REVIEW ARTICLE: Cortical control of eye and head movements: integration of movements and percepts

The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulatio...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 25; no. 5; pp. 1253 - 1264
Main Authors Longtang Chen, L., Tehovnik, Edward J.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2007
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
DOI10.1111/j.1460-9568.2007.05392.x

Cover

Abstract The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulation is conducted in head‐unrestrained, behaving subjects with the evoked eye and head movements sometimes being indistinguishable from natural gaze shifts, a pertinent question becomes whether these movements are evoked by motor programs or sensory percepts. Recent stimulation studies in the visual cortex and the eye fields of the frontal lobes have begun to bring both possibilities to light. In addition, cognitive variables often interact with behavioral states that can affect movements evoked by stimulation. Identifying and controlling these variables are critical to our understanding of experimental results based on electrically evoked movements. This understanding is needed before one can draw inferences from such results to elucidate the neural mechanisms underlying natural and complex movements.
AbstractList The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulation is conducted in head‐unrestrained, behaving subjects with the evoked eye and head movements sometimes being indistinguishable from natural gaze shifts, a pertinent question becomes whether these movements are evoked by motor programs or sensory percepts. Recent stimulation studies in the visual cortex and the eye fields of the frontal lobes have begun to bring both possibilities to light. In addition, cognitive variables often interact with behavioral states that can affect movements evoked by stimulation. Identifying and controlling these variables are critical to our understanding of experimental results based on electrically evoked movements. This understanding is needed before one can draw inferences from such results to elucidate the neural mechanisms underlying natural and complex movements.
Author Tehovnik, Edward J.
Longtang Chen, L.
Author_xml – sequence: 1
  givenname: L.
  surname: Longtang Chen
  fullname: Longtang Chen, L.
  organization: Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA
– sequence: 2
  givenname: Edward J.
  surname: Tehovnik
  fullname: Tehovnik, Edward J.
  organization: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
BookMark eNqNkFFPwjAQxxuDiYB-h36BzW7d2o1EE7JMwBCMBIW3putuOhwbaRuFby8Dw4NP3Mtdcvf75_LroU7d1IAQ9ojrHep-7XoBI04cssj1CeEuCWnsu7sr1D0vOqhL4pA6kcdWN6hnzJoQErEg7CI5T98n6RIP54tJMk0HOGm0LZWssGpqq5sKNwWGPWBZ5_gTZI43zTdsoLZmgMvawoeWtmzq9uy8OR5vQSvYWnOLrgtZGbj763309pQukrEzfRlNkuHUUT7zfcdnGcjAI_nhrbwgqlAyyjIVBHnBIeA8ZjSjPCO-F0Me0yyiHuU5lTxgFEiW0T56POUq3RijoRCqtMffrJZlJTwiWmFiLVovovUiWmHiKEzsDgHRv4CtLjdS7y9BH07oT1nB_mJOpM-zdjrwzokvjYXdmZf6SzBOeSiWs5EIFuNXf5UkYkZ_AdxvlIY
CitedBy_id crossref_primary_10_1016_j_eplepsyres_2015_03_016
crossref_primary_10_1016_j_neubiorev_2014_09_003
crossref_primary_10_1016_j_neuroscience_2013_04_022
crossref_primary_10_1111_ejn_12403
crossref_primary_10_1016_j_pneurobio_2009_07_010
crossref_primary_10_1111_ejn_12247
crossref_primary_10_1007_s00221_010_2195_5
crossref_primary_10_1016_j_neubiorev_2021_08_009
crossref_primary_10_1371_journal_pone_0047565
crossref_primary_10_1007_s00429_013_0682_8
crossref_primary_10_1007_s00221_011_2937_z
crossref_primary_10_1152_jn_00386_2007
crossref_primary_10_1152_jn_90716_2008
crossref_primary_10_3389_fnint_2014_00048
crossref_primary_10_1016_j_neubiorev_2013_12_007
crossref_primary_10_1152_jn_01032_2009
crossref_primary_10_1016_j_neubiorev_2013_03_012
crossref_primary_10_1152_jn_00879_2012
crossref_primary_10_3389_fnbeh_2014_00454
crossref_primary_10_1146_annurev_neuro_061010_113728
crossref_primary_10_1007_s00221_015_4423_5
crossref_primary_10_1152_jn_00487_2011
crossref_primary_10_1152_jn_01114_2009
crossref_primary_10_3390_vision9010006
Cites_doi 10.1152/jn.00406.2005
10.1007/BF00228246
10.1212/WNL.40.2.296
10.1523/JNEUROSCI.11-11-03656.1991
10.1152/jn.00510.2005
10.1152/jn.00458.2005
10.1152/jn.00736.2004
10.1152/jn.1995.73.3.1122
10.1152/jn.1995.73.1.431
10.1152/jn.1995.73.4.1632
10.1152/jn.1997.77.5.2328
10.1007/BF00234111
10.1111/j.1749-6632.2002.tb02813.x
10.1152/jn.01128.2003
10.1152/jn.00214.2005
10.1152/jn.1995.73.4.1724
10.1007/BF00247300
10.1097/00001756-199904060-00006
10.1152/jn.00022.2005
10.1126/science.173.3995.452
10.1016/0042-6989(72)90070-3
10.1152/jn.00780.2003
10.1152/jn.1984.52.6.1030
10.1152/jn.1985.54.3.714
10.1152/jn.2000.84.2.1103
10.1146/annurev.neuro.20.1.25
10.1016/S0896-6273(02)00964-9
10.1016/0168-0102(94)90038-8
10.1016/j.neubiorev.2003.10.001
10.1007/BF00237584
10.1007/PL00005663
10.1152/jn.2002.88.4.2000
10.1523/JNEUROSCI.15-06-04464.1995
10.1007/BF00227637
10.1016/S0079-6123(03)43037-9
10.1152/jn.1987.57.1.179
10.1097/00001756-199512150-00028
10.1007/BF00230255
10.1016/0006-8993(72)90104-7
10.1016/S0042-6989(01)00063-3
10.1152/jn.1990.64.2.489
10.1152/jn.1994.71.3.1250
10.1152/jn.1999.81.5.2191
10.1152/jn.1993.69.3.786
10.1007/BF00248910
10.1007/BF00248911
10.1152/jn.2002.87.5.2337
10.1016/j.neuropsychologia.2005.12.007
10.1113/jphysiol.1968.sp008519
10.1007/BF00241115
10.1152/jn.1997.78.1.533
10.1016/j.neuron.2006.03.032
10.1152/jn.00330.2003
10.1196/annals.1325.026
10.1007/PL00005752
10.1152/jn.01320.2005
10.1152/jn.00268.2005
10.1523/JNEUROSCI.22-12-05081.2002
10.1038/nrn986
10.1046/j.1460-9568.1999.00665.x
10.1152/jn.01065.2002
10.1007/s00221-003-1555-9
10.1007/BF00240493
10.1007/BF00238733
10.1016/S0079-6123(03)42006-2
10.1038/nature00953
10.1007/BF00248812
10.1038/nature01341
10.1016/0006-8993(78)90478-X
10.1046/j.1460-9568.2003.02489.x
10.1152/jn.1993.70.1.431
10.1007/BF00234728
10.1007/BF00250247
10.1016/0013-4694(94)90068-X
10.1152/jn.1986.55.4.696
10.1152/jn.2000.84.4.2166
10.1016/S0166-2236(00)01570-8
10.1016/0166-4328(95)00182-4
10.1016/j.neuron.2004.12.004
10.1007/s00221-001-0912-9
10.1152/jn.2001.85.4.1673
10.1152/jn.01171.2004
10.1001/archneurpsyc.1951.02320090038004
10.1152/jn.1995.73.3.1101
10.1152/jn.00407.2005
10.1152/jn.01213.2003
10.1016/S0006-8993(00)02663-9
10.1146/annurev.ps.20.020169.001445
10.1016/S0079-6123(05)49012-3
10.1016/0042-6989(94)90260-7
10.1016/0165-0270(95)00131-X
10.1152/jn.1994.72.6.2648
10.1038/35006062
10.1016/S0896-6273(02)01003-6
10.1016/0014-4886(82)90228-X
10.1152/jn.1965.28.4.623
10.1007/BF00235447
10.1093/brain/86.4.595
10.1016/S0042-6989(01)00054-2
10.1007/BF00230204
10.1016/S0896-6273(02)00698-0
10.1007/s00221-001-0928-1
10.1016/S0042-6989(01)00224-3
10.1152/jn.1985.53.3.603
10.1152/jn.00886.2000
10.1098/rspl.1874.0058
10.1152/jn.1990.64.2.509
10.1093/brain/60.4.389
10.1152/jn.1996.76.2.927
10.1093/brain/119.2.507
10.1016/j.neuron.2005.11.034
10.1152/jn.00101.2005
10.1016/S0896-6273(02)00971-6
10.1152/jn.1999.81.3.1443
10.1152/jn.00027.2005
10.1038/386167a0
10.1126/science.115091
10.1152/jn.1986.56.6.1542
10.1007/BF00234475
10.1016/0006-8993(88)91343-1
10.1017/S0952523800002911
10.1212/WNL.54.4.849
10.1152/jn.00256.2006
10.1113/jphysiol.1986.sp016043
10.1523/JNEUROSCI.5120-03.2004
10.1111/j.1749-6632.2002.tb02825.x
10.1016/S0165-0173(99)00092-2
10.1007/BF00243222
10.1007/BF00242022
10.1007/BF01995380
ContentType Journal Article
DBID BSCLL
AAYXX
CITATION
DOI 10.1111/j.1460-9568.2007.05392.x
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 1264
ExternalDocumentID 10_1111_j_1460_9568_2007_05392_x
EJN5392
ark_67375_WNG_4THQ2XCC_N
Genre reviewArticle
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACUHS
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
ID FETCH-LOGICAL-c2622-26bea410d645df0cfca8bbc44df7e477963b37b0219ed93b83137d3a7463e0bb3
IEDL.DBID DR2
ISSN 0953-816X
IngestDate Thu Apr 24 22:54:49 EDT 2025
Tue Jul 01 04:00:19 EDT 2025
Wed Jan 22 16:21:40 EST 2025
Wed Oct 30 09:52:56 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2622-26bea410d645df0cfca8bbc44df7e477963b37b0219ed93b83137d3a7463e0bb3
Notes ark:/67375/WNG-4THQ2XCC-N
ArticleID:EJN5392
istex:FE174274C6BA40C39EE09FF0DF222F9E65F087B7
Corneil
Tehovnik & Lee, 1993
Fukushima
2001
In contrast, in the eye fields the activation threshold is in general higher for the head than the eyes
It remains unclear whether a head‐gating mechanism exists downstream from the eye fields.
Pelisson
.
