Spirobifluorenyl Phosphonic‐Based Ionic HOFs: Regulation Proton Transport and Single Crystal Superprotonic Conductivity
Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on usin...
Saved in:
Published in | Chinese journal of chemistry Vol. 43; no. 17; pp. 2129 - 2136 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
WILEY‐VCH Verlag GmbH & Co. KGaA
01.09.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Comprehensive Summary
The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway.
In this paper, iHOF‐47 has a two‐dimensional layered hydrogen bond network, which is more conducive to plane transport, and continuous interlayer proton transport is the main conduction pathway. DFT calculations confirm that iHOF‐47 has a lower energy barrier in the (0, 0, –1) direction, a more continuous smooth proton transport path, and a superproton conductivity of up to 0.193 S·cm−1. |
---|---|
AbstractList | Comprehensive Summary
The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway.
In this paper, iHOF‐47 has a two‐dimensional layered hydrogen bond network, which is more conducive to plane transport, and continuous interlayer proton transport is the main conduction pathway. DFT calculations confirm that iHOF‐47 has a lower energy barrier in the (0, 0, –1) direction, a more continuous smooth proton transport path, and a superproton conductivity of up to 0.193 S·cm−1. The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47 . Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm −1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway. Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway. |
Author | Zhou, Bin Hou, Xiao‐Ying Cao, Li‐Hui Qi, Simeng Chen, Xu‐Yong Cao, Xiao‐Jie |
Author_xml | – sequence: 1 givenname: Xiao‐Jie surname: Cao fullname: Cao, Xiao‐Jie organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 2 givenname: Li‐Hui surname: Cao fullname: Cao, Li‐Hui email: caolihui@sust.edu.cn organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 3 givenname: Xu‐Yong surname: Chen fullname: Chen, Xu‐Yong organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 4 givenname: Simeng surname: Qi fullname: Qi, Simeng organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 5 givenname: Bin surname: Zhou fullname: Zhou, Bin organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology – sequence: 6 givenname: Xiao‐Ying surname: Hou fullname: Hou, Xiao‐Ying organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology |
BookMark | eNp9kE1OwzAQhS1UJNrChhNYYoeUMs5_2EFEaVGlVrRI7CLHcVpXwQ52AsqOI3BGToLbsGb1ZqRv3jy9ERpIJTlClwQmBMC9YXvFJhFA7J6gIQmJ70QQBgM7AxAnBP_1DI2M2Vs2itxwiLp1LbTKRVm1SnPZVXi1U6beKSnYz9f3PTW8wPPDhmfLqbnFz3zbVrQRSuKVVo2VjabS1Eo3mMoCr4XcVhynujMNrfC6rbmuj6C1SJUsWtaID9F05-i0pJXhF386Ri_Th006cxbLx3l6t3CYG7quQ6EMIAkpIwn1OCkDj8YMPNcjQIB7jLI48HMoE-ZTn7MgzzmJWRFBQgLOCuaN0VXva1O8t9w02V61WtqXmXUJSAxuEFvquqeYVsZoXma1Fm9UdxmB7FBtdqg2O1ZrYdLDn6Li3T9klj4t0_7mF7TbgR8 |
