Spirobifluorenyl Phosphonic‐Based Ionic HOFs: Regulation Proton Transport and Single Crystal Superprotonic Conductivity

Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on usin...

Full description

Saved in:
Bibliographic Details
Published inChinese journal of chemistry Vol. 43; no. 17; pp. 2129 - 2136
Main Authors Cao, Xiao‐Jie, Cao, Li‐Hui, Chen, Xu‐Yong, Qi, Simeng, Zhou, Bin, Hou, Xiao‐Ying
Format Journal Article
LanguageEnglish
Published Weinheim WILEY‐VCH Verlag GmbH & Co. KGaA 01.09.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway. In this paper, iHOF‐47 has a two‐dimensional layered hydrogen bond network, which is more conducive to plane transport, and continuous interlayer proton transport is the main conduction pathway. DFT calculations confirm that iHOF‐47 has a lower energy barrier in the (0, 0, –1) direction, a more continuous smooth proton transport path, and a superproton conductivity of up to 0.193 S·cm−1.
AbstractList Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway. In this paper, iHOF‐47 has a two‐dimensional layered hydrogen bond network, which is more conducive to plane transport, and continuous interlayer proton transport is the main conduction pathway. DFT calculations confirm that iHOF‐47 has a lower energy barrier in the (0, 0, –1) direction, a more continuous smooth proton transport path, and a superproton conductivity of up to 0.193 S·cm−1.
The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47 . Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm −1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway.
Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the mechanism of proton conduction materials at molecular level. To regulate the proton transport path, this study focused on using stereoscopic 2,2',7,7'‐tetraphosphone‐9,9'‐spirofluorene regulated by different lengths of amidine compound to form two chemically identical but structurally different single crystals iHOF‐46 and iHOF‐47. Both of them have hydrogen bond networks of different dimensions and highly anisotropic proton conductivity, and the clear proton transport path is proposed by analyzing the single crystal structure. Importantly, the experimental results show that iHOF‐47 with a two‐dimensional (2D) hydrogen bond network has a proton conductivity of up to 0.193 S·cm−1 in the (0, 0, –1) direction at 80 °C and 98% RH. A combination of single‐crystal structure analysis and density functional theory (DFT) calculations reveals that iHOF‐47 has a very continuous and smooth proton transport path in the direction of (0, 0, –1), and the lower energy barrier required for proton transport leads to higher proton conductivity. This is significant for guiding the unidirectional growth of crystals and establishing a "visible" proton conductivity pathway.
Author Zhou, Bin
Hou, Xiao‐Ying
Cao, Li‐Hui
Qi, Simeng
Chen, Xu‐Yong
Cao, Xiao‐Jie
Author_xml – sequence: 1
  givenname: Xiao‐Jie
  surname: Cao
  fullname: Cao, Xiao‐Jie
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 2
  givenname: Li‐Hui
  surname: Cao
  fullname: Cao, Li‐Hui
  email: caolihui@sust.edu.cn
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 3
  givenname: Xu‐Yong
  surname: Chen
  fullname: Chen, Xu‐Yong
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 4
  givenname: Simeng
  surname: Qi
  fullname: Qi, Simeng
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 5
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
– sequence: 6
  givenname: Xiao‐Ying
  surname: Hou
  fullname: Hou, Xiao‐Ying
  organization: Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology
BookMark eNp9kE1OwzAQhS1UJNrChhNYYoeUMs5_2EFEaVGlVrRI7CLHcVpXwQ52AsqOI3BGToLbsGb1ZqRv3jy9ERpIJTlClwQmBMC9YXvFJhFA7J6gIQmJ70QQBgM7AxAnBP_1DI2M2Vs2itxwiLp1LbTKRVm1SnPZVXi1U6beKSnYz9f3PTW8wPPDhmfLqbnFz3zbVrQRSuKVVo2VjabS1Eo3mMoCr4XcVhynujMNrfC6rbmuj6C1SJUsWtaID9F05-i0pJXhF386Ri_Th006cxbLx3l6t3CYG7quQ6EMIAkpIwn1OCkDj8YMPNcjQIB7jLI48HMoE-ZTn7MgzzmJWRFBQgLOCuaN0VXva1O8t9w02V61WtqXmXUJSAxuEFvquqeYVsZoXma1Fm9UdxmB7FBtdqg2O1ZrYdLDn6Li3T9klj4t0_7mF7TbgR8
Cites_doi 10.1002/adma.202208625
10.1002/anie.202412777
10.1002/anie.202400475
10.1002/anie.202308418
10.1021/jacs.8b06291
10.1021/acs.inorgchem.4c03816