Fuchs
Head contribution to gaze shifts refers to the head displacement between gaze shift onset and gaze shift offset, during which the VOR is inhibited
Roy & Cullen, 2002
2005
and
2004b
2002
Gamlin (2002
et al
The total head displacement additionally includes pre‐gaze shift and post‐gaze shift head movements that may occur before and after gaze shifts; the VOR remains in action.
;
This review is focused on saccadic gaze shifts. For gaze shifts made by smooth pursuits and vergence, see recent reviews by
Tu & Keating, 2000
In the superior colliculus, it is shown that the current insufficient to elicit saccadic eye movements could sometimes evoke head movements, suggesting the head pathway has a relatively lower activation threshold compared with that of the saccadic eye pathway
Chen & Walton, 2005
Chen, 2006
PageCount 12
ParticipantIDs crossref_citationtrail_10_1111_j_1460_9568_2007_05392_x
crossref_primary_10_1111_j_1460_9568_2007_05392_x
wiley_primary_10_1111_j_1460_9568_2007_05392_x_EJN5392
istex_primary_ark_67375_WNG_4THQ2XCC_N
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03
March 2007
2007-03-00
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
PublicationTitle The European journal of neuroscience
PublicationYear 2007
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Goossens, H.H. & Van Opstal, A.J. (1997b) Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. J. Neurophysiol., 78, 533-538.
Blanke, O., Morand, S., Thut, G., Michel, C.M., Spinelli, L., Landis, T. & Seeck, M. (1999) Visual activity in the human frontal eye field. Neuroreport, 10, 925-930.
Goldberg, M.E., Bushnell, M.C. & Bruce, C.J. (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp. Brain Res., 61, 579-584.
Park, J., Schlag-Rey, M. & Schlag, J. (2006) Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J. Neurophysiol., 95, 159-170.
Kustov, A.A. & Robinson, D.L. (1995) Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator. J. Neurophysiol., 73, 1724-1728.
Phillips, J.O., Ling, L., Fuchs, A.F., Siebold, C. & Plorde, J.J. (1995) Rapid horizontal gaze movement in the monkey. J. Neurophysiol., 73, 1632-1652.
Sommer, M.A. & Tehovnik, E.J. (1997) Reversible inactivation of macaque frontal eye field. Exp. Brain Res., 116, 229-249.
Bizzi, E. (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res., 6, 69-80.
Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J. & Kurkin, S. (2004b) Role of the frontal eye fields in smooth-gaze tracking. Prog. Brain Res., 143, 391-401.
Pare, M., Crommelinck, M. & Guitton, D. (1994) Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Exp. Brain Res., 101, 123-139.
Corneil, B.D. & Elsley, J.K. (2005) Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first. J. Neurophysiol., 94, 883-895.
Heinen, S.J. (1995) Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp. Brain Res., 104, 357-361.
Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur. J. Neurosci., 17, 870-878.
Keating, E.G. & Gooley, S.G. (1988) Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Res., 438, 247-255.
Pelisson, D., Guitton, D. & Munoz, D.P. (1989) Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res., 78, 654-658.
Robinson, D.A. (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res., 12, 1795-1808.
Schall, J.D., Sato, T.R., Thompson, K.G., Vaughn, A.A. & Juan, C.H. (2004) Effects of search efficiency on surround suppression during visual selection in frontal eye field. J. Neurophysiol., 91, 2765-2769.
Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L. & Xu, H. (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol., 93, 1659-1670.
Penfield, W. & Welch, K. (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch. Neurol. Psychiatry, 66, 289-317.
Freedman, E.G., Stanford, T.R. & Sparks, D.L. (1996) Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol., 76, 927-952.
Schlag, J. & Schlag-Rey, M. (1987b) Evidence for a supplementary eye field. J. Neurophysiol., 57, 179-200.
Tomlinson, R.D. & Bahra, P.S. (1986) Combined eye-head gaze shifts in the primate. I. Metrics. J. Neurophysiol., 56, 1542-1557.
Martinez-Trujillo, J.C., Wang, H. & Crawford, J.D. (2003b) Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts. J. Neurophysiol., 89, 2961-2974.
Schiller, P.H., True, S.D. & Conway, J.L. (1979) Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 206, 590-592.
Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (1999) Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. Eur. J. Neurosci., 11, 2431-2443.
Schlag-Rey, M., Schlag, J. & Shook, B. (1989) Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus. Exp. Brain Res., 76, 537-547.
Gold, J.I. & Shadlen, M.N. (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299-308.
DeYoe, E.A., Lewine, J.D. & Doty, R.W. (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol., 94, 3443-3450.
Doty, R.W. (1969) Electrical stimulation of the brain in behavioral context. Annu. Rev. Psychol., 20, 289-320.
Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H. & Hikosaka, O. (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res., 142, 284-291.
Mann, S.E., Thau, R. & Schiller, P.H. (1988) Conditional task-related responses in monkey dorsomedial frontal cortex. Exp. Brain Res., 69, 460-468.
Shibutani, H., Sakata, H. & Hyvarinen, J. (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res., 55, 1-8.
Godoy, J., Luders, H., Dinner, D.S., Morris, H.H. & Wyllie, E. (1990) Versive eye movements elicited by cortical stimulation of the human brain. Neurology, 40, 296-299.
Freedman, E.G. & Sparks, D.L. (1997) Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol., 77, 2328-2348.
Van Der Steen, J., Russell, I.S. & James, G.O. (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey. J. Neurophysiol., 55, 696-714.
Goossens, H.H. & Van Opstal, A.J. (1997a) Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res., 114, 542-560.
Martinez-Trujillo, J.C., Klier, E.M., Wang, H. & Crawford, J.D. (2003a) Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus. J. Neurophysiol., 90, 2770-2776.
Zangemeister, W.H. & Stark, L. (1982) Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol., 77, 563-577.
Chen, L.L. & Walton, M.M. (2005) Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol., 94, 4502-4519.
Scudder, C.A., Kaneko, C.S. & Fuchs, A.F. (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res., 142, 439-462.
Tehovnik, E.J. & Slocum, W.M. (2004) Behavioural state affects saccades elicited electrically from neocortex. Neurosci. Biobehav. Rev., 28, 13-25.
Sommer, M.A. & Wurtz, R.H. (2001) Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J. Neurophysiol., 85, 1673-1685.
Doty, R.W. (1965) Conditioned reflexes elicited by electrical stimulation of the brain in macaques. J. Neurophysiol., 28, 623-640.
Watanabe, K., Lauwereyns, J. & Hikosaka, O. (2003) Effects of motivational conflicts on visually elicited saccades in monkeys. Exp. Brain Res., 152, 361-367.
Bullier, J., Schall, J.D. & Morel, A. (1996) Functional streams in occipito-frontal connections in the monkey. Behav. Brain Res., 76, 89-97.
Soetedjo, R., Kaneko, C.R. & Fuchs, A.F. (2002) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol., 87, 679-695.
Cowie, R.J. & Robinson, D.L. (1994) Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 72, 2648-2664.
Levinsohn, G. (1909) Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges. Graefe Arch, 71, 313-378.
Bowman, E.M., Brown, V.J., Kertzman, C., Schwarz, U. & Robinson, D.L. (1993) Covert orienting of attention in macaques. I. Effects of behavioral context. J. Neurophysiol., 70, 431-443.
Amador, N., Schlag-Rey, M. & Schlag, J. (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol., 84, 2166-2170.
Corneil, B.D., Olivier, E. & Munoz, D.P. (2002) Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 88, 2000-2018.
Schlag, J. & Schlag-Rey, M. (1987a) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp. Brain Res., 68, 442-444.
Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S. & Peterson, B.W. (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature, 419, 157-162.
Mushiake, H., Fujii, N. & Tanji, J. (1999) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. J. Neurophysiol., 81, 1443-1448.
Penfield, W. & Perot, P. (1963) The brain's record of auditory and visual experience: a final summary and discussion. Brain, 86, 595-696.
Snyder, L.H., Batista, A.P. & Andersen, R.A. (1997) Coding of intention in the posterior parietal cortex. Nature, 386, 167-170.
Penfield, W. & Boldrey, E. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389-443.
Brindley, G.S. & Lewin, W.S. (1968) The sensations produced by electrical stimulation of the visual cortex. J. Physiol., 196, 479-493.
Dias, E.C. & Segraves, M.A. (1999) Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol., 81, 2191-2214.
Fujii, N., Mushiake, H.,
2002a; 34
1963; 86
1987a; 68
1991; 11
2004; 28
1997a; 114
1952; 30
1968; 6
1995b; 73
2003b; 89
2004; 24
1973; 16
1951; 66
1909; 71
1988; 72
1972; 40
2002; 956
1997b; 78
1996; 76
2001; 41
2003; 152
1990; 40
1984; 52
1992; 8
2002; 142
2000; 404
1984; 55
2002; 87
1997; 386
2002; 88
1971; 173
1978; 149
1994; 72
1965; 28
1994; 71
1996; 65
2004; 44
2006; 50
1997; 20
2000; 877
1970; 10
2002; 3
1968; 196
2002; 419
2007; 97
1875; 23
1995; 6
1994; 19
2006; 44
1969; 20
2000; 84
1975; 23
2005; 93
2005; 94
1994; 91
1988; 438
1996; 112
1996; 119
1993; 69
1995; 73
1997; 116
1986; 373
2004a; 91
2003; 17
1999; 81
2004b; 143
2002b; 36
2005; 1039
2005; 29
1995a; 73
2001; 85
1994; 101
1919; 25
1989; 78
1989; 76
1993; 70
2000; 54
2005; 149
1994; 34
1999; 11
1999; 10
1987b; 57
1985; 53
1972; 12
1949
1985; 54
1992; 89
2002; 36
2006; 95
1995; 15
2000; 23
1986; 55
1979; 206
1986; 56
1937; 60
1982; 77
2005; 48
2004; 91
1990; 64
1986; 61
2003a; 90
1997; 77
1993; 94
1988; 69
2000; 32
2002; 22
1993; 96
1995; 106
1995; 104
2003; 421
2003; 142
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_31_1
e_1_2_14_50_1
e_1_2_14_35_1
e_1_2_14_12_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_16_1
e_1_2_14_58_1
Van Der Steen J. (e_1_2_14_114_1) 1986; 55
e_1_2_14_6_1
Murphey D.K. (e_1_2_14_77_1) 2005; 29
Tu T.A. (e_1_2_14_127_1) 2000; 84
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_125_1
Monteon J.A. (e_1_2_14_74_1) 2005; 29
e_1_2_14_103_1
e_1_2_14_85_1
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_62_1
e_1_2_14_81_1
e_1_2_14_24_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_89_1
e_1_2_14_47_1
Nichols M.J. (e_1_2_14_79_1) 1995; 73
Phillips J.O. (e_1_2_14_88_1) 1995; 73
e_1_2_14_119_1
e_1_2_14_132_1
e_1_2_14_115_1
e_1_2_14_136_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
Kustov A.A. (e_1_2_14_61_1) 1995; 73
e_1_2_14_120_1
e_1_2_14_7_1
Freedman E.G. (e_1_2_14_32_1) 1996; 76
e_1_2_14_108_1
Woolsey C.N. (e_1_2_14_135_1) 1952; 30
e_1_2_14_124_1
e_1_2_14_104_1
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
e_1_2_14_42_1
e_1_2_14_80_1
e_1_2_14_3_1
Goldberg M.E. (e_1_2_14_45_1) 1990; 64
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_69_1
Gottlieb J.P. (e_1_2_14_49_1) 1993; 69
e_1_2_14_131_1
e_1_2_14_116_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_75_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_33_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_123_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_101_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_87_1
e_1_2_14_26_1
e_1_2_14_19_1
e_1_2_14_130_1
Vogt C. (e_1_2_14_129_1) 1919; 25
e_1_2_14_117_1
e_1_2_14_134_1
e_1_2_14_113_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_13_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_36_1
e_1_2_14_59_1
e_1_2_14_78_1
e_1_2_14_29_1
Bowman E.M. (e_1_2_14_9_1) 1993; 70
e_1_2_14_5_1
e_1_2_14_122_1
Tomlinson R.D. (e_1_2_14_126_1) 1986; 56
e_1_2_14_106_1
e_1_2_14_102_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_18_1
Russo G.S. (e_1_2_14_92_1) 1994; 71
Smith W.K. (e_1_2_14_105_1) 1949
Doty R.W. (e_1_2_14_28_1) 1965; 28
e_1_2_14_118_1
e_1_2_14_133_1
References_xml – reference: Stanford, T.R. & Sparks, D.L. (1994) Systematic errors for saccades to remembered targets: evidence for a dissociation between saccade metrics and activity in the superior colliculus. Vis. Res., 34, 93-106.