Cites_doi | 10.1002/adma.202208625 10.1002/anie.202412777 10.1002/anie.202400475 10.1002/anie.202308418 10.1021/jacs.8b06291 10.1021/acs.inorgchem.4c03816 10.1039/D4SC02628D 10.1002/anie.202417088 10.1002/anie.202404734 10.1021/acsenergylett.2c02275 10.1002/adfm.202417383 10.1021/jacs.6b12847 10.1021/acsami.1c15748 10.1063/1.3382344 10.1002/chem.202303580 10.1002/adfm.202410009 10.1021/acscentsci.4c01125 10.1002/anie.202404452 10.1002/anie.202411753 10.1016/j.trac.2023.117436 10.1039/D3TC03123C 10.1002/anie.202403066 10.1063/1.471979 10.1016/j.ccr.2024.215760 10.1021/prechem.3c00094 10.1021/acsmaterialslett.4c00953 10.1039/D3CS00855J 10.1002/adfm.202104980 10.1021/acsami.4c15534 10.1002/anie.202401754 10.1002/cjoc.202400704 10.1002/adfm.202414292 10.1021/jacs.3c09729 10.1021/acs.chemmater.2c03817 10.1002/adfm.202409359 10.1002/adfm.202409299 10.1002/adma.202409202 10.1002/anie.202410226 10.1002/adma.202406026 10.1002/adfm.202311912 10.1021/acs.accounts.4c00337 10.1002/adfm.202408545 10.1016/S0006-3495(96)79211-1 10.1021/jacs.4c10713 10.1038/s41467-024-48158-8 10.1016/j.cjsc.2023.100059 |
ContentType | Journal Article |
Copyright | 2025 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
Copyright_xml | – notice: 2025 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH |
DBID | AAYXX CITATION |
DOI | 10.1002/cjoc.70082 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1614-7065 |
EndPage | 2136 |
ExternalDocumentID | 10_1002_cjoc_70082 CJOC70082 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 22075169; 22302180 – fundername: Shaanxi Fundamental Science Research Project for Chemistry and Biology funderid: 22JHQ026 |
GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 29B 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM AAESR AAEVG AAHQN AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABPVW ACAHQ ACCZN ACGFS ACIWK ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCEZO CDRFL CHBEP CS3 CW9 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 G-S G.N GODZA H.T H.X HGLYW HZ~ IX1 J0M JPC LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ W8V W99 WBFHL WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT -SB -S~ .Y3 31~ 53G 5VR 5XA 5XC AANHP AASGY AAYXX ACBWZ ACRPL ACUHS ACYXJ ADNMO AFUIB AGQPQ AZFZN BDRZF BZXJU CAJEB CITATION EJD FEDTE HF~ HVGLF LH4 PALCI Q-- RIWAO RJQFR SAMSI TGP U1G U5L |
ID | FETCH-LOGICAL-c2622-a0f5096ac19a3e1f53a8c03231010e3cac854b0f9c4a4ec5bbe18cd70915ecdc3 |
IEDL.DBID | DR2 |
ISSN | 1001-604X |
IngestDate | Fri Aug 01 05:20:45 EDT 2025 Thu Aug 07 06:15:20 EDT 2025 Fri Aug 01 09:20:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 17 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2622-a0f5096ac19a3e1f53a8c03231010e3cac854b0f9c4a4ec5bbe18cd70915ecdc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3235180258 |
PQPubID | 986331 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3235180258 crossref_primary_10_1002_cjoc_70082 wiley_primary_10_1002_cjoc_70082_CJOC70082 |
PublicationCentury | 2000 |
PublicationDate | 1 September 2025 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 1 September 2025 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Shanghai |
PublicationTitle | Chinese journal of chemistry |
PublicationYear | 2025 |
Publisher | WILEY‐VCH Verlag GmbH & Co. KGaA Wiley Subscription Services, Inc |
Publisher_xml | – name: WILEY‐VCH Verlag GmbH & Co. KGaA – name: Wiley Subscription Services, Inc |