10.1039/D4SC02628D
10.1002/anie.202417088
10.1002/anie.202404734
10.1021/acsenergylett.2c02275
10.1002/adfm.202417383
10.1021/jacs.6b12847
10.1021/acsami.1c15748
10.1063/1.3382344
10.1002/chem.202303580
10.1002/adfm.202410009
10.1021/acscentsci.4c01125
10.1002/anie.202404452
10.1002/anie.202411753
10.1016/j.trac.2023.117436
10.1039/D3TC03123C
10.1002/anie.202403066
10.1063/1.471979
10.1016/j.ccr.2024.215760
10.1021/prechem.3c00094
10.1021/acsmaterialslett.4c00953
10.1039/D3CS00855J
10.1002/adfm.202104980
10.1021/acsami.4c15534
10.1002/anie.202401754
10.1002/cjoc.202400704
10.1002/adfm.202414292
10.1021/jacs.3c09729
10.1021/acs.chemmater.2c03817
10.1002/adfm.202409359
10.1002/adfm.202409299
10.1002/adma.202409202
10.1002/anie.202410226
10.1002/adma.202406026
10.1002/adfm.202311912
10.1021/acs.accounts.4c00337
10.1002/adfm.202408545
10.1016/S0006-3495(96)79211-1
10.1021/jacs.4c10713
10.1038/s41467-024-48158-8
10.1016/j.cjsc.2023.100059
ContentType Journal Article
Copyright 2025 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
Copyright_xml – notice: 2025 SIOC, CAS, Shanghai, & WILEY‐VCH GmbH
DBID AAYXX
CITATION
DOI 10.1002/cjoc.70082
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1614-7065
EndPage 2136
ExternalDocumentID 10_1002_cjoc_70082
CJOC70082
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 22075169; 22302180
– fundername: Shaanxi Fundamental Science Research Project for Chemistry and Biology
  funderid: 22JHQ026
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OB
1OC
29B
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCEZO
CDRFL
CHBEP
CS3
CW9
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZ~
IX1
J0M
JPC
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
-SB
-S~
.Y3
31~
53G
5VR
5XA
5XC
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACUHS
ACYXJ
ADNMO
AFUIB
AGQPQ
AZFZN
BDRZF
BZXJU
CAJEB
CITATION
EJD
FEDTE
HF~
HVGLF
LH4
PALCI
Q--
RIWAO
RJQFR
SAMSI
TGP
U1G
U5L
ID FETCH-LOGICAL-c2622-a0f5096ac19a3e1f53a8c03231010e3cac854b0f9c4a4ec5bbe18cd70915ecdc3
IEDL.DBID DR2
ISSN 1001-604X
IngestDate Fri Aug 01 05:20:45 EDT 2025
Thu Aug 07 06:15:20 EDT 2025
Fri Aug 01 09:20:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2622-a0f5096ac19a3e1f53a8c03231010e3cac854b0f9c4a4ec5bbe18cd70915ecdc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3235180258
PQPubID 986331
PageCount 8
ParticipantIDs proquest_journals_3235180258
crossref_primary_10_1002_cjoc_70082
wiley_primary_10_1002_cjoc_70082_CJOC70082
PublicationCentury 2000
PublicationDate 1 September 2025
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 1 September 2025
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Shanghai
PublicationTitle Chinese journal of chemistry
PublicationYear 2025
Publisher WILEY‐VCH Verlag GmbH & Co. KGaA
Wiley Subscription Services, Inc
Publisher_xml – name: WILEY‐VCH Verlag GmbH & Co. KGaA
– name: Wiley Subscription Services, Inc
References 2023; 35
2023; 11
2018; 140
2023; 34
2023; 145
2024; 507
1996; 71
2024; 30
2024; 53
2024; 10
2023; 1
2024; 146
2025; 35
2024; 34
2024; 57
2024; 36
2024; 15
2024; 16
2017; 139
1996; 105
2023; 42
2021; 13
2023; 62
2024; 110552
2021; 31
2024; 6
2022; 7
2010; 132
2022; 35
2024; 63
2025; 64
2025; 43
2024; 170
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Chen Y. (e_1_2_6_32_1) 2024; 110552
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
Yang M. (e_1_2_6_36_1) 2024; 36
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_26_1
e_1_2_6_47_1
References_xml – volume: 13
  start-page: 56566
  year: 2021
  end-page: 56574
  article-title: Hybrid Nafion Membranes of Ionic Hydrogen‐Bonded Organic Framework Materials for Proton Conduction and PEMFC Applications
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 15288
  year: 2023
  end-page: 15293
  article-title: Proton conduction of an ionic HOF with multiple water molecules and application as a membrane filler in direct methanol fuel cells
  publication-title: J. Mater. Chem. C
– volume: 7
  start-page: 4490
  year: 2022
  end-page: 4500
  article-title: Solid‐State Proton Conduction Driven by Coordinated Water Molecules in Metal‐Organic Frameworks and Coordination Polymers
  publication-title: ACS Energy Lett.