– reference: Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L. & Xu, H. (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol., 93, 1659-1670.
– reference: Roy, J.E. & Cullen, K.E. (2002) Vestibuloocular reflex signal modulation during voluntary and passive head movements. J. Neurophysiol., 87, 2337-2357.
– reference: Tehovnik, E.J. & Slocum, W.M. (2000) Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys. Brain Res., 877, 101-106.
– reference: Fukushima, J., Akao, T., Takeichi, N., Kurkin, S., Kaneko, C.R. & Fukushima, K. (2004a) Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation. J. Neurophysiol., 91, 2809-2825.
– reference: Sparks, D.L., Freedman, E.G., Chen, L.L. & Gandhi, N.J. (2001) Cortical and subcortical contributions to coordinated eye and head movements. Vis. Res., 41, 3295-3305.
– reference: Tehovnik, E.J. & Lee, K. (1993) The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation. Exp. Brain Res., 96, 430-442.
– reference: Bruce, C.J., Goldberg, M.E., Bushnell, M.C. & Stanton, G.B. (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol., 54, 714-734.
– reference: Freedman, E.G. & Sparks, D.L. (1997) Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol., 77, 2328-2348.
– reference: Rushworth, M.F. & Taylor, P.C. (2006) TMS in the parietal cortex: updating representations for attention and action. Neuropsychologia, 44, 2700-2716.
– reference: Tomlinson, R.D. & Bahra, P.S. (1986) Combined eye-head gaze shifts in the primate. I. Metrics. J. Neurophysiol., 56, 1542-1557.
– reference: Nichols, M.J. & Sparks, D.L. (1995) Nonstationary properties of the saccadic system: new constraints on models of saccadic control. J. Neurophysiol., 73, 431-435.
– reference: Van Der Steen, J., Russell, I.S. & James, G.O. (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey. J. Neurophysiol., 55, 696-714.
– reference: Watanabe, K., Lauwereyns, J. & Hikosaka, O. (2003) Effects of motivational conflicts on visually elicited saccades in monkeys. Exp. Brain Res., 152, 361-367.
– reference: Gamlin, P.D. (2002) Neural mechanisms for the control of vergence eye movements. Ann. N. Y. Acad. Sci., 956, 264-272.
– reference: Volle, M. & Guitton, D. (1993) Human gaze shifts in which head and eyes are not initially aligned. Exp. Brain Res., 94, 463-470.
– reference: Goldberg, M.E. & Bruce, C.J. (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol., 64, 489-508.
– reference: Bizzi, E., Kalil, R.E. & Morasso, P. (1972) Two modes of active eye-head coordination in monkeys. Brain Res., 40, 45-48.
– reference: Schlag, J., Schlag-Rey, M. & Dassonville, P. (1989) Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target? Exp. Brain Res., 76, 548-558.
– reference: Pelisson, D., Goffart, L., Guillaume, A., Catz, N. & Raboyeau, G. (2001) Early head movements elicited by visual stimuli or collicular electrical stimulation in the cat. Vis. Res., 41, 3283-3294.
– reference: Gandhi, N.J. & Sparks, D.L. (2001) Experimental control of eye and head positions prior to head-unrestrained gaze shifts in monkey. Vis. Res., 41, 3243-3254.
– reference: Guitton, D., Bergeron, A., Choi, W.Y. & Matsuo, S. (2003) On the feedback control of orienting gaze shifts made with eye and head movements. Prog. Brain Res., 142, 55-68.
– reference: Penfield, W. & Perot, P. (1963) The brain's record of auditory and visual experience: a final summary and discussion. Brain, 86, 595-696.
– reference: Pelisson, D., Guitton, D. & Goffart, L. (1995) On-line compensation of gaze shifts perturbed by micro-stimulation of the superior colliculus in the cat with unrestrained head. Exp. Brain Res., 106, 196-204.
– reference: Tolias, A.S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E.J., Schiller, P.H. & Logothetis, N.K. (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron, 48, 901-911.
– reference: Bullier, J., Schall, J.D. & Morel, A. (1996) Functional streams in occipito-frontal connections in the monkey. Behav. Brain Res., 76, 89-97.
– reference: Chen, L.L. & Walton, M.M. (2005) Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol., 94, 4502-4519.
– reference: Shibutani, H., Sakata, H. & Hyvarinen, J. (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res., 55, 1-8.
– reference: Corneil, B.D. & Elsley, J.K. (2005) Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first. J. Neurophysiol., 94, 883-895.
– reference: Brindley, G.S. & Lewin, W.S. (1968) The sensations produced by electrical stimulation of the visual cortex. J. Physiol., 196, 479-493.
– reference: Lawrence, B.M., White, R.L. III & Snyder, L.H. (2005) Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field. J. Neurophysiol., 94, 1498-1508.
– reference: Stryker, M.P. & Schiller, P.H. (1975) Eye and head movements evoked by electrical stimulation of monkey superior colliculus. Exp. Brain Res., 23, 103-112.
– reference: Tanji, J. (1994) The supplementary motor area in the cerebral cortex. Neurosci. Res., 19, 251-268.
– reference: Bizzi, E. & Schiller, P.H. (1970) Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res., 10, 150-158.
– reference: Freedman, E.G., Stanford, T.R. & Sparks, D.L. (1996) Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol., 76, 927-952.
– reference: Schiller, P.H., True, S.D. & Conway, J.L. (1979) Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 206, 590-592.
– reference: Tehovnik, E.J. & Slocum, W.M. (2004) Behavioural state affects saccades elicited electrically from neocortex. Neurosci. Biobehav. Rev., 28, 13-25.
– reference: Wise, S.P. & Murray, E.A. (2000) Arbitrary associations between antecedents and actions. Trends Neurosci., 23, 271-276.
– reference: Dassonville, P., Schlag, J. & Schlag-Rey, M. (1992) The frontal eye field provides the goal of saccadic eye movement. Exp. Brain Res., 89, 300-310.
– reference: Wise, S.P., Boussaoud, D., Johnson, P.B. & Caminiti, R. (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci., 20, 25-42.
– reference: Penfield, W. & Welch, K. (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch. Neurol. Psychiatry, 66, 289-317.
– reference: DeYoe, E.A., Lewine, J.D. & Doty, R.W. (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol., 94, 3443-3450.
– reference: Woolsey, C.N., Settlage, P.H., Meyer, D.R., Spencer, W., Hamuy, A.M. & Travis, A.M. (1952) Patterns of localization in precentral and 'supplementary' motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis, 30, 238-264.
– reference: Goossens, H.H. & Van Opstal, A.J. (1997b) Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. J. Neurophysiol., 78, 533-538.
– reference: Pelisson, D., Guitton, D. & Munoz, D.P. (1989) Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res., 78, 654-658.
– reference: Bowman, E.M., Brown, V.J., Kertzman, C., Schwarz, U. & Robinson, D.L. (1993) Covert orienting of attention in macaques. I. Effects of behavioral context. J. Neurophysiol., 70, 431-443.
– reference: Guitton, D., Douglas, R.M. & Volle, M. (1984) Eye-head coordination in cats. J. Neurophysiol., 52, 1030-1050.
– reference: Chen, L.L. (2006) Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control. J. Neurophysiol., 95, 3528-3542.
– reference: Sommer, M.A. & Wurtz, R.H. (2001) Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J. Neurophysiol., 85, 1673-1685.
– reference: Bartlett, J.R., DeYoe, E.A., Doty, R.W., Lee, B.B., Lewine, J.D., Negrao, N. & Overman, W.H. Jr (2005) Psychophysics of electrical stimulation of striate cortex in macaques. J. Neurophysiol., 94, 3430-3442.
– reference: Schall, J.D., Morel, A., King, D.J. & Bullier, J. (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci., 15, 4464-4487.
– reference: Gold, J.I. & Shadlen, M.N. (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299-308.
– reference: Sparks, D.L. (2002) The brainstem control of saccadic eye movements. Nat. Rev. Neurosci., 3, 952-964.
– reference: Vogt, C. & Vogt, O. (1919) Allgemeinere ergebnisse unserer hirforschung. J. fur Psychologie Neurologie Leipzig, 25, 277-456.
– reference: Zangemeister, W.H. & Stark, L. (1982) Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol., 77, 563-577.
– reference: Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S. & Peterson, B.W. (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature, 419, 157-162.
– reference: Godoy, J., Luders, H., Dinner, D.S., Morris, H.H. & Wyllie, E. (1990) Versive eye movements elicited by cortical stimulation of the human brain. Neurology, 40, 296-299.
– reference: Schiller, P.H. & Tehovnik, E.J. (2005) Neural mechanisms underlying target selection with saccadic eye movements. Prog. Brain Res., 149, 157-171.
– reference: Miyashita, N. & Hikosaka, O. (1996) Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey. Exp. Brain Res., 112, 187-196.