References | 2023; 35 2023; 11 2018; 140 2023; 34 2023; 145 2024; 507 1996; 71 2024; 30 2024; 53 2024; 10 2023; 1 2024; 146 2025; 35 2024; 34 2024; 57 2024; 36 2024; 15 2024; 16 2017; 139 1996; 105 2023; 42 2021; 13 2023; 62 2024; 110552 2021; 31 2024; 6 2022; 7 2010; 132 2022; 35 2024; 63 2025; 64 2025; 43 2024; 170 e_1_2_6_10_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Chen Y. (e_1_2_6_32_1) 2024; 110552 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 Yang M. (e_1_2_6_36_1) 2024; 36 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_16_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_43_1 e_1_2_6_21_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_40_1 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_6_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_26_1 e_1_2_6_47_1 |
References_xml | – volume: 13 start-page: 56566 year: 2021 end-page: 56574 article-title: Hybrid Nafion Membranes of Ionic Hydrogen‐Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 15288 year: 2023 end-page: 15293 article-title: Proton conduction of an ionic HOF with multiple water molecules and application as a membrane filler in direct methanol fuel cells publication-title: J. Mater. Chem. C – volume: 7 start-page: 4490 year: 2022 end-page: 4500 article-title: Solid‐State Proton Conduction Driven by Coordinated Water Molecules in Metal‐Organic Frameworks and Coordination Polymers publication-title: ACS Energy Lett. – volume: 507 year: 2024 article-title: Stimulus‐responsive hydrogen‐bonded organic frameworks: Construction strategies, research progress and applications publication-title: Coord. Chem. Rev. – volume: 57 start-page: 2973 year: 2024 end-page: 2984 article-title: Porous Metal Phosphonate Frameworks: Construction and Physical Properties publication-title: Acc. Chem. Res. – volume: 146 start-page: 31042 year: 2024 end-page: 31052 article-title: Constructing Flexible Crystalline Porous Organic Salts via a Zwitterionic Strategy publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 2410009 year: 2024 article-title: Microstructural Tuning of High‐Performance Bacterial Cellulose Anion Exchange Membranes via Constrained Polymerization and Double Chemical Cross‐Linking publication-title: Adv. Funct. Mater. – volume: 139 start-page: 3505 year: 2017 end-page: 3512 article-title: Unique Proton Dynamics in an Efficient MOF‐Based Proton Conductor publication-title: J. Am. Chem. Soc. – volume: 35 start-page: 2414292 year: 2025 article-title: A Low‐Cost 3D Spirobifluorene‐Based Acceptor for High‐Performance Ternary Organic Solar Cells publication-title: Adv. Funct. Mater. – volume: 30 year: 2024 article-title: Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials publication-title: Chem. Eur. J. – volume: 140 start-page: 10016 year: 2018 end-page: 10024 article-title: Highly Conjugated Three‐Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement publication-title: J. Am. Chem. Soc. – volume: 63 year: 2024 article-title: A Multielectron and High‐Potential Spirobifluorene‐based Posolyte for Aqueous Redox Flow Batteries publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 2406026 year: 2024 article-title: Strategy to Efficient Photodynamic Therapy for Antibacterium: Donor‐Acceptor Structure in Hydrogen‐Bonded Organic Framework publication-title: Adv. Mater. – volume: 63 year: 2024 article-title: An Ultra‐stable Supramolecular Framework Based on Consecutive