– volume: 507
  year: 2024
  article-title: Stimulus‐responsive hydrogen‐bonded organic frameworks: Construction strategies, research progress and applications
  publication-title: Coord. Chem. Rev.
– volume: 57
  start-page: 2973
  year: 2024
  end-page: 2984
  article-title: Porous Metal Phosphonate Frameworks: Construction and Physical Properties
  publication-title: Acc. Chem. Res.
– volume: 146
  start-page: 31042
  year: 2024
  end-page: 31052
  article-title: Constructing Flexible Crystalline Porous Organic Salts via a Zwitterionic Strategy
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2410009
  year: 2024
  article-title: Microstructural Tuning of High‐Performance Bacterial Cellulose Anion Exchange Membranes via Constrained Polymerization and Double Chemical Cross‐Linking
  publication-title: Adv. Funct. Mater.
– volume: 139
  start-page: 3505
  year: 2017
  end-page: 3512
  article-title: Unique Proton Dynamics in an Efficient MOF‐Based Proton Conductor
  publication-title: J. Am. Chem. Soc.
– volume: 35
  start-page: 2414292
  year: 2025
  article-title: A Low‐Cost 3D Spirobifluorene‐Based Acceptor for High‐Performance Ternary Organic Solar Cells
  publication-title: Adv. Funct. Mater.
– volume: 30
  year: 2024
  article-title: Charge‐Assisted Ionic Hydrogen‐Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials
  publication-title: Chem. Eur. J.
– volume: 140
  start-page: 10016
  year: 2018
  end-page: 10024
  article-title: Highly Conjugated Three‐Dimensional Covalent Organic Frameworks Based on Spirobifluorene for Perovskite Solar Cell Enhancement
  publication-title: J. Am. Chem. Soc.
– volume: 63
  year: 2024
  article-title: A Multielectron and High‐Potential Spirobifluorene‐based Posolyte for Aqueous Redox Flow Batteries
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 2406026
  year: 2024
  article-title: Strategy to Efficient Photodynamic Therapy for Antibacterium: Donor‐Acceptor Structure in Hydrogen‐Bonded Organic Framework
  publication-title: Adv. Mater.
– volume: 63
  year: 2024
  article-title: An Ultra‐stable Supramolecular Framework Based on Consecutive Side‐by‐side Hydrogen Bonds for One‐step C H /C H Separation
  publication-title: Angew. Chem. Int. Ed.
– volume: 110552
  year: 2024
  article-title: Construction of a diverting polyoxotungstate based on 3d‐4p heterometallic cluster for high‐performance single‐crystal proton conduction
  publication-title: Chin. Chem. Lett.
– volume: 34
  start-page: 2408545
  year: 2024
  article-title: Poly(aryl piperidinium)‐Based AEMs Utilizing Spirobifluorene as a Branching Agent
  publication-title: Adv. Funct. Mater.
– volume: 63
  year: 2024
  article-title: A Simple and Sequential Strategy for the Introduction of Complexity and Hierarchy in Hydrogen‐Bonded Organic Framework (HOF) Crystals for Environmental Applications
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 68358
  year: 2024
  end-page: 68367
  article-title: Anisotropic Single‐Crystal Proton Conduction in a Sodium Chain‐Based Coordination Polymer
  publication-title: ACS Appl. Mater. Interfaces
– volume: 63
  year: 2024
  article-title: Supramolecular Entanglement in a Hydrogen‐Bonded Organic Framework Enables Flexible‐Robust Porosity for Highly Efficient Purification of Natural Gas
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 8929
  year: 2024
  end-page: 8935
  article-title: Hydrophilic vs Hydrophobic: Exploring Facet‐Dependent Proton Transport Channels in Single Crystal of Ring‐Shaped Trimeric Isopolytungstate
  publication-title: Chem. Mater.
– volume: 105
  start-page: 6844
  year: 1996
  end-page: 6855
  article-title: The motion of protons in water–ammonia clusters
  publication-title: J. Chem. Phys.
– volume: 71
  start-page: 19
  year: 1996
  end-page: 39
  article-title: Structure and dynamics of a proton wire: a theoretical study of H translocation along the single‐file water chain in the gramicidin A channel
  publication-title: Biophys. J.
– volume: 64
  year: 2025
  article-title: A Chiral COFs Membrane for Enantioselective Amino Acid Separation
  publication-title: Angew. Chem. Int. Ed.
– volume: 43
  start-page: 61
  year: 2025
  end-page: 66
  article-title: Tuning Hydrophilic Segments to Achieve Acid‐Free Proton Conduction in COF
  publication-title: Chin. J. Chem.
– volume: 63
  year: 2024
  article-title: Spirobifluorene Trimers: High Triplet Pure Hydrocarbon Hosts for Highly Efficient Blue Phosphorescent Organic Light‐Emitting Diodes
  publication-title: Angew. Chem. Int. Ed.
– volume: 63
  year: 2024
  article-title: Long‐Range π‐π Stacking Brings High Electron Delocalization for Enhanced Photocatalytic Activity in Hydrogen‐Bonded Organic Framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 2311912
  year: 2023
  article-title: Design and Analysis of POM‐Guanidine Compounds: Achieving Ultra‐High Single‐Crystal Proton Conduction
  publication-title: Adv. Funct. Mater.
– volume: 35
  start-page: 3172
  year: 2023
  end-page: 3180
  article-title: Hydrogen‐bonded organic frameworks: Chemistry and functions
  publication-title: Chem. Mater.
– volume: 170
  year: 2024
  article-title: Hydrogen‐bonded organic frameworks (HOFs): Multifunctional material on analytical monitoring
  publication-title: Trac‐Trend. Anal. Chem.
– volume: 63
  start-page: 22194
  year: 2024
  end-page: 22202
  article-title: Experimental and Theoretical Investigation of Anisotropic Proton Conductionin Two‐Dimensional Metal−Organic Frameworks
  publication-title: Inorg. Chem.
– volume: 35
  start-page: 2208625
  year: 2022
  article-title: Bio‐Inspired Synthetic Hydrogen‐Bonded Organic Frameworks for Efficient Proton Conduction
  publication-title: Adv. Mater.
– volume: 62
  year: 2023
  article-title: Photo Responsive Electron and Proton Conductivity within a Hydrogen‐Bonded Organic Framework
  publication-title: Angew. Chem. Int. Ed.
– volume: 145
  start-page: 25074
  year: 2023
  end-page: 25079
  article-title: A Spirobifluorene‐Based Covalent Organic Framework for Dual Photoredox and Nickel Catalysis
  publication-title: J. Am. Chem. Soc.
– volume: 34
  start-page: 2409299
  year: 2024
  article-title: Naphthalene Diimide‐Based Hydrogen‐Bonded Organic Framework for High Electrical Conductivity and Ammonia Sensor Applications
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 1885
  year: 2024
  end-page: 1893
  article-title: Ultra‐High Purity and Productivity Separation of CO and C H from CH in Rigid Layered Ultramicroporous Material
  publication-title: ACS Cent. Sci.
– volume: 63
  year: 2024
  article-title: Spirobifluorene‐Based Porous Organic Salts: Their Porous Network Diversification and Construction of Chiral Helical Luminescent Structures
  publication-title: Angew. Chem. Int. Ed.
– volume: 36
  start-page: 2409202
  year: 2024
  article-title: Anisotropic Superprotonic Conduction in a Layered Single‐Component Hydrogen‐Bonded Organic Framework with Multiple In‐Plane Open Channels
  publication-title: Adv. Mater.
– volume: 6
  start-page: 3351
  year: 2024
  end-page: 3357
  article-title: Arylsulfonate Ionic Hydrogen‐Bonded Organic Frameworks Enable Highly Stable and Superprotonic Conductivity for Enhancing Direct Methanol Fuel Cells
  publication-title: ACS Mater. Lett.
– volume: 15
  start-page: 9874
  year: 2024
  end-page: 9892
  article-title: Flexible hydrogen‐bonded organic frameworks (HOFs): opportunities and challenges
  publication-title: Chem. Sci.
– volume: 34
  start-page: 2409359
  year: 2024
  article-title: An Ultra‐Robust and 3D Proton Transport Pathways iHOF with Single‐Crystal Superprotonic Conductivity Around 0.4 S cm
  publication-title: Adv. Funct. Mater.
– volume: 132
  year: 2010
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT‐D) for the 94 elements H‐Pu
  publication-title: J. Chem. Phys.
– volume: 42
  year: 2023
  article-title: Solvent‐free mechanochemical synthesis of organic proton conducting salts incorporating imidazole and dicarboxylic acids
  publication-title: Chin. J. Struct. Chem.
– volume: 53
  start-page: 1495
  year: 2024
  end-page: 1513
  article-title: Crystalline porous organic salts
  publication-title: Chem. Soc. Rev.
– volume: 63
  year: 2024
  article-title: Construction of Highly Porous and Robust Hydrogen‐Bonded Organic Framework for High‐Capacity Clean Energy Gas Storage
  publication-title: Angew. Chem. Int. Ed.
– volume: 1
  start-page: 608
  year: 2023
  end-page: 615
  article-title: Superprotonic Conductivity of Guanidinium Organosulfonate Hydrogen‐ Bonded Organic Frameworks with Nanotube‐Shaped Proton Transport Channels
  publication-title: Precis. Chem.
– volume: 31
  start-page: 2104980
  year: 2021
  article-title: Spirobifluorene Dimers: Understanding How The Molecular Assemblies Drive The Electronic Properties
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 3930
  year: 2024
  article-title: Vitrification‐enabled enhancement of proton conductivity in hydrogen‐bonded organic frameworks
  publication-title: Nat. Commun.
– volume: 35
  start-page: 2417383
  year: 2025
  article-title: Microwave‐Assisted Fabrication of Highly Crystalline, Robust COF Membrane for Organic Solvent Nanofiltration
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_6_20_1
  doi: 10.1002/adma.202208625
– ident: e_1_2_6_22_1
  doi: 10.1002/anie.202412777
– ident: e_1_2_6_40_1
  doi: 10.1002/anie.202400475
– ident: e_1_2_6_23_1
  doi: 10.1002/anie.202308418
– ident: e_1_2_6_44_1
  doi: 10.1021/jacs.8b06291
– ident: e_1_2_6_35_1
  doi: 10.1021/acs.inorgchem.4c03816
– ident: e_1_2_6_3_1
  doi: 10.1039/D4SC02628D
– ident: e_1_2_6_10_1
  doi: 10.1002/anie.202417088
– ident: e_1_2_6_17_1
  doi: 10.1002/anie.202404734
– ident: e_1_2_6_7_1
  doi: 10.1021/acsenergylett.2c02275
– ident: e_1_2_6_9_1
  doi: 10.1002/adfm.202417383
– ident: e_1_2_6_30_1
  doi: 10.1021/jacs.6b12847
– ident: e_1_2_6_27_1
  doi: 10.1021/acsami.1c15748
– ident: e_1_2_6_49_1
  doi: 10.1063/1.3382344
– ident: e_1_2_6_4_1
  doi: 10.1002/chem.202303580
– ident: e_1_2_6_26_1
  doi: 10.1002/adfm.202410009
– volume: 36
  start-page: 8929
  year: 2024
  ident: e_1_2_6_36_1
  article-title: Hydrophilic vs Hydrophobic: Exploring Facet‐Dependent Proton Transport Channels in Single Crystal of Ring‐Shaped Trimeric Isopolytungstate
  publication-title: Chem. Mater.
– ident: e_1_2_6_24_1
  doi: 10.1021/acscentsci.4c01125
– ident: e_1_2_6_12_1
  doi: 10.1002/anie.202404452
– ident: e_1_2_6_18_1
  doi: 10.1002/anie.202411753
– ident: e_1_2_6_2_1
  doi: 10.1016/j.trac.2023.117436
– ident: e_1_2_6_28_1
  doi: 10.1039/D3TC03123C
– ident: e_1_2_6_39_1
  doi: 10.1002/anie.202403066
– ident: e_1_2_6_47_1
  doi: 10.1063/1.471979
– ident: e_1_2_6_14_1
  doi: 10.1016/j.ccr.2024.215760
– ident: e_1_2_6_25_1
  doi: 10.1021/prechem.3c00094
– ident: e_1_2_6_46_1
  doi: 10.1021/acsmaterialslett.4c00953
– ident: e_1_2_6_5_1
  doi: 10.1039/D3CS00855J
– ident: e_1_2_6_42_1
  doi: 10.1002/adfm.202104980
– ident: e_1_2_6_31_1
  doi: 10.1021/acsami.4c15534
– ident: e_1_2_6_19_1
  doi: 10.1002/anie.202401754
– ident: e_1_2_6_11_1
  doi: 10.1002/cjoc.202400704
– ident: e_1_2_6_41_1
  doi: 10.1002/adfm.202414292
– ident: e_1_2_6_38_1
  doi: 10.1021/jacs.3c09729
– ident: e_1_2_6_21_1
  doi: 10.1021/acs.chemmater.2c03817
– ident: e_1_2_6_37_1
  doi: 10.1002/adfm.202409359
– ident: e_1_2_6_13_1
  doi: 10.1002/adfm.202409299
– ident: e_1_2_6_34_1
  doi: 10.1002/adma.202409202
– ident: e_1_2_6_45_1
  doi: 10.1002/anie.202410226
– volume: 110552
  year: 2024
  ident: e_1_2_6_32_1
  article-title: Construction of a diverting polyoxotungstate based on 3d‐4p heterometallic cluster for high‐performance single‐crystal proton conduction
  publication-title: Chin. Chem. Lett.
– ident: e_1_2_6_15_1
  doi: 10.1002/adma.202406026
– ident: e_1_2_6_33_1
  doi: 10.1002/adfm.202311912
– ident: e_1_2_6_8_1
  doi: 10.1021/acs.accounts.4c00337
– ident: e_1_2_6_43_1
  doi: 10.1002/adfm.202408545
– ident: e_1_2_6_48_1
  doi: 10.1016/S0006-3495(96)79211-1
– ident: e_1_2_6_6_1
  doi: 10.1021/jacs.4c10713
– ident: e_1_2_6_16_1
  doi: 10.1038/s41467-024-48158-8
– ident: e_1_2_6_29_1
  doi: 10.1016/j.cjsc.2023.100059
SSID ssj0027726
Score 2.3655403
Snippet Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance...
The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance for studying the...
Comprehensive Summary The design of ionic hydrogen‐bonded organic frameworks (iHOFs) with single crystal superprotonic conductivity is of great significance...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 2129
SubjectTerms Conductivity
Crystal growth
Crystal structure
Crystals
Density functional theory
Density functional theory calculations
Hydrogen
Hydrogen bonding
Hydrogen bonds
Ionic hydrogen‐bonded organic frameworks
Multidimensional hydrogen bonds
Proton conduction
Proton transport path
Protons
Single crystal anisotropy
Single crystals
Spirobifluorenyl phosphonic‐based
Structural analysis
Superprotonic conductivity
Title Spirobifluorenyl Phosphonic‐Based Ionic HOFs: Regulation Proton Transport and Single Crystal Superprotonic Conductivity
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjoc.70082
https://www.proquest.com/docview/3235180258
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUqLnBhRywFWYITUkoWO0kRF4ioChKLKEi9oMh2JqJQJVWXQznxCXwjX4LHaVrggAS3RHJGjsfjebae3xBy4AYhCFcGlhCBshikjhVy6SFpHMDxAHyJd4evrv3mA7ts83aFnJR3YQp9iOmBG0aGWa8xwIUcHM1EQ9VzrmoBpjC9ACNZCxHRnTvbbQWm1hpqDFm-zdpTbVL3aPbp92w0g5hfgarJNI0l8lj2sSCYvNRGQ1lTrz_kG__7E8tkcQJB6WkxZ1ZIBbJVMh-Vld_WyLjV66A8U9od5X3Ixl16-5QPkMTeUR9v72c68SX0At9o86YxOKZ3RUF77WJ62881mqRTzXQqsoS2dH7sAo36Y41Fu7Q16iHRERtqE1GeoeasKWKxTh4a5_dR05qUaLCU6-ttrLBT1I8RyqkLD5yUeyJUtoeg0bHBU0KFnEk7rSsmGCguJTihSgKNUjioRHkbZC7LM9gkNACD54KUsZSB4PWUC41_RF0yP5F2uEX2S1fFvUKJIy40l90YhzE2w7hFqqUX40k0DmLdH45Kd1wbOTTu-MVCHF3eROZp-y-Nd8iCi6WBDf2sSuaG_RHsarwylHtmXn4CjJPqYA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VcigX_hGFApaAC1K2-bGTbCUOkLLa7b-6rbS31HYmUFglq_0R2p54BF6EV-Eh-iT1OMkucEDi0AO3WLJGjsfj-WyNvw_glR_FKH0VOVJG2uGYe04sVEBF44hegBgqeju8fxB2T_nOQAxW4EfzFqbih1hcuFFk2P2aApwupDeXrKH6c6lbEeWwuqZyF-dfzYlt8ra3bdz72vc7H06SrlOLCjjaD83BS7o5MZ5I7bVlgF4uAhlrNyCY47kYaKljwZWbtzWXHLVQCr1YZ5HJqwJ1pgNj9wbcJAlxourfPvaX57vIqrsRq5ETunywYEP1N5dj_T3_LUHtr9DY5rbOHfjZzEpV0vKlNZuqlr74gzDyv5m2u3C7RtnsXRUW92AFi_uwljTidg9g3h-dEwNVPpyVYyzmQ3b0qZxQnf65vvz2_b3J7RnrUYt1DzuTLXaMH2uhM3Y0Lg1gZgtaeCaLjPUNBBgiS8ZzA7eHrD8bUS0ndTQmkrIgWl2r0_EQTq_lzx_BalEW-BhYhBayRjnnOUcp2rmQBuLJtuJhptx4HV42ayMdVWQjaUUr7afkttS6bR02mmWT1hvOJDXjEUTmJ4yRN9b_f7GQJjuHif168i-dX8Ba92R_L93rHew-hVs-KSHbarsNWJ2OZ_jMwLOpem6DgsHZdS-nK08ISW4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NjtMwEB4tiwRc-EcsLGAJuCClmzh2fpA4QErV7sJutWWl3oLtjGGhSqr-CJUTj8CD8Cq8BE-C7SQtcEDisAduiWSNHM-M53M0_j6ARzROUFAZe0LEymOoAy_hMrRN44hBiBhJe3f49WHUP2H7Yz7egm_tXZiaH2L9w81mhtuvbYJPC723IQ1VHyrViW0Ja1oqD3D1yRzY5s8GXePdx5T2Xr7J-l6jKeApGplzl_C1JTwRKkhFiIHmoUiUH1qUE_gYKqESzqSvU8UEQ8WlxCBRRWzKKkdVqNDYPQfnWeSnViiie0w3x7vYibtZUiMv8tl4TYZK9zZz_b38bTDtr8jYlbbeFfjeLkrd0fKxs1zIjvr8B1_k_7JqV-Fyg7HJ8zoprsEWltfhYtZK292A1Wh6avmn9GRZzbBcTcjwfTW3Xfqn6seXry9MZS_IwL6R_lFv_pQc47tG5owMZ5WBy2RNCk9EWZCRAQATJNlsZcD2hIyWU9vJaQcaE1lVWlJdp9JxE07O5MtvwXZZlXgbSIwOsMaaMc1Q8FRzYQCeSCWLCuknO_CwDY18WlON5DWpNM2t23Lnth3YbaMmb7abeW7mwy2VHzdGnjj3_8VCnu0fZe7pzr8MfgAXht1e_mpweHAXLlErg-xa7XZhezFb4j2DzRbyvksJAm_POpp-Ah0USB0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spirobifluorenyl+Phosphonic%E2%80%90Based+Ionic+HOFs%3A+Regulation+Proton+Transport+and+Single+Crystal+Superprotonic+Conductivity&rft.jtitle=Chinese+journal+of+chemistry&rft.au=Cao%2C+Xiao%E2%80%90Jie&rft.au=Cao%2C+Li%E2%80%90Hui&rft.au=Chen%2C+Xu%E2%80%90Yong&rft.au=Qi%2C+Simeng&rft.date=2025-09-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1001-604X&rft.eissn=1614-7065&rft.volume=43&rft.issue=17&rft.spage=2129&rft.epage=2136&rft_id=info:doi/10.1002%2Fcjoc.70082&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1001-604X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1001-604X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1001-604X&client=summon