– reference: May, P.J. & Porter, J.D. (1992) The laminar distribution of macaque tectobulbar and tectospinal neurons. Vis. Neurosci., 8, 257-276.
– reference: Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O'Rourke, D.K. & Vallabhanath, P. (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119, 507-522.
– reference: Tehovnik, E.J., Slocum, W.M., Carvey, C.E. & Schiller, P.H. (2005) Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol., 93, 1-19.
– reference: Ferrier, D. (1875) Experiments on the brains of monkeys. Proc. R. Soc. Lond., 23, 409-432.
– reference: Goossens, H.H. & Van Opstal, A.J. (1997a) Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res., 114, 542-560.
– reference: Fuchs, A.F., Ling, L. & Phillips, J.O. (2005) Behavior of the position vestibular pause (PVP) interneurons of the vestibuloocular reflex during head-free gaze shifts in the monkey. J. Neurophysiol., 94, 4481-4490.
– reference: Gottlieb, J.P., Bruce, C.J. & MacAvoy, M.G. (1993) Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol., 69, 786-799.
– reference: Laurutis, V.P. & Robinson, D.A. (1986) The vestibulo-ocular reflex during human saccadic eye movements. J. Physiol., 373, 209-233.
– reference: Levinsohn, G. (1909) Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges. Graefe Arch, 71, 313-378.
– reference: Tu, T.A. & Keating, E.G. (2000) Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements. J. Neurophysiol., 84, 1103-1106.
– reference: Matsuo, S., Bergeron, A. & Guitton, D. (2004) Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations. J. Neurosci., 24, 2760-2773.
– reference: Doty, R.W. (1965) Conditioned reflexes elicited by electrical stimulation of the brain in macaques. J. Neurophysiol., 28, 623-640.
– reference: Schlag, J. & Schlag-Rey, M. (1987a) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp. Brain Res., 68, 442-444.
– reference: Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. (2002) Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci., 22, 5081-5090.
– reference: Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J. & Kurkin, S. (2004b) Role of the frontal eye fields in smooth-gaze tracking. Prog. Brain Res., 143, 391-401.
– reference: Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H. & Hikosaka, O. (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res., 142, 284-291.
– reference: Fujii, N., Mushiake, H., Tamai, M. & Tanji, J. (1995) Microstimulation of the supplementary eye field during saccade preparation. Neuroreport, 6, 2565-2568.
– reference: Guitton, D. & Mandl, G. (1978) Frontal 'oculomotor' area in alert cat. II. Unit discharges associated with eye movements and neck muscle activity. Brain Res., 149, 313-327.
– reference: Corneil, B.D., Olivier, E. & Munoz, D.P. (2002) Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 88, 2000-2018.
– reference: Cowie, R.J. & Robinson, D.L. (1994) Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 72, 2648-2664.
– reference: Fukushima, K., Akao, T., Kurkin, S. & Fukushima, J. (2005) Role of vestibular signals in the caudal part of the frontal eye fields in pursuit eye movements in three-dimensional space. Ann. N. Y. Acad. Sci., 1039, 272-282.
– reference: Vliegen, J., Van Grootel, T.J. & Van Opstal, A.J. (2005) Gaze orienting in dynamic visual double steps. J. Neurophysiol., 94, 4300-4313.
– reference: Waitzman, D.M., Pathmanathan, J., Presnell, R., Ayers, A. & DePalma, S. (2002) Contribution of the superior colliculus and the mesencephalic reticular formation to gaze control. Ann. N. Y. Acad. Sci., 956, 111-129.
– reference: Lee, H.W., Hong, S.B., Seo, D.W., Tae, W.S. & Hong, S.C. (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology, 54, 849-854.
– reference: Sommer, M.A. & Tehovnik, E.J. (1997) Reversible inactivation of macaque frontal eye field. Exp. Brain Res., 116, 229-249.
– reference: Tehovnik, E.J., Sommer, M.A., Chou, I.H., Slocum, W.M. & Schiller, P.H. (2000) Eye fields in the frontal lobes of primates. Brain Res. Brain Res. Rev., 32, 413-448.
– reference: Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur. J. Neurosci., 17, 870-878.
– reference: Amador, N., Schlag-Rey, M. & Schlag, J. (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol., 84, 2166-2170.
– reference: Schlag, J. & Schlag-Rey, M. (1987b) Evidence for a supplementary eye field. J. Neurophysiol., 57, 179-200.
– reference: Guitton, D., Munoz, D.P. & Galiana, H.L. (1990) Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol., 64, 509-531.
– reference: Blanke, O., Morand, S., Thut, G., Michel, C.M., Spinelli, L., Landis, T. & Seeck, M. (1999) Visual activity in the human frontal eye field. Neuroreport, 10, 925-930.
– reference: Bruce, C.J. & Goldberg, M.E. (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol., 53, 603-635.
– reference: Knight, T.A. & Fuchs, A.F. (2007) Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation. J. Neurophysiol., 97, 618-634.
– reference: Penfield, W. & Boldrey, E. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389-443.
– reference: Monteon, J.A., Wang, H., Martinez-Trujillo, J.C. & Crawford, J.D. (2005) Gaze shifts evoked by electrical stimulation of the frontal eye field in head-free macaque. Soc. Neurosci. Abstr., 29, 858.18.
– reference: Dias, E.C. & Segraves, M.A. (1999) Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol., 81, 2191-2214.
– reference: Russo, G.S. & Bruce, C.J. (1994) Frontal eye field activity preceding aurally guided saccades. J. Neurophysiol., 71, 1250-1253.
– reference: Soetedjo, R., Kaneko, C.R. & Fuchs, A.F. (2002) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol., 87, 679-695.
– reference: Tehovnik, E.J. (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Meth., 65, 1-17.
– reference: Gold, J.I. & Shadlen, M.N. (2000) Representation of a perceptual decision in developing oculomotor commands. Nature, 404, 390-394.
– reference: Kurata, K. & Wise, S.P. (1988) Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks. Exp. Brain Res., 72, 237-248.
– reference: Schall, J.D., Sato, T.R., Thompson, K.G., Vaughn, A.A. & Juan, C.H. (2004) Effects of search efficiency on surround suppression during visual selection in frontal eye field. J. Neurophysiol., 91, 2765-2769.
– reference: Martinez-Trujillo, J.C., Wang, H. & Crawford, J.D. (2003b) Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts. J. Neurophysiol., 89, 2961-2974.
– reference: Mushiake, H., Fujii, N. & Tanji, J. (1999) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. J. Neurophysiol., 81, 1443-1448.
– reference: Pare, M., Crommelinck, M. & Guitton, D. (1994) Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Exp. Brain Res., 101, 123-139.
– reference: Murphey, D.K. & Maunsell, J.H. (2005) Behavioral threshold for detecting electrical microstimulation in monkey visual cortex. Soc. Neurosci. Abstr., 29, 509.4.
– reference: Fried, I., Katz, A., McCarthy, G., Sass, K.J., Williamson, P., Spencer, S.S. & Spencer, D.D. (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci., 11, 3656-3666.
– reference: Scudder, C.A., Kaneko, C.S. & Fuchs, A.F. (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res., 142, 439-462.
– reference: Lim, S.H., Dinner, D.S., Pillay, P.K., Luders, H., Morris, H.H., Klem, G., Wyllie, E. & Awad, I.A. (1994) Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr. Clin. Neurophysiol., 91, 179-193.
– reference: Schlag-Rey, M., Schlag, J. & Shook, B. (1989) Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus. Exp. Brain Res., 76, 537-547.
– reference: Snyder, L.H., Batista, A.P. & Andersen, R.A. (1997) Coding of intention in the posterior parietal cortex. Nature, 386, 167-170.
– reference: Goldberg, M.E., Bushnell, M.C. & Bruce, C.J. (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp. Brain Res., 61, 579-584.
– reference: Graziano, M.S., Taylor, C.S., Moore, T. & Cooke, D.F. (2002b) The cortical control of movement revisited. Neuron, 36, 349-362.
– reference: Morasso, P., Bizzi, E. & Dichgans, J. (1973) Adjustment of saccade characteristics during head movements. Exp. Brain Res., 16, 492-500.
– reference: Martinez-Trujillo, J.C., Klier, E.M., Wang, H. & Crawford, J.D. (2003a) Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus. J. Neurophysiol., 90, 2770-2776.
– reference: Chen, L.L. & Wise, S.P. (1995b) Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations. J. Neurophysiol., 73, 1122-1134.
– reference: Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373.
– reference: Bizzi, E. (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res., 6, 69-80.
– reference: Chen, L.L. & Wise, S.P. (1995a) Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. J. Neurophysiol., 73, 1101-1121.
– reference: Bizzi, E., Kalil, R.E. & Tagliasco, V. (1971) Eye-head coordination in monkeys: evidence for centrally patterned organization. Science, 173, 452-454.
– reference: Choi, W.Y. & Guitton, D. (2006) Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control. Neuron, 50, 491-505.
– reference: Mann, S.E., Thau, R. & Schiller, P.H. (1988) Conditional task-related responses in monkey dorsomedial frontal cortex. Exp. Brain Res., 69, 460-468.
– reference: Heinen, S.J. (1995) Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp. Brain Res., 104, 357-361.
– reference: Robinson, D.A. (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res., 12, 1795-1808.
– reference: Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (1999) Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. Eur. J. Neurosci., 11, 2431-2443.
– reference: Phillips, J.O., Ling, L., Fuchs, A.F., Siebold, C. & Plorde, J.J. (1995) Rapid horizontal gaze movement in the monkey. J. Neurophysiol., 73, 1632-1652.
– reference: Keating, E.G. & Gooley, S.G. (1988) Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Res., 438, 247-255.
– reference: Kustov, A.A. & Robinson, D.L. (1995) Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator. J. Neurophysiol., 73, 1724-1728.
– reference: Schall, J.D., Stuphorn, V. & Brown, J.W. (2002) Monitoring and control of action by the frontal lobes. Neuron, 36, 309-322.
– reference: Park, J., Schlag-Rey, M. & Schlag, J. (2006) Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J. Neurophysiol., 95, 159-170.
– reference: Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. J. Neurophysiol., 95, 567-584.
– reference: Graziano, M.S., Taylor, C.S. & Moore, T. (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841-851.
– reference: Campos, M., Breznen, B., Bernheim, K. & Andersen, R.A. (2005) Supplementary motor area encodes reward expectancy in eye-movement tasks. J. Neurophysiol., 94, 1325-1335.
– reference: Doty, R.W. (1969) Electrical stimulation of the brain in behavioral context. Annu. Rev. Psychol., 20, 289-320.
– reference: Martinez-Trujillo, J.C., Medendorp, W.P., Wang, H. & Crawford, J.D. (2004) Frames of reference for eye-head gaze commands in primate supplementary eye fields. Neuron, 44, 1057-1066.
– volume: 89
  start-page: 2961
  year: 2003b
  end-page: 2974
  article-title: Electrical stimulation of the supplementary eye fields in the head‐free macaque evokes kinematically normal gaze shifts
  publication-title: J. Neurophysiol.
– volume: 101
  start-page: 123
  year: 1994
  end-page: 139
  article-title: Gaze shifts evoked by stimulation of the superior colliculus in the head‐free cat conform to the motor map but also depend on stimulus strength and fixation activity
  publication-title: Exp. Brain Res.
– volume: 6
  start-page: 2565
  year: 1995
  end-page: 2568
  article-title: Microstimulation of the supplementary eye field during saccade preparation
  publication-title: Neuroreport
– volume: 34
  start-page: 93
  year: 1994
  end-page: 106
  article-title: Systematic errors for saccades to remembered targets: evidence for a dissociation between saccade metrics and activity in the superior colliculus
  publication-title: Vis. Res.
– volume: 106
  start-page: 196
  year: 1995
  end-page: 204
  article-title: On‐line compensation of gaze shifts perturbed by micro‐stimulation of the superior colliculus in the cat with unrestrained head
  publication-title: Exp. Brain Res.
– volume: 55
  start-page: 696
  year: 1986
  end-page: 714
  article-title: Effects of unilateral frontal eye‐field lesions on eye‐head coordination in monkey
  publication-title: J. Neurophysiol.
– volume: 438
  start-page: 247
  year: 1988
  end-page: 255
  article-title: Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures
  publication-title: Brain Res.
– volume: 86
  start-page: 595
  year: 1963
  end-page: 696
  article-title: The brain's record of auditory and visual experience: a final summary and discussion
  publication-title: Brain
– volume: 17
  start-page: 870
  year: 2003
  end-page: 878
  article-title: Saccadic eye movements evoked by microstimulation of striate cortex
  publication-title: Eur. J. Neurosci.
– volume: 15
  start-page: 4464
  year: 1995
  end-page: 4487
  article-title: Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams
  publication-title: J. Neurosci.
– volume: 32
  start-page: 413
  year: 2000
  end-page: 448
  article-title: Eye fields in the frontal lobes of primates
  publication-title: Brain Res. Brain Res. Rev.
– volume: 3
  start-page: 952
  year: 2002
  end-page: 964
  article-title: The brainstem control of saccadic eye movements
  publication-title: Nat. Rev. Neurosci.
– volume: 10
  start-page: 150
  year: 1970
  end-page: 158
  article-title: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement
  publication-title: Exp. Brain Res.
– volume: 66
  start-page: 289
  year: 1951
  end-page: 317
  article-title: The supplementary motor area of the cerebral cortex; a clinical and experimental study
  publication-title: AMA Arch. Neurol. Psychiatry
– volume: 23
  start-page: 409
  year: 1875
  end-page: 432
  article-title: Experiments on the brains of monkeys
  publication-title: Proc. R. Soc. Lond.
– volume: 87
  start-page: 2337
  year: 2002
  end-page: 2357
  article-title: Vestibuloocular reflex signal modulation during voluntary and passive head movements
  publication-title: J. Neurophysiol.
– volume: 71
  start-page: 1250
  year: 1994
  end-page: 1253
  article-title: Frontal eye field activity preceding aurally guided saccades
  publication-title: J. Neurophysiol.
– volume: 48
  start-page: 901
  year: 2005
  end-page: 911
  article-title: Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque
  publication-title: Neuron
– volume: 41
  start-page: 3295
  year: 2001
  end-page: 3305
  article-title: Cortical and subcortical contributions to coordinated eye and head movements
  publication-title: Vis. Res.
– volume: 956
  start-page: 111
  year: 2002
  end-page: 129
  article-title: Contribution of the superior colliculus and the mesencephalic reticular formation to gaze control
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 11
  start-page: 3656
  year: 1991
  end-page: 3666
  article-title: Functional organization of human supplementary motor cortex studied by electrical stimulation
  publication-title: J. Neurosci.
– volume: 20
  start-page: 25
  year: 1997
  end-page: 42
  article-title: Premotor and parietal cortex: corticocortical connectivity and combinatorial computations
  publication-title: Annu. Rev. Neurosci.
– volume: 95
  start-page: 567
  year: 2006
  end-page: 584
  article-title: Basal ganglia orient eyes to reward
  publication-title: J. Neurophysiol.
– volume: 84
  start-page: 2166
  year: 2000
  end-page: 2170
  article-title: Reward‐predicting and reward‐detecting neuronal activity in the primate supplementary eye field
  publication-title: J. Neurophysiol.
– volume: 77
  start-page: 2328
  year: 1997
  end-page: 2348
  article-title: Eye‐head coordination during head‐unrestrained gaze shifts in rhesus monkeys
  publication-title: J. Neurophysiol.
– volume: 112
  start-page: 187
  year: 1996
  end-page: 196
  article-title: Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey
  publication-title: Exp. Brain Res.
– volume: 44
  start-page: 1057
  year: 2004
  end-page: 1066
  article-title: Frames of reference for eye‐head gaze commands in primate supplementary eye fields
  publication-title: Neuron
– volume: 119
  start-page: 507
  year: 1996
  end-page: 522
  article-title: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex
  publication-title: Brain
– volume: 10
  start-page: 925
  year: 1999
  end-page: 930
  article-title: Visual activity in the human frontal eye field
  publication-title: Neuroreport
– volume: 36
  start-page: 309
  year: 2002
  end-page: 322
  article-title: Monitoring and control of action by the frontal lobes
  publication-title: Neuron
– volume: 69
  start-page: 786
  year: 1993
  end-page: 799
  article-title: Smooth eye movements elicited by microstimulation in the primate frontal eye field
  publication-title: J. Neurophysiol.
– volume: 69
  start-page: 460
  year: 1988
  end-page: 468
  article-title: Conditional task‐related responses in monkey dorsomedial frontal cortex
  publication-title: Exp. Brain Res.
– volume: 28
  start-page: 623
  year: 1965
  end-page: 640
  article-title: Conditioned reflexes elicited by electrical stimulation of the brain in macaques
  publication-title: J. Neurophysiol.
– volume: 85
  start-page: 1673
  year: 2001
  end-page: 1685
  article-title: Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus
  publication-title: J. Neurophysiol.
– volume: 6
  start-page: 69
  year: 1968
  end-page: 80
  article-title: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys
  publication-title: Exp. Brain Res.
– volume: 16
  start-page: 492
  year: 1973
  end-page: 500
  article-title: Adjustment of saccade characteristics during head movements
  publication-title: Exp. Brain Res.
– volume: 373
  start-page: 209
  year: 1986
  end-page: 233
  article-title: The vestibulo‐ocular reflex during human saccadic eye movements
  publication-title: J. Physiol.
– volume: 95
  start-page: 3528
  year: 2006
  end-page: 3542
  article-title: Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control
  publication-title: J. Neurophysiol.
– volume: 93
  start-page: 1659
  year: 2005
  end-page: 1670
  article-title: Visuotopic mapping through a multichannel stimulating implant in primate V1
  publication-title: J. Neurophysiol.
– volume: 61
  start-page: 579
  year: 1986
  end-page: 584
  article-title: The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields
  publication-title: Exp. Brain Res.
– volume: 91
  start-page: 2765
  year: 2004
  end-page: 2769
  article-title: Effects of search efficiency on surround suppression during visual selection in frontal eye field
  publication-title: J. Neurophysiol.
– volume: 404
  start-page: 390
  year: 2000
  end-page: 394
  article-title: Representation of a perceptual decision in developing oculomotor commands
  publication-title: Nature
– volume: 96
  start-page: 430
  year: 1993
  end-page: 442
  article-title: The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation
  publication-title: Exp. Brain Res.
– volume: 60
  start-page: 389
  year: 1937
  end-page: 443
  article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation
  publication-title: Brain
– volume: 19
  start-page: 251
  year: 1994
  end-page: 268
  article-title: The supplementary motor area in the cerebral cortex
  publication-title: Neurosci. Res.
– volume: 877
  start-page: 101
  year: 2000
  end-page: 106
  article-title: Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys
  publication-title: Brain Res.
– volume: 41
  start-page: 3243
  year: 2001
  end-page: 3254
  article-title: Experimental control of eye and head positions prior to head‐unrestrained gaze shifts in monkey
  publication-title: Vis. Res.
– volume: 956
  start-page: 264
  year: 2002
  end-page: 272
  article-title: Neural mechanisms for the control of vergence eye movements
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 76
  start-page: 89
  year: 1996
  end-page: 97
  article-title: Functional streams in occipito‐frontal connections in the monkey
  publication-title: Behav. Brain Res.
– volume: 114
  start-page: 542
  year: 1997a
  end-page: 560
  article-title: Human eye‐head coordination in two dimensions under different sensorimotor conditions
  publication-title: Exp. Brain Res.
– volume: 89
  start-page: 300
  year: 1992
  end-page: 310
  article-title: The frontal eye field provides the goal of saccadic eye movement
  publication-title: Exp. Brain Res.
– volume: 25
  start-page: 277
  year: 1919
  end-page: 456
  article-title: Allgemeinere ergebnisse unserer hirforschung
  publication-title: J. fur Psychologie Neurologie Leipzig
– volume: 1039
  start-page: 272
  year: 2005
  end-page: 282
  article-title: Role of vestibular signals in the caudal part of the frontal eye fields in pursuit eye movements in three‐dimensional space
  publication-title: Ann. N. Y. Acad. Sci.
– volume: 386
  start-page: 167
  year: 1997
  end-page: 170
  article-title: Coding of intention in the posterior parietal cortex
  publication-title: Nature
– volume: 50
  start-page: 491
  year: 2006
  end-page: 505
  article-title: Responses of collicular fixation neurons to gaze shift perturbations in head‐unrestrained monkey reveal gaze feedback control
  publication-title: Neuron
– volume: 72
  start-page: 237
  year: 1988
  end-page: 248
  article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally‐ and internally‐instructed motor tasks
  publication-title: Exp. Brain Res.
– volume: 78
  start-page: 533
  year: 1997b
  end-page: 538
  article-title: Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades
  publication-title: J. Neurophysiol.
– volume: 142
  start-page: 284
  year: 2002
  end-page: 291
  article-title: Modulation of saccadic eye movements by predicted reward outcome
  publication-title: Exp. Brain Res.
– volume: 91
  start-page: 2809
  year: 2004a
  end-page: 2825
  article-title: Pursuit‐related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation
  publication-title: J. Neurophysiol.
– volume: 65
  start-page: 1
  year: 1996
  end-page: 17
  article-title: Electrical stimulation of neural tissue to evoke behavioral responses
  publication-title: J. Neurosci. Meth.