Side‐by‐side Hydrogen Bonds for One‐step C H /C H Separation publication-title: Angew. Chem. Int. Ed. – volume: 110552 year: 2024 article-title: Construction of a diverting polyoxotungstate based on 3d‐4p heterometallic cluster for high‐performance single‐crystal proton conduction publication-title: Chin. Chem. Lett. – volume: 34 start-page: 2408545 year: 2024 article-title: Poly(aryl piperidinium)‐Based AEMs Utilizing Spirobifluorene as a Branching Agent publication-title: Adv. Funct. Mater. – volume: 63 year: 2024 article-title: A Simple and Sequential Strategy for the Introduction of Complexity and Hierarchy in Hydrogen‐Bonded Organic Framework (HOF) Crystals for Environmental Applications publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 68358 year: 2024 end-page: 68367 article-title: Anisotropic Single‐Crystal Proton Conduction in a Sodium Chain‐Based Coordination Polymer publication-title: ACS Appl. Mater. Interfaces – volume: 63 year: 2024 article-title: Supramolecular Entanglement in a Hydrogen‐Bonded Organic Framework Enables Flexible‐Robust Porosity for Highly Efficient Purification of Natural Gas publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 8929 year: 2024 end-page: 8935 article-title: Hydrophilic vs Hydrophobic: Exploring Facet‐Dependent Proton Transport Channels in Single Crystal of Ring‐Shaped Trimeric Isopolytungstate publication-title: Chem. Mater. – volume: 105 start-page: 6844 year: 1996 end-page: 6855 article-title: The motion of protons in water–ammonia clusters publication-title: J. Chem. Phys. – volume: 71 start-page: 19 year: 1996 end-page: 39 article-title: Structure and dynamics of a proton wire: a theoretical study of H translocation along the single‐file water chain in the gramicidin A channel publication-title: Biophys. J. – volume: 64 year: 2025 article-title: A Chiral COFs Membrane for Enantioselective Amino Acid Separation publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 61 year: 2025 end-page: 66 article-title: Tuning Hydrophilic Segments to Achieve Acid‐Free Proton Conduction in COF publication-title: Chin. J. Chem. – volume: 63 year: 2024 article-title: Spirobifluorene Trimers: High Triplet Pure Hydrocarbon Hosts for Highly Efficient Blue Phosphorescent Organic Light‐Emitting Diodes publication-title: Angew. Chem. Int. Ed. – volume: 63 year: 2024 article-title: Long‐Range π‐π Stacking Brings High Electron Delocalization for Enhanced Photocatalytic Activity in Hydrogen‐Bonded Organic Framework publication-title: Angew. Chem. Int. Ed. – volume: 34 start-page: 2311912 year: 2023 article-title: Design and Analysis of POM‐Guanidine Compounds: Achieving Ultra‐High Single‐Crystal Proton Conduction publication-title: Adv. Funct. Mater. – volume: 35 start-page: 3172 year: 2023 end-page: 3180 article-title: Hydrogen‐bonded organic frameworks: Chemistry and functions publication-title: Chem. Mater. – volume: 170 year: 2024 article-title: Hydrogen‐bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring publication-title: Trac‐Trend. Anal. Chem. – volume: 63 start-page: 22194 year: 2024 end-page: 22202 article-title: Experimental and Theoretical Investigation of Anisotropic Proton Conductionin Two‐Dimensional Metal−Organic Frameworks publication-title: Inorg. Chem. – volume: 35 start-page: 2208625 year: 2022 article-title: Bio‐Inspired Synthetic Hydrogen‐Bonded Organic Frameworks for Efficient Proton Conduction publication-title: Adv. Mater. – volume: 62 year: 2023 article-title: Photo Responsive Electron and Proton Conductivity within a Hydrogen‐Bonded Organic Framework publication-title: Angew. Chem. Int. Ed. – volume: 145 start-page: 25074 year: 2023 end-page: 25079 article-title: A Spirobifluorene‐Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis publication-title: J. Am. Chem. Soc. – volume: 34 start-page: 2409299 year: 2024 article-title: Naphthalene Diimide‐Based Hydrogen‐Bonded Organic Framework for High Electrical Conductivity and Ammonia Sensor Applications publication-title: Adv. Funct. Mater. – volume: 10 start-page: 1885 year: 2024 end-page: 1893 article-title: Ultra‐High Purity and Productivity Separation of CO and C H from CH in Rigid Layered Ultramicroporous Material publication-title: ACS Cent. Sci. – volume: 63 year: 2024 article-title: Spirobifluorene‐Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures publication-title: Angew. Chem. Int. Ed. – volume: 36 start-page: 2409202 year: 2024 article-title: Anisotropic Superprotonic Conduction in a Layered Single‐Component Hydrogen‐Bonded Organic Framework with Multiple In‐Plane Open Channels publication-title: Adv. Mater. – volume: 6 start-page: 3351 year: 2024 end-page: 3357 article-title: Arylsulfonate Ionic Hydrogen‐Bonded Organic Frameworks Enable Highly Stable and Superprotonic Conductivity for Enhancing Direct Methanol Fuel Cells publication-title: ACS Mater. Lett. – volume: 15 start-page: 9874 year: 2024 end-page: 9892 article-title: Flexible hydrogen‐bonded organic frameworks (HOFs): opportunities and challenges publication-title: Chem. Sci. – volume: 34 start-page: 2409359 year: 2024 article-title: An Ultra‐Robust and 3D Proton Transport Pathways iHOF with Single‐Crystal Superprotonic Conductivity Around 0.4 S cm publication-title: Adv. Funct. Mater. – volume: 132 year: 2010 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu publication-title: J. Chem. Phys. – volume: 42 year: 2023 article-title: Solvent‐free mechanochemical synthesis of organic proton conducting salts incorporating imidazole and dicarboxylic acids publication-title: Chin. J. Struct. Chem. – volume: 53 start-page: 1495 year: 2024 end-page: 1513 article-title: Crystalline porous organic salts publication-title: Chem. Soc. Rev. – volume: 63 year: 2024 article-title: Construction of Highly Porous and Robust Hydrogen‐Bonded Organic Framework for High‐Capacity Clean Energy Gas Storage publication-title: Angew. Chem. Int. Ed. – volume: 1 start-page: 608 year: 2023 end-page: 615 article-title: Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen‐ Bonded Organic Frameworks with Nanotube‐Shaped Proton Transport Channels publication-title: Precis. Chem. – volume: 31 start-page: 2104980 year: 2021 article-title: Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties publication-title: Adv. Funct. Mater. – volume: 15 start-page: 3930 year: 2024 article-title: Vitrification‐enabled enhancement of proton conductivity in hydrogen‐bonded organic frameworks publication-title: Nat. Commun. – volume: 35 start-page: 2417383 year: 2025 article-title: Microwave‐Assisted Fabrication of Highly Crystalline, Robust COF Membrane for Organic Solvent Nanofiltration publication-title: Adv. Funct. Mater. – ident: e_1_2_6_20_1 doi: 10.1002/adma.202208625 – ident: e_1_2_6_22_1 doi: 10.1002/anie.202412777 – ident: e_1_2_6_40_1 doi: 10.1002/anie.202400475 – ident: e_1_2_6_23_1 doi: 10.1002/anie.202308418 – ident: e_1_2_6_44_1 doi: 10.1021/jacs.8b06291 – ident: e_1_2_6_35_1 doi: 10.1021/acs.inorgchem.4c03816 – ident: e_1_2_6_3_1 doi: 10.1039/D4SC02628D – ident: e_1_2_6_10_1 doi: 10.1002/anie.202417088 – ident: e_1_2_6_17_1 doi: 10.1002/anie.202404734 – ident: e_1_2_6_7_1 doi: 10.1021/acsenergylett.2c02275 – ident: e_1_2_6_9_1 doi: 10.1002/adfm.202417383 – ident: e_1_2_6_30_1 doi: 10.1021/jacs.6b12847 – ident: e_1_2_6_27_1 doi: 10.1021/acsami.1c15748 – ident: e_1_2_6_49_1 doi: 10.1063/1.3382344 – ident: e_1_2_6_4_1 doi: 10.1002/chem.202303580 – ident: e_1_2_6_26_1 doi: 10.1002/adfm.202410009 – volume: 36 start-page: 8929 year: 2024 ident: e_1_2_6_36_1 article-title: Hydrophilic vs Hydrophobic: Exploring Facet‐Dependent Proton Transport Channels in Single Crystal of Ring‐Shaped Trimeric Isopolytungstate publication-title: Chem. Mater. – ident: e_1_2_6_24_1 doi: 10.1021/acscentsci.4c01125 – ident: e_1_2_6_12_1 doi: 10.1002/anie.202404452 – ident: e_1_2_6_18_1 doi: 10.1002/anie.202411753 – ident: e_1_2_6_2_1 doi: 10.1016/j.trac.2023.117436 – ident: e_1_2_6_28_1 doi: 10.1039/D3TC03123C – ident: e_1_2_6_39_1 doi: 10.1002/anie.202403066 – ident: e_1_2_6_47_1 doi: 10.1063/1.471979 – ident: e_1_2_6_14_1 doi: 10.1016/j.ccr.2024.215760 – ident: e_1_2_6_25_1 doi: 10.1021/prechem.3c00094 – ident: e_1_2_6_46_1 doi: 10.1021/acsmaterialslett.4c00953 – ident: e_1_2_6_5_1 doi: 10.1039/D3CS00855J – ident: e_1_2_6_42_1 doi: 10.1002/adfm.202104980 – ident: e_1_2_6_31_1 doi: 10.1021/acsami.4c15534 – ident: e_1_2_6_19_1 doi: 10.1002/anie.202401754 – ident: e_1_2_6_11_1 doi: 10.1002/cjoc.202400704 – ident: e_1_2_6_41_1 doi: 10.1002/adfm.202414292 – ident: e_1_2_6_38_1 doi: 10.1021/jacs.3c09729 – ident: e_1_2_6_21_1 doi: 10.1021/acs.chemmater.2c03817 – ident: e_1_2_6_37_1 doi: 10.1002/adfm.202409359 – ident: e_1_2_6_13_1 doi: 10.1002/adfm.202409299 – ident: e_1_2_6_34_1 doi: 10.1002/adma.202409202 – ident: e_1_2_6_45_1 doi: 10.1002/anie.202410226 – volume: 110552 year: 2024 ident: e_1_2_6_32_1 article-title: Construction of a diverting polyoxotungstate based on 3d‐4p heterometallic cluster for high‐performance single‐crystal proton conduction publication-title: Chin. Chem. Lett. – ident: e_1_2_6_15_1 doi: 10.1002/adma.202406026 – ident: e_1_2_6_33_1 doi: 10.1002/adfm.202311912 – ident: e_1_2_6_8_1 doi: 10.1021/acs.accounts.4c00337 – ident: e_1_2_6_43_1 doi: 10.1002/adfm.202408545 – ident: e_1_2_6_48_1 doi: 10.1016/S0006-3495(96)79211-1 – ident: e_1_2_6_6_1 doi: 10.1021/jacs.4c10713 – ident: e_1_2_6_16_1 doi: 10.1038/s41467-024-48158-8 – ident: e_1_2_6_29_1 doi: 10.1016/j.cjsc.2023.100059 |
SSID | ssj0027726 |
Score | 2.3655403 |
Snippet | Comprehensive Summary
The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance... The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the... Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 2129 |
SubjectTerms | Conductivity Crystal growth Crystal structure Crystals Density functional theory Density functional theory calculations Hydrogen Hydrogen bonding Hydrogen bonds Ionic hydrogen‐bonded organic frameworks Multidimensional hydrogen bonds Proton conduction Proton transport path Protons Single crystal anisotropy Single crystals Spirobifluorenyl phosphonic‐based Structural analysis Superprotonic conductivity |
Title | Spirobifluorenyl Phosphonic‐Based Ionic HOFs: Regulation Proton Transport and Single Crystal Superprotonic Conductivity |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.70082 https://www.proquest.com/docview/3235180258 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqLnBhRywFWYITUkoWO0kRF4ioChKLKEi9oMh2JqJQJVWXQznxCXwjX4LHaVrggAS3RHJGjsfjebae3xBy4AYhCFcGlhCBshikjhVy6SFpHMDxAHyJd4evrv3mA7ts83aFnJR3YQp9iOmBG0aGWa8xwIUcHM1EQ9VzrmoBpjC9ACNZCxHRnTvbbQWm1hpqDFm-zdpTbVL3aPbp92w0g5hfgarJNI0l8lj2sSCYvNRGQ1lTrz_kG__7E8tkcQJB6WkxZ1ZIBbJVMh-Vld_WyLjV66A8U9od5X3Ixl16-5QPkMTeUR9v72c68SX0At9o86YxOKZ3RUF77WJ62881mqRTzXQqsoS2dH7sAo36Y41Fu7Q16iHRERtqE1GeoeasKWKxTh4a5_dR05qUaLCU6-ttrLBT1I8RyqkLD5yUeyJUtoeg0bHBU0KFnEk7rSsmGCguJTihSgKNUjioRHkbZC7LM9gkNACD54KUsZSB4PWUC41_RF0yP5F2uEX2S1fFvUKJIy40l90YhzE2w7hFqqUX40k0DmLdH45Kd1wbOTTu-MVCHF3eROZp-y-Nd8iCi6WBDf2sSuaG_RHsarwylHtmXn4CjJPqYA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hGFApaAC1K2-bGTbCUOkLLa7b-6rbS31HYmUFglq_0R2p54BF6EV-Eh-iT1OMkucEDi0AO3WLJGjsfj-WyNvw_glR_FKH0VOVJG2uGYe04sVEBF44hegBgqeju8fxB2T_nOQAxW4EfzFqbih1hcuFFk2P2aApwupDeXrKH6c6lbEeWwuqZyF-dfzYlt8ra3bdz72vc7H06SrlOLCjjaD83BS7o5MZ5I7bVlgF4uAhlrNyCY47kYaKljwZWbtzWXHLVQCr1YZ5HJqwJ1pgNj9wbcJAlxourfPvaX57vIqrsRq5ETunywYEP1N5dj_T3_LUHtr9DY5rbOHfjZzEpV0vKlNZuqlr74gzDyv5m2u3C7RtnsXRUW92AFi_uwljTidg9g3h-dEwNVPpyVYyzmQ3b0qZxQnf65vvz2_b3J7RnrUYt1DzuTLXaMH2uhM3Y0Lg1gZgtaeCaLjPUNBBgiS8ZzA7eHrD8bUS0ndTQmkrIgWl2r0_EQTq_lzx_BalEW-BhYhBayRjnnOUcp2rmQBuLJtuJhptx4HV42ayMdVWQjaUUr7afkttS6bR02mmWT1hvOJDXjEUTmJ4yRN9b_f7GQJjuHif168i-dX8Ba92R_L93rHew-hVs-KSHbarsNWJ2OZ_jMwLOpem6DgsHZdS-nK08ISW4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tiwRc-EcsLGAJuCClmzh2fpA4QErV7sJutWWl3oLtjGGhSqr-CJUTj8CD8Cq8BE-C7SQtcEDisAduiWSNHM-M53M0_j6ARzROUFAZe0LEymOoAy_hMrRN44hBiBhJe3f49WHUP2H7Yz7egm_tXZiaH2L9w81mhtuvbYJPC723IQ1VHyrViW0Ja1oqD3D1yRzY5s8GXePdx5T2Xr7J-l6jKeApGplzl_C1JTwRKkhFiIHmoUiUH1qUE_gYKqESzqSvU8UEQ8WlxCBRRWzKKkdVqNDYPQfnWeSnViiie0w3x7vYibtZUiMv8tl4TYZK9zZz_b38bTDtr8jYlbbeFfjeLkrd0fKxs1zIjvr8B1_k_7JqV-Fyg7HJ8zoprsEWltfhYtZK292A1Wh6avmn9GRZzbBcTcjwfTW3Xfqn6seXry9MZS_IwL6R_lFv_pQc47tG5owMZ5WBy2RNCk9EWZCRAQATJNlsZcD2hIyWU9vJaQcaE1lVWlJdp9JxE07O5MtvwXZZlXgbSIwOsMaaMc1Q8FRzYQCeSCWLCuknO_CwDY18WlON5DWpNM2t23Lnth3YbaMmb7abeW7mwy2VHzdGnjj3_8VCnu0fZe7pzr8MfgAXht1e_mpweHAXLlErg-xa7XZhezFb4j2DzRbyvksJAm_POpp-Ah0USB0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spirobifluorenyl+Phosphonic%E2%80%90Based+Ionic+HOFs%3A+Regulation+Proton+Transport+and+Single+Crystal+Superprotonic+Conductivity&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Cao%2C+Xiao%E2%80%90Jie&rft.au=Cao%2C+Li%E2%80%90Hui&rft.au=Chen%2C+Xu%E2%80%90Yong&rft.au=Qi%2C+Simeng&rft.date=2025-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=43&rft.issue=17&rft.spage=2129&rft.epage=2136&rft_id=info:doi/10.1002%2Fcjoc.70082&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon |