cook
– volume: 136
  start-page: 8564
  year: 2014
  ident: D3DT04304E/cit70/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504523b
  contributor:
    fullname: Chakraborty
– volume: 7
  start-page: 2300205
  year: 2023
  ident: D3DT04304E/cit6/1
  publication-title: Adv. Sustainable Syst.
  doi: 10.1002/adsu.202300205
  contributor:
    fullname: Nguyen
– volume: 139
  start-page: 738
  year: 2017
  ident: D3DT04304E/cit76/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09705
  contributor:
    fullname: Waldie
– volume: 8
  start-page: 4161
  year: 2021
  ident: D3DT04304E/cit106/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100576
  contributor:
    fullname: Stratakes
– volume: 338
  start-page: 90
  year: 2012
  ident: D3DT04304E/cit92/1
  publication-title: Science
  doi: 10.1126/science.1224581
  contributor:
    fullname: Costentin
– volume: 5
  start-page: 2404
  year: 2015
  ident: D3DT04304E/cit95/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00137
  contributor:
    fullname: Bielinski
– volume: 142
  start-page: 13426
  year: 2020
  ident: D3DT04304E/cit97/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03861
  contributor:
    fullname: Zhang
– volume: 35
  start-page: 1931
  year: 2016
  ident: D3DT04304E/cit72/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.6b00251
  contributor:
    fullname: Schneck
– volume-title: CRC Handbook of Chemistry and Physics
  year: 2000
  ident: D3DT04304E/cit41/1
– volume: 145
  start-page: 26915
  year: 2023
  ident: D3DT04304E/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c09824
  contributor:
    fullname: Li
– volume: 51
  start-page: 6172
  year: 2015
  ident: D3DT04304E/cit59/1
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC01107H
  contributor:
    fullname: Weiss
– volume: 11
  start-page: 4594
  year: 2020
  ident: D3DT04304E/cit13/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18461-1
  contributor:
    fullname: Bender
– volume: 10
  start-page: 5193
  year: 2019
  ident: D3DT04304E/cit15/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12744-y
  contributor:
    fullname: Na
– volume: 109
  start-page: 746
  year: 1987
  ident: D3DT04304E/cit22/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00237a019
  contributor:
    fullname: Roecker
– volume: 138
  start-page: 16639
  year: 2016
  ident: D3DT04304E/cit93/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07014
  contributor:
    fullname: Azcarate
– volume: 140
  start-page: 14655
  year: 2017
  ident: D3DT04304E/cit102/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07102
  contributor:
    fullname: Huang
– volume: 42
  start-page: 216
  year: 2003
  ident: D3DT04304E/cit62/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic020610v
  contributor:
    fullname: Curtis
– volume-title: Topics in Organometallic Chemistry
  year: 2023
  ident: D3DT04304E/cit44/1
  contributor:
    fullname: Chakraborty
– volume: 10
  start-page: 11654
  year: 2020
  ident: D3DT04304E/cit103/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03240
  contributor:
    fullname: McLoughlin
– volume: 37
  start-page: 2150
  year: 1998
  ident: D3DT04304E/cit28/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic971027v
  contributor:
    fullname: Catalano
– volume: 6
  start-page: 6841
  year: 2018
  ident: D3DT04304E/cit52/1
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00628
  contributor:
    fullname: Waldie
– volume: 10
  start-page: 3825
  year: 2020
  ident: D3DT04304E/cit78/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D0CY00699H
  contributor:
    fullname: Budweg
– start-page: 1909
  year: 1991
  ident: D3DT04304E/cit25/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/DT9910001909
  contributor:
    fullname: Li
– volume: 142
  start-page: 19438
  year: 2020
  ident: D3DT04304E/cit104/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c07965
  contributor:
    fullname: Yang
– volume: 11
  start-page: 14712
  year: 2021
  ident: D3DT04304E/cit9/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03283
  contributor:
    fullname: Yadav
– volume: 59
  start-page: 4443
  year: 2020
  ident: D3DT04304E/cit48/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201913198
  contributor:
    fullname: Cunningham
– volume: 104
  start-page: 4106
  year: 1982
  ident: D3DT04304E/cit21/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00379a011
  contributor:
    fullname: Thompson
– volume: 12
  start-page: 3066
  year: 2021
  ident: D3DT04304E/cit99/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.1c00406
  contributor:
    fullname: Loewen
– volume: 103
  start-page: 15729
  year: 2006
  ident: D3DT04304E/cit1/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0603395103
  contributor:
    fullname: Lewis
– volume: 47
  start-page: 2809
  year: 2018
  ident: D3DT04304E/cit85/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00171A
  contributor:
    fullname: Ilic
– volume: 15
  start-page: 4015
  year: 2022
  ident: D3DT04304E/cit40/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE01458K
  contributor:
    fullname: Speelman
– volume: 52
  start-page: 14162
  year: 2013
  ident: D3DT04304E/cit67/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307224
  contributor:
    fullname: Alberico
– volume: 117
  start-page: 13230
  year: 2017
  ident: D3DT04304E/cit19/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00397
  contributor:
    fullname: Yan
– volume: 136
  start-page: 7869
  year: 2014
  ident: D3DT04304E/cit71/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja504034q
  contributor:
    fullname: Chakraborty
– volume: 14
  start-page: 1013
  year: 2023
  ident: D3DT04304E/cit16/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-36726-3
  contributor:
    fullname: Pan
– volume: 40
  start-page: 4150
  year: 2001
  ident: D3DT04304E/cit29/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic010064q
  contributor:
    fullname: Rodriguez
– volume: 54
  start-page: 295
  year: 2022
  ident: D3DT04304E/cit34/1
  publication-title: Synthesis
  doi: 10.1055/a-1645-3254
  contributor:
    fullname: Fokin
– volume: 53
  start-page: 3281
  year: 2014
  ident: D3DT04304E/cit54/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic4027317
  contributor:
    fullname: Xue
– volume: 112
  start-page: 1687
  year: 2015
  ident: D3DT04304E/cit66/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1420199112
  contributor:
    fullname: Bonitatibus, Jr.
– volume: 8
  start-page: 4019
  year: 2021
  ident: D3DT04304E/cit33/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202100617
  contributor:
    fullname: von Wolff
– volume: 144
  start-page: 17939
  year: 2022
  ident: D3DT04304E/cit86/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c07192
  contributor:
    fullname: Espinosa
– volume: 136
  start-page: 10234
  year: 2014
  ident: D3DT04304E/cit94/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja505241x
  contributor:
    fullname: Bielinski
– volume: 142
  start-page: 19368
  year: 2020
  ident: D3DT04304E/cit83/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c09605
  contributor:
    fullname: Galvin
– volume: 7
  start-page: 6635
  year: 2017
  ident: D3DT04304E/cit43/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b01791
  contributor:
    fullname: Dub
– volume: 109
  start-page: 15657
  year: 2012
  ident: D3DT04304E/cit38/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1201026109
  contributor:
    fullname: Muckerman
– volume: 6
  start-page: eaaz3318
  year: 2020
  ident: D3DT04304E/cit96/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaz3318
  contributor:
    fullname: Martin
– volume: 53
  start-page: 561
  year: 2020
  ident: D3DT04304E/cit20/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00544
  contributor:
    fullname: Wang
– volume: 124
  start-page: 1918
  year: 2002
  ident: D3DT04304E/cit56/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0116829
  contributor:
    fullname: Calvin
– volume: 13
  start-page: 13220
  year: 2022
  ident: D3DT04304E/cit89/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC04533H
  contributor:
    fullname: Tocqueville
– volume: 2
  start-page: 302
  year: 2016
  ident: D3DT04304E/cit18/1
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00091
  contributor:
    fullname: Horn
– volume: 3
  start-page: 100561
  year: 2023
  ident: D3DT04304E/cit37/1
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2023.100561
  contributor:
    fullname: Katipamula
– start-page: 1901
  year: 1991
  ident: D3DT04304E/cit24/1
  publication-title: J. Chem. Soc., Dalton Trans.
  doi: 10.1039/DT9910001901
  contributor:
    fullname: Che
– volume: 122
  start-page: 12427
  year: 2022
  ident: D3DT04304E/cit60/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.1c01001
  contributor:
    fullname: Wiedner
– volume: 26
  start-page: 14137
  year: 2020
  ident: D3DT04304E/cit39/1
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.202002075
  contributor:
    fullname: Fokin
– volume: 3
  start-page: 2684
  year: 2013
  ident: D3DT04304E/cit73/1
  publication-title: ACS Catal.
  doi: 10.1021/cs400862x
  contributor:
    fullname: Yang
– volume: 141
  start-page: 14317
  year: 2019
  ident: D3DT04304E/cit90/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b06760
  contributor:
    fullname: Mathis
– volume: 443
  start-page: 213967
  year: 2021
  ident: D3DT04304E/cit32/1
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2021.213967
  contributor:
    fullname: Trincado
– volume: 119
  start-page: 2681
  year: 2019
  ident: D3DT04304E/cit79/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00555
  contributor:
    fullname: Alig
– volume: 42
  start-page: 3005
  year: 2023
  ident: D3DT04304E/cit87/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.3c00333
  contributor:
    fullname: Elsby
– volume: 11
  start-page: 2069
  year: 2019
  ident: D3DT04304E/cit47/1
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900083
  contributor:
    fullname: Bi
– volume: 10
  start-page: 2796
  year: 2019
  ident: D3DT04304E/cit12/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-10928-0
  contributor:
    fullname: Wang
– volume: 128
  start-page: 358
  year: 2005
  ident: D3DT04304E/cit50/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja056442y
  contributor:
    fullname: Wilson
– volume: 139
  start-page: 11000
  year: 2017
  ident: D3DT04304E/cit53/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05642
  contributor:
    fullname: Pegis
– volume: 50
  start-page: 1167
  year: 2011
  ident: D3DT04304E/cit30/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic1024923
  contributor:
    fullname: Paul
– volume: 5
  start-page: 8171
  year: 2012
  ident: D3DT04304E/cit2/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21928j
  contributor:
    fullname: Grasemann
– volume: 320
  start-page: 127
  year: 2016
  ident: D3DT04304E/cit3/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.082
  contributor:
    fullname: An
– volume: 59
  start-page: 1453
  year: 2020
  ident: D3DT04304E/cit65/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.9b03230
  contributor:
    fullname: McLoughlin
– volume: 109
  start-page: 15663
  year: 2012
  ident: D3DT04304E/cit64/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1118333109
  contributor:
    fullname: Horvath
– volume: 12
  start-page: 2729
  year: 2022
  ident: D3DT04304E/cit61/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c05509
  contributor:
    fullname: Gunasekara
– volume: 2
  start-page: 270
  year: 2012
  ident: D3DT04304E/cit88/1
  publication-title: ACS Catal.
  doi: 10.1021/cs200660v
  contributor:
    fullname: Lyaskovskyy
– volume: 4
  start-page: 2951
  year: 2014
  ident: D3DT04304E/cit58/1
  publication-title: ACS Catal.
  doi: 10.1021/cs500853f
  contributor:
    fullname: Weiss
SSID ssj0022052
Score 2.4881988
SecondaryResourceType review_article
Snippet The electrocatalytic oxidation of carbon-based liquid fuels, such as formic acid and alcohols, has important applications for our renewable energy transition....
SourceID proquest
crossref
pubmed
rsc
SourceType Aggregation Database
Index Database
Publisher
StartPage 11644
SubjectTerms Alcohols
Catalysts
Coordination compounds
Electrocatalysts
Formic acid
Hydrides
Liquid fuels
Oxidation
Substrates
Transition metal compounds
Title Electrocatalytic formate and alcohol oxidation by hydride transfer at first-row transition metal complexes
URI https://www.ncbi.nlm.nih.gov/pubmed/38896286
https://www.proquest.com/docview/3081039686
https://www.proquest.com/docview/3070804291/abstract/
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLage4AXxG2QMZARvE0Bz5dcHqe1aFy2p07aW2QnthgPLeqyaeXXc47tOB0MCXiJKidNW5-v8edjn-8j5C3ntXXMYa2Ttbl0rMt1peocBicFhE447Svkjk-Ko1P56UydjTldX13Sm3ftj1vrSv4nqtAGccUq2X-IbLopNMBriC8cIcJw_KsYz4KHjU_BrFF5NTDQsCKgg_nt3vL6PPgmIdP8ukY7dYvOEMBX7QprGd05MMB8hd5y2Or3cKGztFcOQfHg67jPMHLYqUYn6nBxKIu48IkFvfDiE2N-8YYqRbCPavfawWFuHA6iRd-JvkJRoY0UfxcWTz7jTzrezE9wiYnPUD4ZH6kSF4k5j4LXm20xjRmfw0E0OOItVoyHp-o-zOnkxhCNkkHy1uc_Eyif2omuRy0zacdRLu09HE_eJVu8rJWakK2D2fzjlzRR58w7NaVvPsjaivr9-O6bROa32QlwldXgIeO5yvwheRAnGfQgIOYRuWMXj8m9w6Hnn5BvvyKHRuRQQA6NyKEJOdSsaUQOHZBDdU8TcuiIHOqRQxNynpLTD7P54VEeXTfylhe8zyvFTKtKqUxneIF012nNeCd16TqrcNmYs6ot29IqY4FAtrU2QrOugH99XQqxTSaL5cI-J7Tmhpmu1MoCLjpXVtIZaQrWOriHYywjb4YubL4HcZXGb4oQdTMV07nv6FlGdofebSJwLxoBVBYuK6oiI6_TaehFXO_SC7u8xGtKmA8B4drPyLMQlfQxoqpqrMrOyDaEKTWP4d3504kX5P4I810y6VeX9iUQ0968ijj6CXsKlII
link.rule.ids 315,786,790,27955,27956
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrocatalytic+formate+and+alcohol+oxidation+by+hydride+transfer+at+first-row+transition+metal+complexes&rft.jtitle=Dalton+transactions+%3A+an+international+journal+of+inorganic+chemistry&rft.au=White%2C+Navar+M&rft.au=Waldie%2C+Kate+M&rft.date=2024-07-16&rft.issn=1477-9226&rft.eissn=1477-9234&rft.volume=53&rft.issue=28&rft.spage=11644&rft.epage=11654&rft_id=info:doi/10.1039%2Fd3dt04304e&rft.externalDocID=d3dt04304e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1477-9226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1477-9226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1477-9226&client=summon