– volume: 54
  start-page: 714
  year: 1985
  end-page: 734
  article-title: Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements
  publication-title: J. Neurophysiol.
– volume: 72
  start-page: 2648
  year: 1994
  end-page: 2664
  article-title: Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus
  publication-title: J. Neurophysiol.
– volume: 24
  start-page: 2760
  year: 2004
  end-page: 2773
  article-title: Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations
  publication-title: J. Neurosci.
– volume: 94
  start-page: 4300
  year: 2005
  end-page: 4313
  article-title: Gaze orienting in dynamic visual double steps
  publication-title: J. Neurophysiol.
– volume: 81
  start-page: 1443
  year: 1999
  end-page: 1448
  article-title: Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks
  publication-title: J. Neurophysiol.
– start-page: 307
  year: 1949
  end-page: 342
– volume: 53
  start-page: 603
  year: 1985
  end-page: 635
  article-title: Primate frontal eye fields. I. Single neurons discharging before saccades
  publication-title: J. Neurophysiol.
– volume: 116
  start-page: 229
  year: 1997
  end-page: 249
  article-title: Reversible inactivation of macaque frontal eye field
  publication-title: Exp. Brain Res.
– volume: 94
  start-page: 883
  year: 2005
  end-page: 895
  article-title: Countermanding eye‐head gaze shifts in humans: marching orders are delivered to the head first
  publication-title: J. Neurophysiol.
– volume: 97
  start-page: 618
  year: 2007
  end-page: 634
  article-title: Contribution of the frontal eye field to gaze shifts in the head‐unrestrained monkey: effects of microstimulation
  publication-title: J. Neurophysiol.
– volume: 36
  start-page: 349
  year: 2002b
  end-page: 362
  article-title: The cortical control of movement revisited
  publication-title: Neuron
– volume: 8
  start-page: 257
  year: 1992
  end-page: 276
  article-title: The laminar distribution of macaque tectobulbar and tectospinal neurons
  publication-title: Vis. Neurosci.
– volume: 73
  start-page: 431
  year: 1995
  end-page: 435
  article-title: Nonstationary properties of the saccadic system: new constraints on models of saccadic control
  publication-title: J. Neurophysiol.
– volume: 36
  start-page: 299
  year: 2002
  end-page: 308
  article-title: Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward
  publication-title: Neuron
– volume: 94
  start-page: 1498
  year: 2005
  end-page: 1508
  article-title: Delay‐period activity in visual, visuomovement, and movement neurons in the frontal eye field
  publication-title: J. Neurophysiol.
– volume: 64
  start-page: 509
  year: 1990
  end-page: 531
  article-title: Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks
  publication-title: J. Neurophysiol.
– volume: 421
  start-page: 370
  year: 2003
  end-page: 373
  article-title: Selective gating of visual signals by microstimulation of frontal cortex
  publication-title: Nature
– volume: 28
  start-page: 13
  year: 2004
  end-page: 25
  article-title: Behavioural state affects saccades elicited electrically from neocortex
  publication-title: Neurosci. Biobehav. Rev.
– volume: 87
  start-page: 679
  year: 2002
  end-page: 695
  article-title: Evidence that the superior colliculus participates in the feedback control of saccadic eye movements
  publication-title: J. Neurophysiol.
– volume: 76
  start-page: 927
  year: 1996
  end-page: 952
  article-title: Combined eye‐head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys
  publication-title: J. Neurophysiol.
– volume: 152
  start-page: 361
  year: 2003
  end-page: 367
  article-title: Effects of motivational conflicts on visually elicited saccades in monkeys
  publication-title: Exp. Brain Res.
– volume: 23
  start-page: 271
  year: 2000
  end-page: 276
  article-title: Arbitrary associations between antecedents and actions
  publication-title: Trends Neurosci.
– volume: 73
  start-page: 1632
  year: 1995
  end-page: 1652
  article-title: Rapid horizontal gaze movement in the monkey
  publication-title: J. Neurophysiol.
– volume: 94
  start-page: 4502
  year: 2005
  end-page: 4519
  article-title: Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey
  publication-title: J. Neurophysiol.
– volume: 40
  start-page: 45
  year: 1972
  end-page: 48
  article-title: Two modes of active eye‐head coordination in monkeys
  publication-title: Brain Res.
– volume: 64
  start-page: 489
  year: 1990
  end-page: 508
  article-title: Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal
  publication-title: J. Neurophysiol.
– volume: 23
  start-page: 103
  year: 1975
  end-page: 112
  article-title: Eye and head movements evoked by electrical stimulation of monkey superior colliculus
  publication-title: Exp. Brain Res.
– volume: 40
  start-page: 296
  year: 1990
  end-page: 299
  article-title: Versive eye movements elicited by cortical stimulation of the human brain
  publication-title: Neurology
– volume: 94
  start-page: 4481
  year: 2005
  end-page: 4490
  article-title: Behavior of the position vestibular pause (PVP) interneurons of the vestibuloocular reflex during head‐free gaze shifts in the monkey
  publication-title: J. Neurophysiol.
– volume: 71
  start-page: 313
  year: 1909
  end-page: 378
  article-title: Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges
  publication-title: Graefe Arch
– volume: 93
  start-page: 1
  year: 2005
  end-page: 19
  article-title: Phosphene induction and the generation of saccadic eye movements by striate cortex
  publication-title: J. Neurophysiol.
– volume: 41
  start-page: 3283
  year: 2001
  end-page: 3294
  article-title: Early head movements elicited by visual stimuli or collicular electrical stimulation in the cat
  publication-title: Vis. Res.
– volume: 76
  start-page: 537
  year: 1989
  end-page: 547
  article-title: Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus
  publication-title: Exp. Brain Res.
– volume: 22
  start-page: 5081
  year: 2002
  end-page: 5090
  article-title: Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision‐making task
  publication-title: J. Neurosci.
– volume: 78
  start-page: 654
  year: 1989
  end-page: 658
  article-title: Compensatory eye and head movements generated by the cat following stimulation‐induced perturbations in gaze position
  publication-title: Exp. Brain Res.
– volume: 149
  start-page: 157
  year: 2005
  end-page: 171
  article-title: Neural mechanisms underlying target selection with saccadic eye movements
  publication-title: Prog. Brain Res.
– volume: 94
  start-page: 1325
  year: 2005
  end-page: 1335
  article-title: Supplementary motor area encodes reward expectancy in eye‐movement tasks
  publication-title: J. Neurophysiol.
– volume: 94
  start-page: 3443
  year: 2005
  end-page: 3450
  article-title: Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques
  publication-title: J. Neurophysiol.
– volume: 52
  start-page: 1030
  year: 1984
  end-page: 1050
  article-title: Eye‐head coordination in cats
  publication-title: J. Neurophysiol.
– volume: 173
  start-page: 452
  year: 1971
  end-page: 454
  article-title: Eye‐head coordination in monkeys: evidence for centrally patterned organization
  publication-title: Science
– volume: 73
  start-page: 1101
  year: 1995a
  end-page: 1121
  article-title: Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations
  publication-title: J. Neurophysiol.
– volume: 196
  start-page: 479
  year: 1968
  end-page: 493
  article-title: The sensations produced by electrical stimulation of the visual cortex
  publication-title: J. Physiol.
– volume: 56
  start-page: 1542
  year: 1986
  end-page: 1557
  article-title: Combined eye‐head gaze shifts in the primate. I. Metrics
  publication-title: J. Neurophysiol.
– volume: 54
  start-page: 849
  year: 2000
  end-page: 854
  article-title: Mapping of functional organization in human visual cortex: electrical cortical stimulation
  publication-title: Neurology
– volume: 73
  start-page: 1122
  year: 1995b
  end-page: 1134
  article-title: Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations
  publication-title: J. Neurophysiol.
– volume: 20
  start-page: 289
  year: 1969
  end-page: 320
  article-title: Electrical stimulation of the brain in behavioral context
  publication-title: Annu. Rev. Psychol.
– volume: 30
  start-page: 238
  year: 1952
  end-page: 264
  article-title: Patterns of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area
  publication-title: Res. Publ. Assoc. Res. Nerv. Ment. Dis
– volume: 94
  start-page: 3430
  year: 2005
  end-page: 3442
  article-title: Psychophysics of electrical stimulation of striate cortex in macaques
  publication-title: J. Neurophysiol.
– volume: 81
  start-page: 2191
  year: 1999
  end-page: 2214
  article-title: Muscimol‐induced inactivation of monkey frontal eye field: effects on visually and memory‐guided saccades
  publication-title: J. Neurophysiol.
– volume: 91
  start-page: 179
  year: 1994
  end-page: 193
  article-title: Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation
  publication-title: Electroencephalogr. Clin. Neurophysiol.
– volume: 55
  start-page: 1
  year: 1984
  end-page: 8
  article-title: Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey
  publication-title: Exp. Brain Res.
– volume: 29
  start-page: 509.4
  year: 2005
  article-title: Behavioral threshold for detecting electrical microstimulation in monkey visual cortex
  publication-title: Soc. Neurosci. Abstr.
– volume: 419
  start-page: 157
  year: 2002
  end-page: 162
  article-title: Coding of smooth eye movements in three‐dimensional space by frontal cortex
  publication-title: Nature
– volume: 12
  start-page: 1795
  year: 1972
  end-page: 1808
  article-title: Eye movements evoked by collicular stimulation in the alert monkey
  publication-title: Vis. Res.
– volume: 57
  start-page: 179
  year: 1987b
  end-page: 200
  article-title: Evidence for a supplementary eye field
  publication-title: J. Neurophysiol.
– volume: 11
  start-page: 2431
  year: 1999
  end-page: 2443
  article-title: Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates
  publication-title: Eur. J. Neurosci.
– volume: 84
  start-page: 1103
  year: 2000
  end-page: 1106
  article-title: Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements
  publication-title: J. Neurophysiol.
– volume: 94
  start-page: 463
  year: 1993
  end-page: 470
  article-title: Human gaze shifts in which head and eyes are not initially aligned
  publication-title: Exp. Brain Res.
– volume: 142
  start-page: 55
  year: 2003
  end-page: 68
  article-title: On the feedback control of orienting gaze shifts made with eye and head movements
  publication-title: Prog. Brain Res.
– volume: 76
  start-page: 548
  year: 1989
  end-page: 558
  article-title: Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target?
  publication-title: Exp. Brain Res.
– volume: 68
  start-page: 442
  year: 1987a
  end-page: 444
  article-title: Does microstimulation evoke fixed‐vector saccades by generating their vector or by specifying their goal?
  publication-title: Exp. Brain Res.
– volume: 44
  start-page: 2700
  year: 2006
  end-page: 2716
  article-title: TMS in the parietal cortex: updating representations for attention and action
  publication-title: Neuropsychologia
– volume: 88
  start-page: 2000
  year: 2002
  end-page: 2018
  article-title: Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements
  publication-title: J. Neurophysiol.
– volume: 149
  start-page: 313
  year: 1978
  end-page: 327
  article-title: Frontal ‘oculomotor’ area in alert cat. II. Unit discharges associated with eye movements and neck muscle activity
  publication-title: Brain Res.
– volume: 77
  start-page: 563
  year: 1982
  end-page: 577
  article-title: Types of gaze movement: variable interactions of eye and head movements
  publication-title: Exp. Neurol.
– volume: 73
  start-page: 1724
  year: 1995
  end-page: 1728
  article-title: Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator
  publication-title: J. Neurophysiol.
– volume: 142
  start-page: 439
  year: 2002
  end-page: 462
  article-title: The brainstem burst generator for saccadic eye movements: a modern synthesis
  publication-title: Exp. Brain Res.
– volume: 34
  start-page: 841
  year: 2002a
  end-page: 851
  article-title: Complex movements evoked by microstimulation of precentral cortex
  publication-title: Neuron
– volume: 206
  start-page: 590
  year: 1979
  end-page: 592
  article-title: Effects of frontal eye field and superior colliculus ablations on eye movements
  publication-title: Science
– volume: 95
  start-page: 159
  year: 2006
  end-page: 170
  article-title: Frames of reference for saccadic command tested by saccade collision in the supplementary eye field
  publication-title: J. Neurophysiol.
– volume: 143
  start-page: 391
  year: 2004b
  end-page: 401
  article-title: Role of the frontal eye fields in smooth‐gaze tracking
  publication-title: Prog. Brain Res.
– volume: 104
  start-page: 357
  year: 1995
  end-page: 361
  article-title: Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements
  publication-title: Exp. Brain Res.
– volume: 70
  start-page: 431
  year: 1993
  end-page: 443
  article-title: Covert orienting of attention in macaques. I. Effects of behavioral context
  publication-title: J. Neurophysiol.
– volume: 90
  start-page: 2770
  year: 2003a
  end-page: 2776
  article-title: Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus
  publication-title: J. Neurophysiol.
– volume: 29
  start-page: 858.18
  year: 2005
  article-title: Gaze shifts evoked by electrical stimulation of the frontal eye field in head‐free macaque
  publication-title: Soc. Neurosci. Abstr.
– ident: e_1_2_14_3_1
  doi: 10.1152/jn.00406.2005
– ident: e_1_2_14_25_1
  doi: 10.1007/BF00228246
– ident: e_1_2_14_42_1
  doi: 10.1212/WNL.40.2.296
– ident: e_1_2_14_33_1
  doi: 10.1523/JNEUROSCI.11-11-03656.1991
– ident: e_1_2_14_17_1
  doi: 10.1152/jn.00510.2005
– ident: e_1_2_14_57_1
  doi: 10.1152/jn.00458.2005
– ident: e_1_2_14_121_1
  doi: 10.1152/jn.00736.2004
– ident: e_1_2_14_19_1
  doi: 10.1152/jn.1995.73.3.1122
– volume: 73
  start-page: 431
  year: 1995
  ident: e_1_2_14_79_1
  article-title: Nonstationary properties of the saccadic system: new constraints on models of saccadic control
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.73.1.431
– volume: 73
  start-page: 1632
  year: 1995
  ident: e_1_2_14_88_1
  article-title: Rapid horizontal gaze movement in the monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.73.4.1632
– ident: e_1_2_14_31_1
  doi: 10.1152/jn.1997.77.5.2328
– ident: e_1_2_14_118_1
  doi: 10.1007/BF00234111
– ident: e_1_2_14_131_1
  doi: 10.1111/j.1749-6632.2002.tb02813.x
– ident: e_1_2_14_37_1
  doi: 10.1152/jn.01128.2003
– ident: e_1_2_14_63_1
  doi: 10.1152/jn.00214.2005
– volume: 73
  start-page: 1724
  year: 1995
  ident: e_1_2_14_61_1
  article-title: Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1995.73.4.1724
– ident: e_1_2_14_67_1
  doi: 10.1007/BF00247300
– ident: e_1_2_14_8_1
  doi: 10.1097/00001756-199904060-00006
– ident: e_1_2_14_15_1
  doi: 10.1152/jn.00022.2005
– ident: e_1_2_14_6_1
  doi: 10.1126/science.173.3995.452
– ident: e_1_2_14_89_1
  doi: 10.1016/0042-6989(72)90070-3
– ident: e_1_2_14_94_1
  doi: 10.1152/jn.00780.2003
– ident: e_1_2_14_53_1
  doi: 10.1152/jn.1984.52.6.1030
– ident: e_1_2_14_13_1
  doi: 10.1152/jn.1985.54.3.714
– volume: 84
  start-page: 1103
  year: 2000
  ident: e_1_2_14_127_1
  article-title: Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.2000.84.2.1103
– ident: e_1_2_14_133_1
  doi: 10.1146/annurev.neuro.20.1.25
– ident: e_1_2_14_95_1
  doi: 10.1016/S0896-6273(02)00964-9
– ident: e_1_2_14_116_1
  doi: 10.1016/0168-0102(94)90038-8
– ident: e_1_2_14_120_1
  doi: 10.1016/j.neubiorev.2003.10.001
– ident: e_1_2_14_46_1
  doi: 10.1007/BF00237584
– ident: e_1_2_14_47_1
  doi: 10.1007/PL00005663
– ident: e_1_2_14_23_1
  doi: 10.1152/jn.2002.88.4.2000
– ident: e_1_2_14_93_1
  doi: 10.1523/JNEUROSCI.15-06-04464.1995
– ident: e_1_2_14_73_1
  doi: 10.1007/BF00227637
– ident: e_1_2_14_38_1
  doi: 10.1016/S0079-6123(03)43037-9
– ident: e_1_2_14_99_1
  doi: 10.1152/jn.1987.57.1.179
– ident: e_1_2_14_35_1
  doi: 10.1097/00001756-199512150-00028
– ident: e_1_2_14_84_1
  doi: 10.1007/BF00230255
– ident: e_1_2_14_5_1
  doi: 10.1016/0006-8993(72)90104-7
– ident: e_1_2_14_111_1
  doi: 10.1016/S0042-6989(01)00063-3
– volume: 64
  start-page: 489
  year: 1990
  ident: e_1_2_14_45_1
  article-title: Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1990.64.2.489
– volume: 71
  start-page: 1250
  year: 1994
  ident: e_1_2_14_92_1
  article-title: Frontal eye field activity preceding aurally guided saccades
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1994.71.3.1250
– ident: e_1_2_14_27_1
  doi: 10.1152/jn.1999.81.5.2191
– volume: 69
  start-page: 786
  year: 1993
  ident: e_1_2_14_49_1
  article-title: Smooth eye movements elicited by microstimulation in the primate frontal eye field
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.69.3.786
– ident: e_1_2_14_101_1
  doi: 10.1007/BF00248910
– ident: e_1_2_14_100_1
  doi: 10.1007/BF00248911
– ident: e_1_2_14_90_1
  doi: 10.1152/jn.2002.87.5.2337
– ident: e_1_2_14_91_1
  doi: 10.1016/j.neuropsychologia.2005.12.007
– ident: e_1_2_14_11_1
  doi: 10.1113/jphysiol.1968.sp008519
– ident: e_1_2_14_83_1
  doi: 10.1007/BF00241115
– ident: e_1_2_14_48_1
  doi: 10.1152/jn.1997.78.1.533
– ident: e_1_2_14_20_1
  doi: 10.1016/j.neuron.2006.03.032
– ident: e_1_2_14_68_1
  doi: 10.1152/jn.00330.2003
– ident: e_1_2_14_36_1
  doi: 10.1196/annals.1325.026
– ident: e_1_2_14_108_1
  doi: 10.1007/PL00005752
– ident: e_1_2_14_16_1
  doi: 10.1152/jn.01320.2005
– ident: e_1_2_14_81_1
  doi: 10.1152/jn.00268.2005
– ident: e_1_2_14_21_1
  doi: 10.1523/JNEUROSCI.22-12-05081.2002
– ident: e_1_2_14_110_1
  doi: 10.1038/nrn986
– ident: e_1_2_14_122_1
  doi: 10.1046/j.1460-9568.1999.00665.x
– ident: e_1_2_14_70_1
  doi: 10.1152/jn.01065.2002
– ident: e_1_2_14_132_1
  doi: 10.1007/s00221-003-1555-9
– ident: e_1_2_14_104_1
  doi: 10.1007/BF00240493
– ident: e_1_2_14_113_1
  doi: 10.1007/BF00238733
– ident: e_1_2_14_52_1
  doi: 10.1016/S0079-6123(03)42006-2
– ident: e_1_2_14_39_1
  doi: 10.1038/nature00953
– volume: 29
  start-page: 509.4
  year: 2005
  ident: e_1_2_14_77_1
  article-title: Behavioral threshold for detecting electrical microstimulation in monkey visual cortex
  publication-title: Soc. Neurosci. Abstr.
– ident: e_1_2_14_98_1
  doi: 10.1007/BF00248812
– ident: e_1_2_14_75_1
  doi: 10.1038/nature01341
– ident: e_1_2_14_54_1
  doi: 10.1016/0006-8993(78)90478-X
– ident: e_1_2_14_123_1
  doi: 10.1046/j.1460-9568.2003.02489.x
– volume: 70
  start-page: 431
  year: 1993
  ident: e_1_2_14_9_1
  article-title: Covert orienting of attention in macaques. I. Effects of behavioral context
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1993.70.1.431
– ident: e_1_2_14_7_1
  doi: 10.1007/BF00234728
– ident: e_1_2_14_60_1
  doi: 10.1007/BF00250247
– ident: e_1_2_14_66_1
  doi: 10.1016/0013-4694(94)90068-X
– volume: 55
  start-page: 696
  year: 1986
  ident: e_1_2_14_114_1
  article-title: Effects of unilateral frontal eye‐field lesions on eye‐head coordination in monkey
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1986.55.4.696
– ident: e_1_2_14_2_1
  doi: 10.1152/jn.2000.84.4.2166
– ident: e_1_2_14_134_1
  doi: 10.1016/S0166-2236(00)01570-8
– ident: e_1_2_14_14_1
  doi: 10.1016/0166-4328(95)00182-4
– ident: e_1_2_14_69_1
  doi: 10.1016/j.neuron.2004.12.004
– ident: e_1_2_14_103_1
  doi: 10.1007/s00221-001-0912-9
– ident: e_1_2_14_109_1
  doi: 10.1152/jn.2001.85.4.1673
– ident: e_1_2_14_22_1
  doi: 10.1152/jn.01171.2004
– ident: e_1_2_14_87_1
  doi: 10.1001/archneurpsyc.1951.02320090038004
– ident: e_1_2_14_18_1
  doi: 10.1152/jn.1995.73.3.1101
– ident: e_1_2_14_26_1
  doi: 10.1152/jn.00407.2005
– ident: e_1_2_14_10_1
  doi: 10.1152/jn.01213.2003
– ident: e_1_2_14_119_1
  doi: 10.1016/S0006-8993(00)02663-9
– ident: e_1_2_14_29_1
  doi: 10.1146/annurev.ps.20.020169.001445
– ident: e_1_2_14_96_1
  doi: 10.1016/S0079-6123(05)49012-3
– ident: e_1_2_14_112_1
  doi: 10.1016/0042-6989(94)90260-7
– ident: e_1_2_14_117_1
  doi: 10.1016/0165-0270(95)00131-X
– ident: e_1_2_14_24_1
  doi: 10.1152/jn.1994.72.6.2648
– ident: e_1_2_14_43_1
  doi: 10.1038/35006062
– ident: e_1_2_14_51_1
  doi: 10.1016/S0896-6273(02)01003-6
– ident: e_1_2_14_136_1
  doi: 10.1016/0014-4886(82)90228-X
– volume: 28
  start-page: 623
  year: 1965
  ident: e_1_2_14_28_1
  article-title: Conditioned reflexes elicited by electrical stimulation of the brain in macaques
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1965.28.4.623
– ident: e_1_2_14_4_1
  doi: 10.1007/BF00235447
– ident: e_1_2_14_86_1
  doi: 10.1093/brain/86.4.595
– ident: e_1_2_14_41_1
  doi: 10.1016/S0042-6989(01)00054-2
– ident: e_1_2_14_130_1
  doi: 10.1007/BF00230204
– ident: e_1_2_14_50_1
  doi: 10.1016/S0896-6273(02)00698-0
– ident: e_1_2_14_115_1
  doi: 10.1007/s00221-001-0928-1
– volume: 25
  start-page: 277
  year: 1919
  ident: e_1_2_14_129_1
  article-title: Allgemeinere ergebnisse unserer hirforschung
  publication-title: J. fur Psychologie Neurologie Leipzig
– ident: e_1_2_14_82_1
  doi: 10.1016/S0042-6989(01)00224-3
– ident: e_1_2_14_12_1
  doi: 10.1152/jn.1985.53.3.603
– ident: e_1_2_14_107_1
  doi: 10.1152/jn.00886.2000
– ident: e_1_2_14_30_1
  doi: 10.1098/rspl.1874.0058
– ident: e_1_2_14_55_1
  doi: 10.1152/jn.1990.64.2.509
– ident: e_1_2_14_85_1
  doi: 10.1093/brain/60.4.389
– volume: 76
  start-page: 927
  year: 1996
  ident: e_1_2_14_32_1
  article-title: Combined eye‐head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1996.76.2.927
– ident: e_1_2_14_102_1
  doi: 10.1093/brain/119.2.507
– ident: e_1_2_14_125_1
  doi: 10.1016/j.neuron.2005.11.034
– ident: e_1_2_14_34_1
  doi: 10.1152/jn.00101.2005
– ident: e_1_2_14_44_1
  doi: 10.1016/S0896-6273(02)00971-6
– ident: e_1_2_14_78_1
  doi: 10.1152/jn.1999.81.3.1443
– volume: 30
  start-page: 238
  year: 1952
  ident: e_1_2_14_135_1
  article-title: Patterns of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area
  publication-title: Res. Publ. Assoc. Res. Nerv. Ment. Dis
– ident: e_1_2_14_128_1
  doi: 10.1152/jn.00027.2005
– ident: e_1_2_14_106_1
  doi: 10.1038/386167a0
– ident: e_1_2_14_97_1
  doi: 10.1126/science.115091
– volume: 56
  start-page: 1542
  year: 1986
  ident: e_1_2_14_126_1
  article-title: Combined eye‐head gaze shifts in the primate. I. Metrics
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.1986.56.6.1542
– ident: e_1_2_14_76_1
  doi: 10.1007/BF00234475
– volume: 29
  start-page: 858.18
  year: 2005
  ident: e_1_2_14_74_1
  article-title: Gaze shifts evoked by electrical stimulation of the frontal eye field in head‐free macaque
  publication-title: Soc. Neurosci. Abstr.
– ident: e_1_2_14_58_1
  doi: 10.1016/0006-8993(88)91343-1
– ident: e_1_2_14_72_1
  doi: 10.1017/S0952523800002911
– ident: e_1_2_14_64_1
  doi: 10.1212/WNL.54.4.849
– ident: e_1_2_14_59_1
  doi: 10.1152/jn.00256.2006
– ident: e_1_2_14_62_1
  doi: 10.1113/jphysiol.1986.sp016043
– start-page: 307
  volume-title: The Precentral Motor Cortex
  year: 1949
  ident: e_1_2_14_105_1
– ident: e_1_2_14_71_1
  doi: 10.1523/JNEUROSCI.5120-03.2004
– ident: e_1_2_14_40_1
  doi: 10.1111/j.1749-6632.2002.tb02825.x
– ident: e_1_2_14_124_1
  doi: 10.1016/S0165-0173(99)00092-2
– ident: e_1_2_14_80_1
  doi: 10.1007/BF00243222
– ident: e_1_2_14_56_1
  doi: 10.1007/BF00242022
– ident: e_1_2_14_65_1
  doi: 10.1007/BF01995380
SSID ssj0008645
Score 1.8249615
SecondaryResourceType review_article
Snippet The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 1253
SubjectTerms eye field
gaze shift
human
monkey
phosphene
stimulation
Title REVIEW ARTICLE: Cortical control of eye and head movements: integration of movements and percepts
URI https://api.istex.fr/ark:/67375/WNG-4THQ2XCC-N/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2007.05392.x
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8MHvTitxG_0oPhNrLR0g5vZqJolEQDkVvTr12QQQAT9K-3rxsYiAdivC1ZX7O17-197NffQ-jKNNKGieGIsku9Aqq5CRTVJqjrOCJaU2kt_NF9brNWlz726r0C_wRnYXJ-iEXBDSzDf6_BwKWarBp5GMBxt4KJsO58fRXiyYgwoNG_ff1hkoqZ71cM7GpBHLHeMqjn14mWPNUmLPpsOYL1LuhuF_XnD58jT_rVj6mq6q8VXsf_ebs9tFNEqvgmV619tGGzA3R4k7ksffCJK9hjR31R_gBtJfO-cYdI5oAL7CLlh-SpeY2T4dgXzHEBi8fDFNtPi2VmsHMFBg-GnrR8OrnGc_YKpy0wbHHHDx7lIJzJEereNTtJKygaOQS6xlyyW2PKShqFxm2CSUOdahkrpSk1KbeUc_cRUIQrF240rGkQFZOIcEMkp4zYUClyjErZMLMnCNswBUo5Nxwa3rNQ6tTWWBppp2CQapYRn2-a0AXLOTTbeBdL2U4oYGWhBycXfmXFrIyiheQoZ_pYQ6bi9WIhIMd9QMrxunhr3wvaab3Uekki2mXE_G6vPbNoPrbh6vSvgmdoOy9DA1zuHJWm4w974eKnqbr0lvENZqsKAA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hGGDhUUCUpwfElippXDvthkKhlBIJVEQ3K35kKaSoFIny6_E5aVERA0JskeKzEvsu98jn7wBOdTNr6giPKNvUy6OKa09Spb2GioJQKZoag390bxPWeaDdQWNQtgPCszAFP8S84IaW4b7XaOBYkP5u5b6H591KKsKGdfY1G1CuUBt3YCZ2cf_FJRUx17EY-dW8KGCDRVjPjzMt-KoVXPb3xRjWOaHLDXiaPX6BPRnW3iaypj6-MTv-0_ttwnoZrJLzQru2YMnkFdg-z22i_jwlZ8TBR11dvgKr8ax13DakBeaC2GD5Ou61WyQejV3NnJTIeDLKiJkakuaaWG-gyfPI8ZZPXltkRmBhFQaHze-4wS8FDud1Bx4u2_2445W9HDxVZzbfrTNpUhr42u6CznyVqTSSUlGqM24o5_Y7IEMubcTRNLoZyigMQq7DlFMWGl_KcBeW81Fu9oAYP0NWOTsce94zP1WZqbMsUFbHMNusAp_tmlAl0Tn223gSCwmPL3BlsQ0nF25lxXsVgrnkS0H28QuZM6cYc4F0PESwHG-Ix-RK0H7nrj6IY5FUgbnt_vXMot1N8Gr_r4InsNrp3_ZE7zq5OYC1oiqN6LlDWJ6M38yRDacm8tiZyScpww4f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH-aqDS4jK2AKAzmA-KWKmlcO-0NhZbCuoghEL1Z8dela1q1RQL--vk5aaeiHdC0W5TYVmK_5_eRn38P4Ex3bEcneETZhV4BVVwHkiodtFUSxUrR3Bj8o_sjY4MHejNqjyr8E56FKfkh1gk31Ay_X6OCz7R9q-RhgMfdKibCtrP1TedP1tz9xIdXd3-opBLmCxYjvVqQRGy0ier560gbpqqGs_686cJ6G9TfhfHq7Uvoybj5tJRN9fqG2PH_fN5n-FS5quSilK0v8MEUddi7KFyYPnkh58SDR31Wvg7b6apw3B7kJeKCOFf5Oh32uiSdzn3GnFS4eDK1xLwYkheaOFugyWTqWcuXiy5Z0Vc4ccFm6ye-8axE4Sz24aHfu08HQVXJIVAt5qLdFpMmp1Go3SJoGyqr8kRKRam23FDO3S4gYy6dv9ExuhPLJI5iruOcUxabUMr4ALaKaWEOgZjQIqeca44V71mYK2tazEbKSRjGmg3gq0UTqqI5x2obv8RGuBMKnFkswsmFn1nx3IBo3XNWUn28o8-5l4t1h3w-Rqgcb4vH7ErQ-8HP1ihNRdYA5lf73SOL3k2GV0f_2vEbfLy97Ivhdfb9GHbKlDRC577C1nL-ZE6cL7WUp15JfgPbkwzO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REVIEW+ARTICLE%3A+Cortical+control+of+eye+and+head+movements%3A+integration+of+movements+and+percepts&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Longtang+Chen%2C+L.&rft.au=Tehovnik%2C+Edward+J.&rft.date=2007-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=25&rft.issue=5&rft.spage=1253&rft.epage=1264&rft_id=info:doi/10.1111%2Fj.1460-9568.2007.05392.x&rft.externalDBID=10.1111%252Fj.1460-9568.2007.05392.x&rft.externalDocID=EJN5392
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon