REVIEW ARTICLE: Cortical control of eye and head movements: integration of movements and percepts
The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulatio...
Saved in:
Published in | The European journal of neuroscience Vol. 25; no. 5; pp. 1253 - 1264 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 |
DOI | 10.1111/j.1460-9568.2007.05392.x |
Cover
Abstract | The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulation is conducted in head‐unrestrained, behaving subjects with the evoked eye and head movements sometimes being indistinguishable from natural gaze shifts, a pertinent question becomes whether these movements are evoked by motor programs or sensory percepts. Recent stimulation studies in the visual cortex and the eye fields of the frontal lobes have begun to bring both possibilities to light. In addition, cognitive variables often interact with behavioral states that can affect movements evoked by stimulation. Identifying and controlling these variables are critical to our understanding of experimental results based on electrically evoked movements. This understanding is needed before one can draw inferences from such results to elucidate the neural mechanisms underlying natural and complex movements. |
---|---|
AbstractList | The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and head movements. Here, we review the recent advances in electrical stimulation studies and evaluate relevant models. As electrical stimulation is conducted in head‐unrestrained, behaving subjects with the evoked eye and head movements sometimes being indistinguishable from natural gaze shifts, a pertinent question becomes whether these movements are evoked by motor programs or sensory percepts. Recent stimulation studies in the visual cortex and the eye fields of the frontal lobes have begun to bring both possibilities to light. In addition, cognitive variables often interact with behavioral states that can affect movements evoked by stimulation. Identifying and controlling these variables are critical to our understanding of experimental results based on electrically evoked movements. This understanding is needed before one can draw inferences from such results to elucidate the neural mechanisms underlying natural and complex movements. |
Author | Tehovnik, Edward J. Longtang Chen, L. |
Author_xml | – sequence: 1 givenname: L. surname: Longtang Chen fullname: Longtang Chen, L. organization: Department of Otolaryngology, University of Texas Medical Branch, Galveston, TX 77555, USA – sequence: 2 givenname: Edward J. surname: Tehovnik fullname: Tehovnik, Edward J. organization: Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BookMark | eNqNkFFPwjAQxxuDiYB-h36BzW7d2o1EE7JMwBCMBIW3putuOhwbaRuFby8Dw4NP3Mtdcvf75_LroU7d1IAQ9ojrHep-7XoBI04cssj1CeEuCWnsu7sr1D0vOqhL4pA6kcdWN6hnzJoQErEg7CI5T98n6RIP54tJMk0HOGm0LZWssGpqq5sKNwWGPWBZ5_gTZI43zTdsoLZmgMvawoeWtmzq9uy8OR5vQSvYWnOLrgtZGbj763309pQukrEzfRlNkuHUUT7zfcdnGcjAI_nhrbwgqlAyyjIVBHnBIeA8ZjSjPCO-F0Me0yyiHuU5lTxgFEiW0T56POUq3RijoRCqtMffrJZlJTwiWmFiLVovovUiWmHiKEzsDgHRv4CtLjdS7y9BH07oT1nB_mJOpM-zdjrwzokvjYXdmZf6SzBOeSiWs5EIFuNXf5UkYkZ_AdxvlIY |
CitedBy_id | crossref_primary_10_1016_j_eplepsyres_2015_03_016 crossref_primary_10_1016_j_neubiorev_2014_09_003 crossref_primary_10_1016_j_neuroscience_2013_04_022 crossref_primary_10_1111_ejn_12403 crossref_primary_10_1016_j_pneurobio_2009_07_010 crossref_primary_10_1111_ejn_12247 crossref_primary_10_1007_s00221_010_2195_5 crossref_primary_10_1016_j_neubiorev_2021_08_009 crossref_primary_10_1371_journal_pone_0047565 crossref_primary_10_1007_s00429_013_0682_8 crossref_primary_10_1007_s00221_011_2937_z crossref_primary_10_1152_jn_00386_2007 crossref_primary_10_1152_jn_90716_2008 crossref_primary_10_3389_fnint_2014_00048 crossref_primary_10_1016_j_neubiorev_2013_12_007 crossref_primary_10_1152_jn_01032_2009 crossref_primary_10_1016_j_neubiorev_2013_03_012 crossref_primary_10_1152_jn_00879_2012 crossref_primary_10_3389_fnbeh_2014_00454 crossref_primary_10_1146_annurev_neuro_061010_113728 crossref_primary_10_1007_s00221_015_4423_5 crossref_primary_10_1152_jn_00487_2011 crossref_primary_10_1152_jn_01114_2009 crossref_primary_10_3390_vision9010006 |
Cites_doi | 10.1152/jn.00406.2005 10.1007/BF00228246 10.1212/WNL.40.2.296 10.1523/JNEUROSCI.11-11-03656.1991 10.1152/jn.00510.2005 10.1152/jn.00458.2005 10.1152/jn.00736.2004 10.1152/jn.1995.73.3.1122 10.1152/jn.1995.73.1.431 10.1152/jn.1995.73.4.1632 10.1152/jn.1997.77.5.2328 10.1007/BF00234111 10.1111/j.1749-6632.2002.tb02813.x 10.1152/jn.01128.2003 10.1152/jn.00214.2005 10.1152/jn.1995.73.4.1724 10.1007/BF00247300 10.1097/00001756-199904060-00006 10.1152/jn.00022.2005 10.1126/science.173.3995.452 10.1016/0042-6989(72)90070-3 10.1152/jn.00780.2003 10.1152/jn.1984.52.6.1030 10.1152/jn.1985.54.3.714 10.1152/jn.2000.84.2.1103 10.1146/annurev.neuro.20.1.25 10.1016/S0896-6273(02)00964-9 10.1016/0168-0102(94)90038-8 10.1016/j.neubiorev.2003.10.001 10.1007/BF00237584 10.1007/PL00005663 10.1152/jn.2002.88.4.2000 10.1523/JNEUROSCI.15-06-04464.1995 10.1007/BF00227637 10.1016/S0079-6123(03)43037-9 10.1152/jn.1987.57.1.179 10.1097/00001756-199512150-00028 10.1007/BF00230255 10.1016/0006-8993(72)90104-7 10.1016/S0042-6989(01)00063-3 10.1152/jn.1990.64.2.489 10.1152/jn.1994.71.3.1250 10.1152/jn.1999.81.5.2191 10.1152/jn.1993.69.3.786 10.1007/BF00248910 10.1007/BF00248911 10.1152/jn.2002.87.5.2337 10.1016/j.neuropsychologia.2005.12.007 10.1113/jphysiol.1968.sp008519 10.1007/BF00241115 10.1152/jn.1997.78.1.533 10.1016/j.neuron.2006.03.032 10.1152/jn.00330.2003 10.1196/annals.1325.026 10.1007/PL00005752 10.1152/jn.01320.2005 10.1152/jn.00268.2005 10.1523/JNEUROSCI.22-12-05081.2002 10.1038/nrn986 10.1046/j.1460-9568.1999.00665.x 10.1152/jn.01065.2002 10.1007/s00221-003-1555-9 10.1007/BF00240493 10.1007/BF00238733 10.1016/S0079-6123(03)42006-2 10.1038/nature00953 10.1007/BF00248812 10.1038/nature01341 10.1016/0006-8993(78)90478-X 10.1046/j.1460-9568.2003.02489.x 10.1152/jn.1993.70.1.431 10.1007/BF00234728 10.1007/BF00250247 10.1016/0013-4694(94)90068-X 10.1152/jn.1986.55.4.696 10.1152/jn.2000.84.4.2166 10.1016/S0166-2236(00)01570-8 10.1016/0166-4328(95)00182-4 10.1016/j.neuron.2004.12.004 10.1007/s00221-001-0912-9 10.1152/jn.2001.85.4.1673 10.1152/jn.01171.2004 10.1001/archneurpsyc.1951.02320090038004 10.1152/jn.1995.73.3.1101 10.1152/jn.00407.2005 10.1152/jn.01213.2003 10.1016/S0006-8993(00)02663-9 10.1146/annurev.ps.20.020169.001445 10.1016/S0079-6123(05)49012-3 10.1016/0042-6989(94)90260-7 10.1016/0165-0270(95)00131-X 10.1152/jn.1994.72.6.2648 10.1038/35006062 10.1016/S0896-6273(02)01003-6 10.1016/0014-4886(82)90228-X 10.1152/jn.1965.28.4.623 10.1007/BF00235447 10.1093/brain/86.4.595 10.1016/S0042-6989(01)00054-2 10.1007/BF00230204 10.1016/S0896-6273(02)00698-0 10.1007/s00221-001-0928-1 10.1016/S0042-6989(01)00224-3 10.1152/jn.1985.53.3.603 10.1152/jn.00886.2000 10.1098/rspl.1874.0058 10.1152/jn.1990.64.2.509 10.1093/brain/60.4.389 10.1152/jn.1996.76.2.927 10.1093/brain/119.2.507 10.1016/j.neuron.2005.11.034 10.1152/jn.00101.2005 10.1016/S0896-6273(02)00971-6 10.1152/jn.1999.81.3.1443 10.1152/jn.00027.2005 10.1038/386167a0 10.1126/science.115091 10.1152/jn.1986.56.6.1542 10.1007/BF00234475 10.1016/0006-8993(88)91343-1 10.1017/S0952523800002911 10.1212/WNL.54.4.849 10.1152/jn.00256.2006 10.1113/jphysiol.1986.sp016043 10.1523/JNEUROSCI.5120-03.2004 10.1111/j.1749-6632.2002.tb02825.x 10.1016/S0165-0173(99)00092-2 10.1007/BF00243222 10.1007/BF00242022 10.1007/BF01995380 |
ContentType | Journal Article |
DBID | BSCLL AAYXX CITATION |
DOI | 10.1111/j.1460-9568.2007.05392.x |
DatabaseName | Istex CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 1264 |
ExternalDocumentID | 10_1111_j_1460_9568_2007_05392_x EJN5392 ark_67375_WNG_4THQ2XCC_N |
Genre | reviewArticle |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACUHS ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION |
ID | FETCH-LOGICAL-c2622-26bea410d645df0cfca8bbc44df7e477963b37b0219ed93b83137d3a7463e0bb3 |
IEDL.DBID | DR2 |
ISSN | 0953-816X |
IngestDate | Thu Apr 24 22:54:49 EDT 2025 Tue Jul 01 04:00:19 EDT 2025 Wed Jan 22 16:21:40 EST 2025 Wed Oct 30 09:52:56 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2622-26bea410d645df0cfca8bbc44df7e477963b37b0219ed93b83137d3a7463e0bb3 |
Notes | ark:/67375/WNG-4THQ2XCC-N ArticleID:EJN5392 istex:FE174274C6BA40C39EE09FF0DF222F9E65F087B7 Corneil Tehovnik & Lee, 1993 Fukushima 2001 In contrast, in the eye fields the activation threshold is in general higher for the head than the eyes It remains unclear whether a head‐gating mechanism exists downstream from the eye fields. Pelisson . Fuchs Head contribution to gaze shifts refers to the head displacement between gaze shift onset and gaze shift offset, during which the VOR is inhibited Roy & Cullen, 2002 2005 and 2004b 2002 Gamlin (2002 et al The total head displacement additionally includes pre‐gaze shift and post‐gaze shift head movements that may occur before and after gaze shifts; the VOR remains in action. ; This review is focused on saccadic gaze shifts. For gaze shifts made by smooth pursuits and vergence, see recent reviews by Tu & Keating, 2000 In the superior colliculus, it is shown that the current insufficient to elicit saccadic eye movements could sometimes evoke head movements, suggesting the head pathway has a relatively lower activation threshold compared with that of the saccadic eye pathway Chen & Walton, 2005 Chen, 2006 |
PageCount | 12 |
ParticipantIDs | crossref_citationtrail_10_1111_j_1460_9568_2007_05392_x crossref_primary_10_1111_j_1460_9568_2007_05392_x wiley_primary_10_1111_j_1460_9568_2007_05392_x_EJN5392 istex_primary_ark_67375_WNG_4THQ2XCC_N |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03 March 2007 2007-03-00 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK |
PublicationTitle | The European journal of neuroscience |
PublicationYear | 2007 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Goossens, H.H. & Van Opstal, A.J. (1997b) Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. J. Neurophysiol., 78, 533-538. Blanke, O., Morand, S., Thut, G., Michel, C.M., Spinelli, L., Landis, T. & Seeck, M. (1999) Visual activity in the human frontal eye field. Neuroreport, 10, 925-930. Goldberg, M.E., Bushnell, M.C. & Bruce, C.J. (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp. Brain Res., 61, 579-584. Park, J., Schlag-Rey, M. & Schlag, J. (2006) Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J. Neurophysiol., 95, 159-170. Kustov, A.A. & Robinson, D.L. (1995) Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator. J. Neurophysiol., 73, 1724-1728. Phillips, J.O., Ling, L., Fuchs, A.F., Siebold, C. & Plorde, J.J. (1995) Rapid horizontal gaze movement in the monkey. J. Neurophysiol., 73, 1632-1652. Sommer, M.A. & Tehovnik, E.J. (1997) Reversible inactivation of macaque frontal eye field. Exp. Brain Res., 116, 229-249. Bizzi, E. (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res., 6, 69-80. Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J. & Kurkin, S. (2004b) Role of the frontal eye fields in smooth-gaze tracking. Prog. Brain Res., 143, 391-401. Pare, M., Crommelinck, M. & Guitton, D. (1994) Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Exp. Brain Res., 101, 123-139. Corneil, B.D. & Elsley, J.K. (2005) Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first. J. Neurophysiol., 94, 883-895. Heinen, S.J. (1995) Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp. Brain Res., 104, 357-361. Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur. J. Neurosci., 17, 870-878. Keating, E.G. & Gooley, S.G. (1988) Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Res., 438, 247-255. Pelisson, D., Guitton, D. & Munoz, D.P. (1989) Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res., 78, 654-658. Robinson, D.A. (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res., 12, 1795-1808. Schall, J.D., Sato, T.R., Thompson, K.G., Vaughn, A.A. & Juan, C.H. (2004) Effects of search efficiency on surround suppression during visual selection in frontal eye field. J. Neurophysiol., 91, 2765-2769. Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L. & Xu, H. (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol., 93, 1659-1670. Penfield, W. & Welch, K. (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch. Neurol. Psychiatry, 66, 289-317. Freedman, E.G., Stanford, T.R. & Sparks, D.L. (1996) Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol., 76, 927-952. Schlag, J. & Schlag-Rey, M. (1987b) Evidence for a supplementary eye field. J. Neurophysiol., 57, 179-200. Tomlinson, R.D. & Bahra, P.S. (1986) Combined eye-head gaze shifts in the primate. I. Metrics. J. Neurophysiol., 56, 1542-1557. Martinez-Trujillo, J.C., Wang, H. & Crawford, J.D. (2003b) Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts. J. Neurophysiol., 89, 2961-2974. Schiller, P.H., True, S.D. & Conway, J.L. (1979) Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 206, 590-592. Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (1999) Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. Eur. J. Neurosci., 11, 2431-2443. Schlag-Rey, M., Schlag, J. & Shook, B. (1989) Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus. Exp. Brain Res., 76, 537-547. Gold, J.I. & Shadlen, M.N. (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299-308. DeYoe, E.A., Lewine, J.D. & Doty, R.W. (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol., 94, 3443-3450. Doty, R.W. (1969) Electrical stimulation of the brain in behavioral context. Annu. Rev. Psychol., 20, 289-320. Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H. & Hikosaka, O. (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res., 142, 284-291. Mann, S.E., Thau, R. & Schiller, P.H. (1988) Conditional task-related responses in monkey dorsomedial frontal cortex. Exp. Brain Res., 69, 460-468. Shibutani, H., Sakata, H. & Hyvarinen, J. (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res., 55, 1-8. Godoy, J., Luders, H., Dinner, D.S., Morris, H.H. & Wyllie, E. (1990) Versive eye movements elicited by cortical stimulation of the human brain. Neurology, 40, 296-299. Freedman, E.G. & Sparks, D.L. (1997) Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol., 77, 2328-2348. Van Der Steen, J., Russell, I.S. & James, G.O. (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey. J. Neurophysiol., 55, 696-714. Goossens, H.H. & Van Opstal, A.J. (1997a) Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res., 114, 542-560. Martinez-Trujillo, J.C., Klier, E.M., Wang, H. & Crawford, J.D. (2003a) Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus. J. Neurophysiol., 90, 2770-2776. Zangemeister, W.H. & Stark, L. (1982) Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol., 77, 563-577. Chen, L.L. & Walton, M.M. (2005) Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol., 94, 4502-4519. Scudder, C.A., Kaneko, C.S. & Fuchs, A.F. (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res., 142, 439-462. Tehovnik, E.J. & Slocum, W.M. (2004) Behavioural state affects saccades elicited electrically from neocortex. Neurosci. Biobehav. Rev., 28, 13-25. Sommer, M.A. & Wurtz, R.H. (2001) Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J. Neurophysiol., 85, 1673-1685. Doty, R.W. (1965) Conditioned reflexes elicited by electrical stimulation of the brain in macaques. J. Neurophysiol., 28, 623-640. Watanabe, K., Lauwereyns, J. & Hikosaka, O. (2003) Effects of motivational conflicts on visually elicited saccades in monkeys. Exp. Brain Res., 152, 361-367. Bullier, J., Schall, J.D. & Morel, A. (1996) Functional streams in occipito-frontal connections in the monkey. Behav. Brain Res., 76, 89-97. Soetedjo, R., Kaneko, C.R. & Fuchs, A.F. (2002) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol., 87, 679-695. Cowie, R.J. & Robinson, D.L. (1994) Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 72, 2648-2664. Levinsohn, G. (1909) Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges. Graefe Arch, 71, 313-378. Bowman, E.M., Brown, V.J., Kertzman, C., Schwarz, U. & Robinson, D.L. (1993) Covert orienting of attention in macaques. I. Effects of behavioral context. J. Neurophysiol., 70, 431-443. Amador, N., Schlag-Rey, M. & Schlag, J. (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol., 84, 2166-2170. Corneil, B.D., Olivier, E. & Munoz, D.P. (2002) Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 88, 2000-2018. Schlag, J. & Schlag-Rey, M. (1987a) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp. Brain Res., 68, 442-444. Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S. & Peterson, B.W. (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature, 419, 157-162. Mushiake, H., Fujii, N. & Tanji, J. (1999) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. J. Neurophysiol., 81, 1443-1448. Penfield, W. & Perot, P. (1963) The brain's record of auditory and visual experience: a final summary and discussion. Brain, 86, 595-696. Snyder, L.H., Batista, A.P. & Andersen, R.A. (1997) Coding of intention in the posterior parietal cortex. Nature, 386, 167-170. Penfield, W. & Boldrey, E. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389-443. Brindley, G.S. & Lewin, W.S. (1968) The sensations produced by electrical stimulation of the visual cortex. J. Physiol., 196, 479-493. Dias, E.C. & Segraves, M.A. (1999) Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol., 81, 2191-2214. Fujii, N., Mushiake, H., 2002a; 34 1963; 86 1987a; 68 1991; 11 2004; 28 1997a; 114 1952; 30 1968; 6 1995b; 73 2003b; 89 2004; 24 1973; 16 1951; 66 1909; 71 1988; 72 1972; 40 2002; 956 1997b; 78 1996; 76 2001; 41 2003; 152 1990; 40 1984; 52 1992; 8 2002; 142 2000; 404 1984; 55 2002; 87 1997; 386 2002; 88 1971; 173 1978; 149 1994; 72 1965; 28 1994; 71 1996; 65 2004; 44 2006; 50 1997; 20 2000; 877 1970; 10 2002; 3 1968; 196 2002; 419 2007; 97 1875; 23 1995; 6 1994; 19 2006; 44 1969; 20 2000; 84 1975; 23 2005; 93 2005; 94 1994; 91 1988; 438 1996; 112 1996; 119 1993; 69 1995; 73 1997; 116 1986; 373 2004a; 91 2003; 17 1999; 81 2004b; 143 2002b; 36 2005; 1039 2005; 29 1995a; 73 2001; 85 1994; 101 1919; 25 1989; 78 1989; 76 1993; 70 2000; 54 2005; 149 1994; 34 1999; 11 1999; 10 1987b; 57 1985; 53 1972; 12 1949 1985; 54 1992; 89 2002; 36 2006; 95 1995; 15 2000; 23 1986; 55 1979; 206 1986; 56 1937; 60 1982; 77 2005; 48 2004; 91 1990; 64 1986; 61 2003a; 90 1997; 77 1993; 94 1988; 69 2000; 32 2002; 22 1993; 96 1995; 106 1995; 104 2003; 421 2003; 142 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_31_1 e_1_2_14_50_1 e_1_2_14_35_1 e_1_2_14_12_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_16_1 e_1_2_14_58_1 Van Der Steen J. (e_1_2_14_114_1) 1986; 55 e_1_2_14_6_1 Murphey D.K. (e_1_2_14_77_1) 2005; 29 Tu T.A. (e_1_2_14_127_1) 2000; 84 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_125_1 Monteon J.A. (e_1_2_14_74_1) 2005; 29 e_1_2_14_103_1 e_1_2_14_85_1 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_62_1 e_1_2_14_81_1 e_1_2_14_24_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_89_1 e_1_2_14_47_1 Nichols M.J. (e_1_2_14_79_1) 1995; 73 Phillips J.O. (e_1_2_14_88_1) 1995; 73 e_1_2_14_119_1 e_1_2_14_132_1 e_1_2_14_115_1 e_1_2_14_136_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 Kustov A.A. (e_1_2_14_61_1) 1995; 73 e_1_2_14_120_1 e_1_2_14_7_1 Freedman E.G. (e_1_2_14_32_1) 1996; 76 e_1_2_14_108_1 Woolsey C.N. (e_1_2_14_135_1) 1952; 30 e_1_2_14_124_1 e_1_2_14_104_1 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 e_1_2_14_42_1 e_1_2_14_80_1 e_1_2_14_3_1 Goldberg M.E. (e_1_2_14_45_1) 1990; 64 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_69_1 Gottlieb J.P. (e_1_2_14_49_1) 1993; 69 e_1_2_14_131_1 e_1_2_14_116_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_75_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_33_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_123_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_101_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_87_1 e_1_2_14_26_1 e_1_2_14_19_1 e_1_2_14_130_1 Vogt C. (e_1_2_14_129_1) 1919; 25 e_1_2_14_117_1 e_1_2_14_134_1 e_1_2_14_113_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_13_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_36_1 e_1_2_14_59_1 e_1_2_14_78_1 e_1_2_14_29_1 Bowman E.M. (e_1_2_14_9_1) 1993; 70 e_1_2_14_5_1 e_1_2_14_122_1 Tomlinson R.D. (e_1_2_14_126_1) 1986; 56 e_1_2_14_106_1 e_1_2_14_102_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_18_1 Russo G.S. (e_1_2_14_92_1) 1994; 71 Smith W.K. (e_1_2_14_105_1) 1949 Doty R.W. (e_1_2_14_28_1) 1965; 28 e_1_2_14_118_1 e_1_2_14_133_1 |
References_xml | – reference: Stanford, T.R. & Sparks, D.L. (1994) Systematic errors for saccades to remembered targets: evidence for a dissociation between saccade metrics and activity in the superior colliculus. Vis. Res., 34, 93-106. – reference: Bradley, D.C., Troyk, P.R., Berg, J.A., Bak, M., Cogan, S., Erickson, R., Kufta, C., Mascaro, M., McCreery, D., Schmidt, E.M., Towle, V.L. & Xu, H. (2005) Visuotopic mapping through a multichannel stimulating implant in primate V1. J. Neurophysiol., 93, 1659-1670. – reference: Roy, J.E. & Cullen, K.E. (2002) Vestibuloocular reflex signal modulation during voluntary and passive head movements. J. Neurophysiol., 87, 2337-2357. – reference: Tehovnik, E.J. & Slocum, W.M. (2000) Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys. Brain Res., 877, 101-106. – reference: Fukushima, J., Akao, T., Takeichi, N., Kurkin, S., Kaneko, C.R. & Fukushima, K. (2004a) Pursuit-related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation. J. Neurophysiol., 91, 2809-2825. – reference: Sparks, D.L., Freedman, E.G., Chen, L.L. & Gandhi, N.J. (2001) Cortical and subcortical contributions to coordinated eye and head movements. Vis. Res., 41, 3295-3305. – reference: Tehovnik, E.J. & Lee, K. (1993) The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation. Exp. Brain Res., 96, 430-442. – reference: Bruce, C.J., Goldberg, M.E., Bushnell, M.C. & Stanton, G.B. (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J. Neurophysiol., 54, 714-734. – reference: Freedman, E.G. & Sparks, D.L. (1997) Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys. J. Neurophysiol., 77, 2328-2348. – reference: Rushworth, M.F. & Taylor, P.C. (2006) TMS in the parietal cortex: updating representations for attention and action. Neuropsychologia, 44, 2700-2716. – reference: Tomlinson, R.D. & Bahra, P.S. (1986) Combined eye-head gaze shifts in the primate. I. Metrics. J. Neurophysiol., 56, 1542-1557. – reference: Nichols, M.J. & Sparks, D.L. (1995) Nonstationary properties of the saccadic system: new constraints on models of saccadic control. J. Neurophysiol., 73, 431-435. – reference: Van Der Steen, J., Russell, I.S. & James, G.O. (1986) Effects of unilateral frontal eye-field lesions on eye-head coordination in monkey. J. Neurophysiol., 55, 696-714. – reference: Watanabe, K., Lauwereyns, J. & Hikosaka, O. (2003) Effects of motivational conflicts on visually elicited saccades in monkeys. Exp. Brain Res., 152, 361-367. – reference: Gamlin, P.D. (2002) Neural mechanisms for the control of vergence eye movements. Ann. N. Y. Acad. Sci., 956, 264-272. – reference: Volle, M. & Guitton, D. (1993) Human gaze shifts in which head and eyes are not initially aligned. Exp. Brain Res., 94, 463-470. – reference: Goldberg, M.E. & Bruce, C.J. (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol., 64, 489-508. – reference: Bizzi, E., Kalil, R.E. & Morasso, P. (1972) Two modes of active eye-head coordination in monkeys. Brain Res., 40, 45-48. – reference: Schlag, J., Schlag-Rey, M. & Dassonville, P. (1989) Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target? Exp. Brain Res., 76, 548-558. – reference: Pelisson, D., Goffart, L., Guillaume, A., Catz, N. & Raboyeau, G. (2001) Early head movements elicited by visual stimuli or collicular electrical stimulation in the cat. Vis. Res., 41, 3283-3294. – reference: Gandhi, N.J. & Sparks, D.L. (2001) Experimental control of eye and head positions prior to head-unrestrained gaze shifts in monkey. Vis. Res., 41, 3243-3254. – reference: Guitton, D., Bergeron, A., Choi, W.Y. & Matsuo, S. (2003) On the feedback control of orienting gaze shifts made with eye and head movements. Prog. Brain Res., 142, 55-68. – reference: Penfield, W. & Perot, P. (1963) The brain's record of auditory and visual experience: a final summary and discussion. Brain, 86, 595-696. – reference: Pelisson, D., Guitton, D. & Goffart, L. (1995) On-line compensation of gaze shifts perturbed by micro-stimulation of the superior colliculus in the cat with unrestrained head. Exp. Brain Res., 106, 196-204. – reference: Tolias, A.S., Sultan, F., Augath, M., Oeltermann, A., Tehovnik, E.J., Schiller, P.H. & Logothetis, N.K. (2005) Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque. Neuron, 48, 901-911. – reference: Bullier, J., Schall, J.D. & Morel, A. (1996) Functional streams in occipito-frontal connections in the monkey. Behav. Brain Res., 76, 89-97. – reference: Chen, L.L. & Walton, M.M. (2005) Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey. J. Neurophysiol., 94, 4502-4519. – reference: Shibutani, H., Sakata, H. & Hyvarinen, J. (1984) Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey. Exp. Brain Res., 55, 1-8. – reference: Corneil, B.D. & Elsley, J.K. (2005) Countermanding eye-head gaze shifts in humans: marching orders are delivered to the head first. J. Neurophysiol., 94, 883-895. – reference: Brindley, G.S. & Lewin, W.S. (1968) The sensations produced by electrical stimulation of the visual cortex. J. Physiol., 196, 479-493. – reference: Lawrence, B.M., White, R.L. III & Snyder, L.H. (2005) Delay-period activity in visual, visuomovement, and movement neurons in the frontal eye field. J. Neurophysiol., 94, 1498-1508. – reference: Stryker, M.P. & Schiller, P.H. (1975) Eye and head movements evoked by electrical stimulation of monkey superior colliculus. Exp. Brain Res., 23, 103-112. – reference: Tanji, J. (1994) The supplementary motor area in the cerebral cortex. Neurosci. Res., 19, 251-268. – reference: Bizzi, E. & Schiller, P.H. (1970) Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement. Exp. Brain Res., 10, 150-158. – reference: Freedman, E.G., Stanford, T.R. & Sparks, D.L. (1996) Combined eye-head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys. J. Neurophysiol., 76, 927-952. – reference: Schiller, P.H., True, S.D. & Conway, J.L. (1979) Effects of frontal eye field and superior colliculus ablations on eye movements. Science, 206, 590-592. – reference: Tehovnik, E.J. & Slocum, W.M. (2004) Behavioural state affects saccades elicited electrically from neocortex. Neurosci. Biobehav. Rev., 28, 13-25. – reference: Wise, S.P. & Murray, E.A. (2000) Arbitrary associations between antecedents and actions. Trends Neurosci., 23, 271-276. – reference: Dassonville, P., Schlag, J. & Schlag-Rey, M. (1992) The frontal eye field provides the goal of saccadic eye movement. Exp. Brain Res., 89, 300-310. – reference: Wise, S.P., Boussaoud, D., Johnson, P.B. & Caminiti, R. (1997) Premotor and parietal cortex: corticocortical connectivity and combinatorial computations. Annu. Rev. Neurosci., 20, 25-42. – reference: Penfield, W. & Welch, K. (1951) The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch. Neurol. Psychiatry, 66, 289-317. – reference: DeYoe, E.A., Lewine, J.D. & Doty, R.W. (2005) Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques. J. Neurophysiol., 94, 3443-3450. – reference: Woolsey, C.N., Settlage, P.H., Meyer, D.R., Spencer, W., Hamuy, A.M. & Travis, A.M. (1952) Patterns of localization in precentral and 'supplementary' motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis, 30, 238-264. – reference: Goossens, H.H. & Van Opstal, A.J. (1997b) Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades. J. Neurophysiol., 78, 533-538. – reference: Pelisson, D., Guitton, D. & Munoz, D.P. (1989) Compensatory eye and head movements generated by the cat following stimulation-induced perturbations in gaze position. Exp. Brain Res., 78, 654-658. – reference: Bowman, E.M., Brown, V.J., Kertzman, C., Schwarz, U. & Robinson, D.L. (1993) Covert orienting of attention in macaques. I. Effects of behavioral context. J. Neurophysiol., 70, 431-443. – reference: Guitton, D., Douglas, R.M. & Volle, M. (1984) Eye-head coordination in cats. J. Neurophysiol., 52, 1030-1050. – reference: Chen, L.L. (2006) Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control. J. Neurophysiol., 95, 3528-3542. – reference: Sommer, M.A. & Wurtz, R.H. (2001) Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus. J. Neurophysiol., 85, 1673-1685. – reference: Bartlett, J.R., DeYoe, E.A., Doty, R.W., Lee, B.B., Lewine, J.D., Negrao, N. & Overman, W.H. Jr (2005) Psychophysics of electrical stimulation of striate cortex in macaques. J. Neurophysiol., 94, 3430-3442. – reference: Schall, J.D., Morel, A., King, D.J. & Bullier, J. (1995) Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci., 15, 4464-4487. – reference: Gold, J.I. & Shadlen, M.N. (2002) Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward. Neuron, 36, 299-308. – reference: Sparks, D.L. (2002) The brainstem control of saccadic eye movements. Nat. Rev. Neurosci., 3, 952-964. – reference: Vogt, C. & Vogt, O. (1919) Allgemeinere ergebnisse unserer hirforschung. J. fur Psychologie Neurologie Leipzig, 25, 277-456. – reference: Zangemeister, W.H. & Stark, L. (1982) Types of gaze movement: variable interactions of eye and head movements. Exp. Neurol., 77, 563-577. – reference: Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J., Kurkin, S. & Peterson, B.W. (2002) Coding of smooth eye movements in three-dimensional space by frontal cortex. Nature, 419, 157-162. – reference: Godoy, J., Luders, H., Dinner, D.S., Morris, H.H. & Wyllie, E. (1990) Versive eye movements elicited by cortical stimulation of the human brain. Neurology, 40, 296-299. – reference: Schiller, P.H. & Tehovnik, E.J. (2005) Neural mechanisms underlying target selection with saccadic eye movements. Prog. Brain Res., 149, 157-171. – reference: Miyashita, N. & Hikosaka, O. (1996) Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey. Exp. Brain Res., 112, 187-196. – reference: May, P.J. & Porter, J.D. (1992) The laminar distribution of macaque tectobulbar and tectospinal neurons. Vis. Neurosci., 8, 257-276. – reference: Schmidt, E.M., Bak, M.J., Hambrecht, F.T., Kufta, C.V., O'Rourke, D.K. & Vallabhanath, P. (1996) Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain, 119, 507-522. – reference: Tehovnik, E.J., Slocum, W.M., Carvey, C.E. & Schiller, P.H. (2005) Phosphene induction and the generation of saccadic eye movements by striate cortex. J. Neurophysiol., 93, 1-19. – reference: Ferrier, D. (1875) Experiments on the brains of monkeys. Proc. R. Soc. Lond., 23, 409-432. – reference: Goossens, H.H. & Van Opstal, A.J. (1997a) Human eye-head coordination in two dimensions under different sensorimotor conditions. Exp. Brain Res., 114, 542-560. – reference: Fuchs, A.F., Ling, L. & Phillips, J.O. (2005) Behavior of the position vestibular pause (PVP) interneurons of the vestibuloocular reflex during head-free gaze shifts in the monkey. J. Neurophysiol., 94, 4481-4490. – reference: Gottlieb, J.P., Bruce, C.J. & MacAvoy, M.G. (1993) Smooth eye movements elicited by microstimulation in the primate frontal eye field. J. Neurophysiol., 69, 786-799. – reference: Laurutis, V.P. & Robinson, D.A. (1986) The vestibulo-ocular reflex during human saccadic eye movements. J. Physiol., 373, 209-233. – reference: Levinsohn, G. (1909) Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges. Graefe Arch, 71, 313-378. – reference: Tu, T.A. & Keating, E.G. (2000) Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements. J. Neurophysiol., 84, 1103-1106. – reference: Matsuo, S., Bergeron, A. & Guitton, D. (2004) Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations. J. Neurosci., 24, 2760-2773. – reference: Doty, R.W. (1965) Conditioned reflexes elicited by electrical stimulation of the brain in macaques. J. Neurophysiol., 28, 623-640. – reference: Schlag, J. & Schlag-Rey, M. (1987a) Does microstimulation evoke fixed-vector saccades by generating their vector or by specifying their goal? Exp. Brain Res., 68, 442-444. – reference: Coe, B., Tomihara, K., Matsuzawa, M. & Hikosaka, O. (2002) Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision-making task. J. Neurosci., 22, 5081-5090. – reference: Fukushima, K., Yamanobe, T., Shinmei, Y., Fukushima, J. & Kurkin, S. (2004b) Role of the frontal eye fields in smooth-gaze tracking. Prog. Brain Res., 143, 391-401. – reference: Takikawa, Y., Kawagoe, R., Itoh, H., Nakahara, H. & Hikosaka, O. (2002) Modulation of saccadic eye movements by predicted reward outcome. Exp. Brain Res., 142, 284-291. – reference: Fujii, N., Mushiake, H., Tamai, M. & Tanji, J. (1995) Microstimulation of the supplementary eye field during saccade preparation. Neuroreport, 6, 2565-2568. – reference: Guitton, D. & Mandl, G. (1978) Frontal 'oculomotor' area in alert cat. II. Unit discharges associated with eye movements and neck muscle activity. Brain Res., 149, 313-327. – reference: Corneil, B.D., Olivier, E. & Munoz, D.P. (2002) Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements. J. Neurophysiol., 88, 2000-2018. – reference: Cowie, R.J. & Robinson, D.L. (1994) Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus. J. Neurophysiol., 72, 2648-2664. – reference: Fukushima, K., Akao, T., Kurkin, S. & Fukushima, J. (2005) Role of vestibular signals in the caudal part of the frontal eye fields in pursuit eye movements in three-dimensional space. Ann. N. Y. Acad. Sci., 1039, 272-282. – reference: Vliegen, J., Van Grootel, T.J. & Van Opstal, A.J. (2005) Gaze orienting in dynamic visual double steps. J. Neurophysiol., 94, 4300-4313. – reference: Waitzman, D.M., Pathmanathan, J., Presnell, R., Ayers, A. & DePalma, S. (2002) Contribution of the superior colliculus and the mesencephalic reticular formation to gaze control. Ann. N. Y. Acad. Sci., 956, 111-129. – reference: Lee, H.W., Hong, S.B., Seo, D.W., Tae, W.S. & Hong, S.C. (2000) Mapping of functional organization in human visual cortex: electrical cortical stimulation. Neurology, 54, 849-854. – reference: Sommer, M.A. & Tehovnik, E.J. (1997) Reversible inactivation of macaque frontal eye field. Exp. Brain Res., 116, 229-249. – reference: Tehovnik, E.J., Sommer, M.A., Chou, I.H., Slocum, W.M. & Schiller, P.H. (2000) Eye fields in the frontal lobes of primates. Brain Res. Brain Res. Rev., 32, 413-448. – reference: Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (2003) Saccadic eye movements evoked by microstimulation of striate cortex. Eur. J. Neurosci., 17, 870-878. – reference: Amador, N., Schlag-Rey, M. & Schlag, J. (2000) Reward-predicting and reward-detecting neuronal activity in the primate supplementary eye field. J. Neurophysiol., 84, 2166-2170. – reference: Schlag, J. & Schlag-Rey, M. (1987b) Evidence for a supplementary eye field. J. Neurophysiol., 57, 179-200. – reference: Guitton, D., Munoz, D.P. & Galiana, H.L. (1990) Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks. J. Neurophysiol., 64, 509-531. – reference: Blanke, O., Morand, S., Thut, G., Michel, C.M., Spinelli, L., Landis, T. & Seeck, M. (1999) Visual activity in the human frontal eye field. Neuroreport, 10, 925-930. – reference: Bruce, C.J. & Goldberg, M.E. (1985) Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol., 53, 603-635. – reference: Knight, T.A. & Fuchs, A.F. (2007) Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation. J. Neurophysiol., 97, 618-634. – reference: Penfield, W. & Boldrey, E. (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60, 389-443. – reference: Monteon, J.A., Wang, H., Martinez-Trujillo, J.C. & Crawford, J.D. (2005) Gaze shifts evoked by electrical stimulation of the frontal eye field in head-free macaque. Soc. Neurosci. Abstr., 29, 858.18. – reference: Dias, E.C. & Segraves, M.A. (1999) Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol., 81, 2191-2214. – reference: Russo, G.S. & Bruce, C.J. (1994) Frontal eye field activity preceding aurally guided saccades. J. Neurophysiol., 71, 1250-1253. – reference: Soetedjo, R., Kaneko, C.R. & Fuchs, A.F. (2002) Evidence that the superior colliculus participates in the feedback control of saccadic eye movements. J. Neurophysiol., 87, 679-695. – reference: Tehovnik, E.J. (1996) Electrical stimulation of neural tissue to evoke behavioral responses. J. Neurosci. Meth., 65, 1-17. – reference: Gold, J.I. & Shadlen, M.N. (2000) Representation of a perceptual decision in developing oculomotor commands. Nature, 404, 390-394. – reference: Kurata, K. & Wise, S.P. (1988) Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally- and internally-instructed motor tasks. Exp. Brain Res., 72, 237-248. – reference: Schall, J.D., Sato, T.R., Thompson, K.G., Vaughn, A.A. & Juan, C.H. (2004) Effects of search efficiency on surround suppression during visual selection in frontal eye field. J. Neurophysiol., 91, 2765-2769. – reference: Martinez-Trujillo, J.C., Wang, H. & Crawford, J.D. (2003b) Electrical stimulation of the supplementary eye fields in the head-free macaque evokes kinematically normal gaze shifts. J. Neurophysiol., 89, 2961-2974. – reference: Mushiake, H., Fujii, N. & Tanji, J. (1999) Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks. J. Neurophysiol., 81, 1443-1448. – reference: Pare, M., Crommelinck, M. & Guitton, D. (1994) Gaze shifts evoked by stimulation of the superior colliculus in the head-free cat conform to the motor map but also depend on stimulus strength and fixation activity. Exp. Brain Res., 101, 123-139. – reference: Murphey, D.K. & Maunsell, J.H. (2005) Behavioral threshold for detecting electrical microstimulation in monkey visual cortex. Soc. Neurosci. Abstr., 29, 509.4. – reference: Fried, I., Katz, A., McCarthy, G., Sass, K.J., Williamson, P., Spencer, S.S. & Spencer, D.D. (1991) Functional organization of human supplementary motor cortex studied by electrical stimulation. J. Neurosci., 11, 3656-3666. – reference: Scudder, C.A., Kaneko, C.S. & Fuchs, A.F. (2002) The brainstem burst generator for saccadic eye movements: a modern synthesis. Exp. Brain Res., 142, 439-462. – reference: Lim, S.H., Dinner, D.S., Pillay, P.K., Luders, H., Morris, H.H., Klem, G., Wyllie, E. & Awad, I.A. (1994) Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation. Electroencephalogr. Clin. Neurophysiol., 91, 179-193. – reference: Schlag-Rey, M., Schlag, J. & Shook, B. (1989) Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus. Exp. Brain Res., 76, 537-547. – reference: Snyder, L.H., Batista, A.P. & Andersen, R.A. (1997) Coding of intention in the posterior parietal cortex. Nature, 386, 167-170. – reference: Goldberg, M.E., Bushnell, M.C. & Bruce, C.J. (1986) The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields. Exp. Brain Res., 61, 579-584. – reference: Graziano, M.S., Taylor, C.S., Moore, T. & Cooke, D.F. (2002b) The cortical control of movement revisited. Neuron, 36, 349-362. – reference: Morasso, P., Bizzi, E. & Dichgans, J. (1973) Adjustment of saccade characteristics during head movements. Exp. Brain Res., 16, 492-500. – reference: Martinez-Trujillo, J.C., Klier, E.M., Wang, H. & Crawford, J.D. (2003a) Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus. J. Neurophysiol., 90, 2770-2776. – reference: Chen, L.L. & Wise, S.P. (1995b) Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations. J. Neurophysiol., 73, 1122-1134. – reference: Moore, T. & Armstrong, K.M. (2003) Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421, 370-373. – reference: Bizzi, E. (1968) Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys. Exp. Brain Res., 6, 69-80. – reference: Chen, L.L. & Wise, S.P. (1995a) Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations. J. Neurophysiol., 73, 1101-1121. – reference: Bizzi, E., Kalil, R.E. & Tagliasco, V. (1971) Eye-head coordination in monkeys: evidence for centrally patterned organization. Science, 173, 452-454. – reference: Choi, W.Y. & Guitton, D. (2006) Responses of collicular fixation neurons to gaze shift perturbations in head-unrestrained monkey reveal gaze feedback control. Neuron, 50, 491-505. – reference: Mann, S.E., Thau, R. & Schiller, P.H. (1988) Conditional task-related responses in monkey dorsomedial frontal cortex. Exp. Brain Res., 69, 460-468. – reference: Heinen, S.J. (1995) Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements. Exp. Brain Res., 104, 357-361. – reference: Robinson, D.A. (1972) Eye movements evoked by collicular stimulation in the alert monkey. Vis. Res., 12, 1795-1808. – reference: Tehovnik, E.J., Slocum, W.M. & Schiller, P.H. (1999) Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates. Eur. J. Neurosci., 11, 2431-2443. – reference: Phillips, J.O., Ling, L., Fuchs, A.F., Siebold, C. & Plorde, J.J. (1995) Rapid horizontal gaze movement in the monkey. J. Neurophysiol., 73, 1632-1652. – reference: Keating, E.G. & Gooley, S.G. (1988) Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures. Brain Res., 438, 247-255. – reference: Kustov, A.A. & Robinson, D.L. (1995) Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator. J. Neurophysiol., 73, 1724-1728. – reference: Schall, J.D., Stuphorn, V. & Brown, J.W. (2002) Monitoring and control of action by the frontal lobes. Neuron, 36, 309-322. – reference: Park, J., Schlag-Rey, M. & Schlag, J. (2006) Frames of reference for saccadic command tested by saccade collision in the supplementary eye field. J. Neurophysiol., 95, 159-170. – reference: Hikosaka, O., Nakamura, K. & Nakahara, H. (2006) Basal ganglia orient eyes to reward. J. Neurophysiol., 95, 567-584. – reference: Graziano, M.S., Taylor, C.S. & Moore, T. (2002a) Complex movements evoked by microstimulation of precentral cortex. Neuron, 34, 841-851. – reference: Campos, M., Breznen, B., Bernheim, K. & Andersen, R.A. (2005) Supplementary motor area encodes reward expectancy in eye-movement tasks. J. Neurophysiol., 94, 1325-1335. – reference: Doty, R.W. (1969) Electrical stimulation of the brain in behavioral context. Annu. Rev. Psychol., 20, 289-320. – reference: Martinez-Trujillo, J.C., Medendorp, W.P., Wang, H. & Crawford, J.D. (2004) Frames of reference for eye-head gaze commands in primate supplementary eye fields. Neuron, 44, 1057-1066. – volume: 89 start-page: 2961 year: 2003b end-page: 2974 article-title: Electrical stimulation of the supplementary eye fields in the head‐free macaque evokes kinematically normal gaze shifts publication-title: J. Neurophysiol. – volume: 101 start-page: 123 year: 1994 end-page: 139 article-title: Gaze shifts evoked by stimulation of the superior colliculus in the head‐free cat conform to the motor map but also depend on stimulus strength and fixation activity publication-title: Exp. Brain Res. – volume: 6 start-page: 2565 year: 1995 end-page: 2568 article-title: Microstimulation of the supplementary eye field during saccade preparation publication-title: Neuroreport – volume: 34 start-page: 93 year: 1994 end-page: 106 article-title: Systematic errors for saccades to remembered targets: evidence for a dissociation between saccade metrics and activity in the superior colliculus publication-title: Vis. Res. – volume: 106 start-page: 196 year: 1995 end-page: 204 article-title: On‐line compensation of gaze shifts perturbed by micro‐stimulation of the superior colliculus in the cat with unrestrained head publication-title: Exp. Brain Res. – volume: 55 start-page: 696 year: 1986 end-page: 714 article-title: Effects of unilateral frontal eye‐field lesions on eye‐head coordination in monkey publication-title: J. Neurophysiol. – volume: 438 start-page: 247 year: 1988 end-page: 255 article-title: Saccadic disorders caused by cooling the superior colliculus or the frontal eye field, or from combined lesions of both structures publication-title: Brain Res. – volume: 86 start-page: 595 year: 1963 end-page: 696 article-title: The brain's record of auditory and visual experience: a final summary and discussion publication-title: Brain – volume: 17 start-page: 870 year: 2003 end-page: 878 article-title: Saccadic eye movements evoked by microstimulation of striate cortex publication-title: Eur. J. Neurosci. – volume: 15 start-page: 4464 year: 1995 end-page: 4487 article-title: Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams publication-title: J. Neurosci. – volume: 32 start-page: 413 year: 2000 end-page: 448 article-title: Eye fields in the frontal lobes of primates publication-title: Brain Res. Brain Res. Rev. – volume: 3 start-page: 952 year: 2002 end-page: 964 article-title: The brainstem control of saccadic eye movements publication-title: Nat. Rev. Neurosci. – volume: 10 start-page: 150 year: 1970 end-page: 158 article-title: Single unit activity in the frontal eye fields of unanesthetized monkeys during eye and head movement publication-title: Exp. Brain Res. – volume: 66 start-page: 289 year: 1951 end-page: 317 article-title: The supplementary motor area of the cerebral cortex; a clinical and experimental study publication-title: AMA Arch. Neurol. Psychiatry – volume: 23 start-page: 409 year: 1875 end-page: 432 article-title: Experiments on the brains of monkeys publication-title: Proc. R. Soc. Lond. – volume: 87 start-page: 2337 year: 2002 end-page: 2357 article-title: Vestibuloocular reflex signal modulation during voluntary and passive head movements publication-title: J. Neurophysiol. – volume: 71 start-page: 1250 year: 1994 end-page: 1253 article-title: Frontal eye field activity preceding aurally guided saccades publication-title: J. Neurophysiol. – volume: 48 start-page: 901 year: 2005 end-page: 911 article-title: Mapping cortical activity elicited with electrical microstimulation using FMRI in the macaque publication-title: Neuron – volume: 41 start-page: 3295 year: 2001 end-page: 3305 article-title: Cortical and subcortical contributions to coordinated eye and head movements publication-title: Vis. Res. – volume: 956 start-page: 111 year: 2002 end-page: 129 article-title: Contribution of the superior colliculus and the mesencephalic reticular formation to gaze control publication-title: Ann. N. Y. Acad. Sci. – volume: 11 start-page: 3656 year: 1991 end-page: 3666 article-title: Functional organization of human supplementary motor cortex studied by electrical stimulation publication-title: J. Neurosci. – volume: 20 start-page: 25 year: 1997 end-page: 42 article-title: Premotor and parietal cortex: corticocortical connectivity and combinatorial computations publication-title: Annu. Rev. Neurosci. – volume: 95 start-page: 567 year: 2006 end-page: 584 article-title: Basal ganglia orient eyes to reward publication-title: J. Neurophysiol. – volume: 84 start-page: 2166 year: 2000 end-page: 2170 article-title: Reward‐predicting and reward‐detecting neuronal activity in the primate supplementary eye field publication-title: J. Neurophysiol. – volume: 77 start-page: 2328 year: 1997 end-page: 2348 article-title: Eye‐head coordination during head‐unrestrained gaze shifts in rhesus monkeys publication-title: J. Neurophysiol. – volume: 112 start-page: 187 year: 1996 end-page: 196 article-title: Minimal synaptic delay in the saccadic output pathway of the superior colliculus studied in awake monkey publication-title: Exp. Brain Res. – volume: 44 start-page: 1057 year: 2004 end-page: 1066 article-title: Frames of reference for eye‐head gaze commands in primate supplementary eye fields publication-title: Neuron – volume: 119 start-page: 507 year: 1996 end-page: 522 article-title: Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex publication-title: Brain – volume: 10 start-page: 925 year: 1999 end-page: 930 article-title: Visual activity in the human frontal eye field publication-title: Neuroreport – volume: 36 start-page: 309 year: 2002 end-page: 322 article-title: Monitoring and control of action by the frontal lobes publication-title: Neuron – volume: 69 start-page: 786 year: 1993 end-page: 799 article-title: Smooth eye movements elicited by microstimulation in the primate frontal eye field publication-title: J. Neurophysiol. – volume: 69 start-page: 460 year: 1988 end-page: 468 article-title: Conditional task‐related responses in monkey dorsomedial frontal cortex publication-title: Exp. Brain Res. – volume: 28 start-page: 623 year: 1965 end-page: 640 article-title: Conditioned reflexes elicited by electrical stimulation of the brain in macaques publication-title: J. Neurophysiol. – volume: 85 start-page: 1673 year: 2001 end-page: 1685 article-title: Frontal eye field sends delay activity related to movement, memory, and vision to the superior colliculus publication-title: J. Neurophysiol. – volume: 6 start-page: 69 year: 1968 end-page: 80 article-title: Discharge of frontal eye field neurons during saccadic and following eye movements in unanesthetized monkeys publication-title: Exp. Brain Res. – volume: 16 start-page: 492 year: 1973 end-page: 500 article-title: Adjustment of saccade characteristics during head movements publication-title: Exp. Brain Res. – volume: 373 start-page: 209 year: 1986 end-page: 233 article-title: The vestibulo‐ocular reflex during human saccadic eye movements publication-title: J. Physiol. – volume: 95 start-page: 3528 year: 2006 end-page: 3542 article-title: Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for independent eye and head control publication-title: J. Neurophysiol. – volume: 93 start-page: 1659 year: 2005 end-page: 1670 article-title: Visuotopic mapping through a multichannel stimulating implant in primate V1 publication-title: J. Neurophysiol. – volume: 61 start-page: 579 year: 1986 end-page: 584 article-title: The effect of attentive fixation on eye movements evoked by electrical stimulation of the frontal eye fields publication-title: Exp. Brain Res. – volume: 91 start-page: 2765 year: 2004 end-page: 2769 article-title: Effects of search efficiency on surround suppression during visual selection in frontal eye field publication-title: J. Neurophysiol. – volume: 404 start-page: 390 year: 2000 end-page: 394 article-title: Representation of a perceptual decision in developing oculomotor commands publication-title: Nature – volume: 96 start-page: 430 year: 1993 end-page: 442 article-title: The dorsomedial frontal cortex of the rhesus monkey: topographic representation of saccades evoked by electrical stimulation publication-title: Exp. Brain Res. – volume: 60 start-page: 389 year: 1937 end-page: 443 article-title: Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation publication-title: Brain – volume: 19 start-page: 251 year: 1994 end-page: 268 article-title: The supplementary motor area in the cerebral cortex publication-title: Neurosci. Res. – volume: 877 start-page: 101 year: 2000 end-page: 106 article-title: Effects of training on saccadic eye movements elicited electrically from the frontal cortex of monkeys publication-title: Brain Res. – volume: 41 start-page: 3243 year: 2001 end-page: 3254 article-title: Experimental control of eye and head positions prior to head‐unrestrained gaze shifts in monkey publication-title: Vis. Res. – volume: 956 start-page: 264 year: 2002 end-page: 272 article-title: Neural mechanisms for the control of vergence eye movements publication-title: Ann. N. Y. Acad. Sci. – volume: 76 start-page: 89 year: 1996 end-page: 97 article-title: Functional streams in occipito‐frontal connections in the monkey publication-title: Behav. Brain Res. – volume: 114 start-page: 542 year: 1997a end-page: 560 article-title: Human eye‐head coordination in two dimensions under different sensorimotor conditions publication-title: Exp. Brain Res. – volume: 89 start-page: 300 year: 1992 end-page: 310 article-title: The frontal eye field provides the goal of saccadic eye movement publication-title: Exp. Brain Res. – volume: 25 start-page: 277 year: 1919 end-page: 456 article-title: Allgemeinere ergebnisse unserer hirforschung publication-title: J. fur Psychologie Neurologie Leipzig – volume: 1039 start-page: 272 year: 2005 end-page: 282 article-title: Role of vestibular signals in the caudal part of the frontal eye fields in pursuit eye movements in three‐dimensional space publication-title: Ann. N. Y. Acad. Sci. – volume: 386 start-page: 167 year: 1997 end-page: 170 article-title: Coding of intention in the posterior parietal cortex publication-title: Nature – volume: 50 start-page: 491 year: 2006 end-page: 505 article-title: Responses of collicular fixation neurons to gaze shift perturbations in head‐unrestrained monkey reveal gaze feedback control publication-title: Neuron – volume: 72 start-page: 237 year: 1988 end-page: 248 article-title: Premotor and supplementary motor cortex in rhesus monkeys: neuronal activity during externally‐ and internally‐instructed motor tasks publication-title: Exp. Brain Res. – volume: 78 start-page: 533 year: 1997b end-page: 538 article-title: Local feedback signals are not distorted by prior eye movements: evidence from visually evoked double saccades publication-title: J. Neurophysiol. – volume: 142 start-page: 284 year: 2002 end-page: 291 article-title: Modulation of saccadic eye movements by predicted reward outcome publication-title: Exp. Brain Res. – volume: 91 start-page: 2809 year: 2004a end-page: 2825 article-title: Pursuit‐related neurons in the supplementary eye fields: discharge during pursuit and passive whole body rotation publication-title: J. Neurophysiol. – volume: 65 start-page: 1 year: 1996 end-page: 17 article-title: Electrical stimulation of neural tissue to evoke behavioral responses publication-title: J. Neurosci. Meth. – volume: 54 start-page: 714 year: 1985 end-page: 734 article-title: Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements publication-title: J. Neurophysiol. – volume: 72 start-page: 2648 year: 1994 end-page: 2664 article-title: Subcortical contributions to head movements in macaques. I. Contrasting effects of electrical stimulation of a medial pontomedullary region and the superior colliculus publication-title: J. Neurophysiol. – volume: 24 start-page: 2760 year: 2004 end-page: 2773 article-title: Evidence for gaze feedback to the cat superior colliculus: discharges reflect gaze trajectory perturbations publication-title: J. Neurosci. – volume: 94 start-page: 4300 year: 2005 end-page: 4313 article-title: Gaze orienting in dynamic visual double steps publication-title: J. Neurophysiol. – volume: 81 start-page: 1443 year: 1999 end-page: 1448 article-title: Microstimulation of the lateral wall of the intraparietal sulcus compared with the frontal eye field during oculomotor tasks publication-title: J. Neurophysiol. – start-page: 307 year: 1949 end-page: 342 – volume: 53 start-page: 603 year: 1985 end-page: 635 article-title: Primate frontal eye fields. I. Single neurons discharging before saccades publication-title: J. Neurophysiol. – volume: 116 start-page: 229 year: 1997 end-page: 249 article-title: Reversible inactivation of macaque frontal eye field publication-title: Exp. Brain Res. – volume: 94 start-page: 883 year: 2005 end-page: 895 article-title: Countermanding eye‐head gaze shifts in humans: marching orders are delivered to the head first publication-title: J. Neurophysiol. – volume: 97 start-page: 618 year: 2007 end-page: 634 article-title: Contribution of the frontal eye field to gaze shifts in the head‐unrestrained monkey: effects of microstimulation publication-title: J. Neurophysiol. – volume: 36 start-page: 349 year: 2002b end-page: 362 article-title: The cortical control of movement revisited publication-title: Neuron – volume: 8 start-page: 257 year: 1992 end-page: 276 article-title: The laminar distribution of macaque tectobulbar and tectospinal neurons publication-title: Vis. Neurosci. – volume: 73 start-page: 431 year: 1995 end-page: 435 article-title: Nonstationary properties of the saccadic system: new constraints on models of saccadic control publication-title: J. Neurophysiol. – volume: 36 start-page: 299 year: 2002 end-page: 308 article-title: Banburismus and the brain: decoding the relationship between sensory stimuli, decisions, and reward publication-title: Neuron – volume: 94 start-page: 1498 year: 2005 end-page: 1508 article-title: Delay‐period activity in visual, visuomovement, and movement neurons in the frontal eye field publication-title: J. Neurophysiol. – volume: 64 start-page: 509 year: 1990 end-page: 531 article-title: Gaze control in the cat: studies and modeling of the coupling between orienting eye and head movements in different behavioral tasks publication-title: J. Neurophysiol. – volume: 421 start-page: 370 year: 2003 end-page: 373 article-title: Selective gating of visual signals by microstimulation of frontal cortex publication-title: Nature – volume: 28 start-page: 13 year: 2004 end-page: 25 article-title: Behavioural state affects saccades elicited electrically from neocortex publication-title: Neurosci. Biobehav. Rev. – volume: 87 start-page: 679 year: 2002 end-page: 695 article-title: Evidence that the superior colliculus participates in the feedback control of saccadic eye movements publication-title: J. Neurophysiol. – volume: 76 start-page: 927 year: 1996 end-page: 952 article-title: Combined eye‐head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys publication-title: J. Neurophysiol. – volume: 152 start-page: 361 year: 2003 end-page: 367 article-title: Effects of motivational conflicts on visually elicited saccades in monkeys publication-title: Exp. Brain Res. – volume: 23 start-page: 271 year: 2000 end-page: 276 article-title: Arbitrary associations between antecedents and actions publication-title: Trends Neurosci. – volume: 73 start-page: 1632 year: 1995 end-page: 1652 article-title: Rapid horizontal gaze movement in the monkey publication-title: J. Neurophysiol. – volume: 94 start-page: 4502 year: 2005 end-page: 4519 article-title: Head movement evoked by electrical stimulation in the supplementary eye field of the rhesus monkey publication-title: J. Neurophysiol. – volume: 40 start-page: 45 year: 1972 end-page: 48 article-title: Two modes of active eye‐head coordination in monkeys publication-title: Brain Res. – volume: 64 start-page: 489 year: 1990 end-page: 508 article-title: Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal publication-title: J. Neurophysiol. – volume: 23 start-page: 103 year: 1975 end-page: 112 article-title: Eye and head movements evoked by electrical stimulation of monkey superior colliculus publication-title: Exp. Brain Res. – volume: 40 start-page: 296 year: 1990 end-page: 299 article-title: Versive eye movements elicited by cortical stimulation of the human brain publication-title: Neurology – volume: 94 start-page: 4481 year: 2005 end-page: 4490 article-title: Behavior of the position vestibular pause (PVP) interneurons of the vestibuloocular reflex during head‐free gaze shifts in the monkey publication-title: J. Neurophysiol. – volume: 71 start-page: 313 year: 1909 end-page: 378 article-title: Uber die Beziehungen der Grosshirnrinde beim Affen zu den Bewegungen des Auges publication-title: Graefe Arch – volume: 93 start-page: 1 year: 2005 end-page: 19 article-title: Phosphene induction and the generation of saccadic eye movements by striate cortex publication-title: J. Neurophysiol. – volume: 41 start-page: 3283 year: 2001 end-page: 3294 article-title: Early head movements elicited by visual stimuli or collicular electrical stimulation in the cat publication-title: Vis. Res. – volume: 76 start-page: 537 year: 1989 end-page: 547 article-title: Interactions between natural and electrically evoked saccades. I. Differences between sites carrying retinal error and motor error signals in monkey superior colliculus publication-title: Exp. Brain Res. – volume: 22 start-page: 5081 year: 2002 end-page: 5090 article-title: Visual and anticipatory bias in three cortical eye fields of the monkey during an adaptive decision‐making task publication-title: J. Neurosci. – volume: 78 start-page: 654 year: 1989 end-page: 658 article-title: Compensatory eye and head movements generated by the cat following stimulation‐induced perturbations in gaze position publication-title: Exp. Brain Res. – volume: 149 start-page: 157 year: 2005 end-page: 171 article-title: Neural mechanisms underlying target selection with saccadic eye movements publication-title: Prog. Brain Res. – volume: 94 start-page: 1325 year: 2005 end-page: 1335 article-title: Supplementary motor area encodes reward expectancy in eye‐movement tasks publication-title: J. Neurophysiol. – volume: 94 start-page: 3443 year: 2005 end-page: 3450 article-title: Laminar variation in threshold for detection of electrical excitation of striate cortex by macaques publication-title: J. Neurophysiol. – volume: 52 start-page: 1030 year: 1984 end-page: 1050 article-title: Eye‐head coordination in cats publication-title: J. Neurophysiol. – volume: 173 start-page: 452 year: 1971 end-page: 454 article-title: Eye‐head coordination in monkeys: evidence for centrally patterned organization publication-title: Science – volume: 73 start-page: 1101 year: 1995a end-page: 1121 article-title: Neuronal activity in the supplementary eye field during acquisition of conditional oculomotor associations publication-title: J. Neurophysiol. – volume: 196 start-page: 479 year: 1968 end-page: 493 article-title: The sensations produced by electrical stimulation of the visual cortex publication-title: J. Physiol. – volume: 56 start-page: 1542 year: 1986 end-page: 1557 article-title: Combined eye‐head gaze shifts in the primate. I. Metrics publication-title: J. Neurophysiol. – volume: 54 start-page: 849 year: 2000 end-page: 854 article-title: Mapping of functional organization in human visual cortex: electrical cortical stimulation publication-title: Neurology – volume: 73 start-page: 1122 year: 1995b end-page: 1134 article-title: Supplementary eye field contrasted with the frontal eye field during acquisition of conditional oculomotor associations publication-title: J. Neurophysiol. – volume: 20 start-page: 289 year: 1969 end-page: 320 article-title: Electrical stimulation of the brain in behavioral context publication-title: Annu. Rev. Psychol. – volume: 30 start-page: 238 year: 1952 end-page: 264 article-title: Patterns of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area publication-title: Res. Publ. Assoc. Res. Nerv. Ment. Dis – volume: 94 start-page: 3430 year: 2005 end-page: 3442 article-title: Psychophysics of electrical stimulation of striate cortex in macaques publication-title: J. Neurophysiol. – volume: 81 start-page: 2191 year: 1999 end-page: 2214 article-title: Muscimol‐induced inactivation of monkey frontal eye field: effects on visually and memory‐guided saccades publication-title: J. Neurophysiol. – volume: 91 start-page: 179 year: 1994 end-page: 193 article-title: Functional anatomy of the human supplementary sensorimotor area: results of extraoperative electrical stimulation publication-title: Electroencephalogr. Clin. Neurophysiol. – volume: 55 start-page: 1 year: 1984 end-page: 8 article-title: Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey publication-title: Exp. Brain Res. – volume: 29 start-page: 509.4 year: 2005 article-title: Behavioral threshold for detecting electrical microstimulation in monkey visual cortex publication-title: Soc. Neurosci. Abstr. – volume: 419 start-page: 157 year: 2002 end-page: 162 article-title: Coding of smooth eye movements in three‐dimensional space by frontal cortex publication-title: Nature – volume: 12 start-page: 1795 year: 1972 end-page: 1808 article-title: Eye movements evoked by collicular stimulation in the alert monkey publication-title: Vis. Res. – volume: 57 start-page: 179 year: 1987b end-page: 200 article-title: Evidence for a supplementary eye field publication-title: J. Neurophysiol. – volume: 11 start-page: 2431 year: 1999 end-page: 2443 article-title: Behavioural conditions affecting saccadic eye movements elicited electrically from the frontal lobes of primates publication-title: Eur. J. Neurosci. – volume: 84 start-page: 1103 year: 2000 end-page: 1106 article-title: Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements publication-title: J. Neurophysiol. – volume: 94 start-page: 463 year: 1993 end-page: 470 article-title: Human gaze shifts in which head and eyes are not initially aligned publication-title: Exp. Brain Res. – volume: 142 start-page: 55 year: 2003 end-page: 68 article-title: On the feedback control of orienting gaze shifts made with eye and head movements publication-title: Prog. Brain Res. – volume: 76 start-page: 548 year: 1989 end-page: 558 article-title: Interactions between natural and electrically evoked saccades. II. At what time is eye position sampled as a reference for the localization of a target? publication-title: Exp. Brain Res. – volume: 68 start-page: 442 year: 1987a end-page: 444 article-title: Does microstimulation evoke fixed‐vector saccades by generating their vector or by specifying their goal? publication-title: Exp. Brain Res. – volume: 44 start-page: 2700 year: 2006 end-page: 2716 article-title: TMS in the parietal cortex: updating representations for attention and action publication-title: Neuropsychologia – volume: 88 start-page: 2000 year: 2002 end-page: 2018 article-title: Neck muscle responses to stimulation of monkey superior colliculus. II. Gaze shift initiation and volitional head movements publication-title: J. Neurophysiol. – volume: 149 start-page: 313 year: 1978 end-page: 327 article-title: Frontal ‘oculomotor’ area in alert cat. II. Unit discharges associated with eye movements and neck muscle activity publication-title: Brain Res. – volume: 77 start-page: 563 year: 1982 end-page: 577 article-title: Types of gaze movement: variable interactions of eye and head movements publication-title: Exp. Neurol. – volume: 73 start-page: 1724 year: 1995 end-page: 1728 article-title: Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator publication-title: J. Neurophysiol. – volume: 142 start-page: 439 year: 2002 end-page: 462 article-title: The brainstem burst generator for saccadic eye movements: a modern synthesis publication-title: Exp. Brain Res. – volume: 34 start-page: 841 year: 2002a end-page: 851 article-title: Complex movements evoked by microstimulation of precentral cortex publication-title: Neuron – volume: 206 start-page: 590 year: 1979 end-page: 592 article-title: Effects of frontal eye field and superior colliculus ablations on eye movements publication-title: Science – volume: 95 start-page: 159 year: 2006 end-page: 170 article-title: Frames of reference for saccadic command tested by saccade collision in the supplementary eye field publication-title: J. Neurophysiol. – volume: 143 start-page: 391 year: 2004b end-page: 401 article-title: Role of the frontal eye fields in smooth‐gaze tracking publication-title: Prog. Brain Res. – volume: 104 start-page: 357 year: 1995 end-page: 361 article-title: Single neuron activity in the dorsomedial frontal cortex during smooth pursuit eye movements publication-title: Exp. Brain Res. – volume: 70 start-page: 431 year: 1993 end-page: 443 article-title: Covert orienting of attention in macaques. I. Effects of behavioral context publication-title: J. Neurophysiol. – volume: 90 start-page: 2770 year: 2003a end-page: 2776 article-title: Contribution of head movement to gaze command coding in monkey frontal cortex and superior colliculus publication-title: J. Neurophysiol. – volume: 29 start-page: 858.18 year: 2005 article-title: Gaze shifts evoked by electrical stimulation of the frontal eye field in head‐free macaque publication-title: Soc. Neurosci. Abstr. – ident: e_1_2_14_3_1 doi: 10.1152/jn.00406.2005 – ident: e_1_2_14_25_1 doi: 10.1007/BF00228246 – ident: e_1_2_14_42_1 doi: 10.1212/WNL.40.2.296 – ident: e_1_2_14_33_1 doi: 10.1523/JNEUROSCI.11-11-03656.1991 – ident: e_1_2_14_17_1 doi: 10.1152/jn.00510.2005 – ident: e_1_2_14_57_1 doi: 10.1152/jn.00458.2005 – ident: e_1_2_14_121_1 doi: 10.1152/jn.00736.2004 – ident: e_1_2_14_19_1 doi: 10.1152/jn.1995.73.3.1122 – volume: 73 start-page: 431 year: 1995 ident: e_1_2_14_79_1 article-title: Nonstationary properties of the saccadic system: new constraints on models of saccadic control publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.73.1.431 – volume: 73 start-page: 1632 year: 1995 ident: e_1_2_14_88_1 article-title: Rapid horizontal gaze movement in the monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.73.4.1632 – ident: e_1_2_14_31_1 doi: 10.1152/jn.1997.77.5.2328 – ident: e_1_2_14_118_1 doi: 10.1007/BF00234111 – ident: e_1_2_14_131_1 doi: 10.1111/j.1749-6632.2002.tb02813.x – ident: e_1_2_14_37_1 doi: 10.1152/jn.01128.2003 – ident: e_1_2_14_63_1 doi: 10.1152/jn.00214.2005 – volume: 73 start-page: 1724 year: 1995 ident: e_1_2_14_61_1 article-title: Modified saccades evoked by stimulation of the macaque superior colliculus account for properties of the resettable integrator publication-title: J. Neurophysiol. doi: 10.1152/jn.1995.73.4.1724 – ident: e_1_2_14_67_1 doi: 10.1007/BF00247300 – ident: e_1_2_14_8_1 doi: 10.1097/00001756-199904060-00006 – ident: e_1_2_14_15_1 doi: 10.1152/jn.00022.2005 – ident: e_1_2_14_6_1 doi: 10.1126/science.173.3995.452 – ident: e_1_2_14_89_1 doi: 10.1016/0042-6989(72)90070-3 – ident: e_1_2_14_94_1 doi: 10.1152/jn.00780.2003 – ident: e_1_2_14_53_1 doi: 10.1152/jn.1984.52.6.1030 – ident: e_1_2_14_13_1 doi: 10.1152/jn.1985.54.3.714 – volume: 84 start-page: 1103 year: 2000 ident: e_1_2_14_127_1 article-title: Electrical stimulation of the frontal eye field in a monkey produces combined eye and head movements publication-title: J. Neurophysiol. doi: 10.1152/jn.2000.84.2.1103 – ident: e_1_2_14_133_1 doi: 10.1146/annurev.neuro.20.1.25 – ident: e_1_2_14_95_1 doi: 10.1016/S0896-6273(02)00964-9 – ident: e_1_2_14_116_1 doi: 10.1016/0168-0102(94)90038-8 – ident: e_1_2_14_120_1 doi: 10.1016/j.neubiorev.2003.10.001 – ident: e_1_2_14_46_1 doi: 10.1007/BF00237584 – ident: e_1_2_14_47_1 doi: 10.1007/PL00005663 – ident: e_1_2_14_23_1 doi: 10.1152/jn.2002.88.4.2000 – ident: e_1_2_14_93_1 doi: 10.1523/JNEUROSCI.15-06-04464.1995 – ident: e_1_2_14_73_1 doi: 10.1007/BF00227637 – ident: e_1_2_14_38_1 doi: 10.1016/S0079-6123(03)43037-9 – ident: e_1_2_14_99_1 doi: 10.1152/jn.1987.57.1.179 – ident: e_1_2_14_35_1 doi: 10.1097/00001756-199512150-00028 – ident: e_1_2_14_84_1 doi: 10.1007/BF00230255 – ident: e_1_2_14_5_1 doi: 10.1016/0006-8993(72)90104-7 – ident: e_1_2_14_111_1 doi: 10.1016/S0042-6989(01)00063-3 – volume: 64 start-page: 489 year: 1990 ident: e_1_2_14_45_1 article-title: Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal publication-title: J. Neurophysiol. doi: 10.1152/jn.1990.64.2.489 – volume: 71 start-page: 1250 year: 1994 ident: e_1_2_14_92_1 article-title: Frontal eye field activity preceding aurally guided saccades publication-title: J. Neurophysiol. doi: 10.1152/jn.1994.71.3.1250 – ident: e_1_2_14_27_1 doi: 10.1152/jn.1999.81.5.2191 – volume: 69 start-page: 786 year: 1993 ident: e_1_2_14_49_1 article-title: Smooth eye movements elicited by microstimulation in the primate frontal eye field publication-title: J. Neurophysiol. doi: 10.1152/jn.1993.69.3.786 – ident: e_1_2_14_101_1 doi: 10.1007/BF00248910 – ident: e_1_2_14_100_1 doi: 10.1007/BF00248911 – ident: e_1_2_14_90_1 doi: 10.1152/jn.2002.87.5.2337 – ident: e_1_2_14_91_1 doi: 10.1016/j.neuropsychologia.2005.12.007 – ident: e_1_2_14_11_1 doi: 10.1113/jphysiol.1968.sp008519 – ident: e_1_2_14_83_1 doi: 10.1007/BF00241115 – ident: e_1_2_14_48_1 doi: 10.1152/jn.1997.78.1.533 – ident: e_1_2_14_20_1 doi: 10.1016/j.neuron.2006.03.032 – ident: e_1_2_14_68_1 doi: 10.1152/jn.00330.2003 – ident: e_1_2_14_36_1 doi: 10.1196/annals.1325.026 – ident: e_1_2_14_108_1 doi: 10.1007/PL00005752 – ident: e_1_2_14_16_1 doi: 10.1152/jn.01320.2005 – ident: e_1_2_14_81_1 doi: 10.1152/jn.00268.2005 – ident: e_1_2_14_21_1 doi: 10.1523/JNEUROSCI.22-12-05081.2002 – ident: e_1_2_14_110_1 doi: 10.1038/nrn986 – ident: e_1_2_14_122_1 doi: 10.1046/j.1460-9568.1999.00665.x – ident: e_1_2_14_70_1 doi: 10.1152/jn.01065.2002 – ident: e_1_2_14_132_1 doi: 10.1007/s00221-003-1555-9 – ident: e_1_2_14_104_1 doi: 10.1007/BF00240493 – ident: e_1_2_14_113_1 doi: 10.1007/BF00238733 – ident: e_1_2_14_52_1 doi: 10.1016/S0079-6123(03)42006-2 – ident: e_1_2_14_39_1 doi: 10.1038/nature00953 – volume: 29 start-page: 509.4 year: 2005 ident: e_1_2_14_77_1 article-title: Behavioral threshold for detecting electrical microstimulation in monkey visual cortex publication-title: Soc. Neurosci. Abstr. – ident: e_1_2_14_98_1 doi: 10.1007/BF00248812 – ident: e_1_2_14_75_1 doi: 10.1038/nature01341 – ident: e_1_2_14_54_1 doi: 10.1016/0006-8993(78)90478-X – ident: e_1_2_14_123_1 doi: 10.1046/j.1460-9568.2003.02489.x – volume: 70 start-page: 431 year: 1993 ident: e_1_2_14_9_1 article-title: Covert orienting of attention in macaques. I. Effects of behavioral context publication-title: J. Neurophysiol. doi: 10.1152/jn.1993.70.1.431 – ident: e_1_2_14_7_1 doi: 10.1007/BF00234728 – ident: e_1_2_14_60_1 doi: 10.1007/BF00250247 – ident: e_1_2_14_66_1 doi: 10.1016/0013-4694(94)90068-X – volume: 55 start-page: 696 year: 1986 ident: e_1_2_14_114_1 article-title: Effects of unilateral frontal eye‐field lesions on eye‐head coordination in monkey publication-title: J. Neurophysiol. doi: 10.1152/jn.1986.55.4.696 – ident: e_1_2_14_2_1 doi: 10.1152/jn.2000.84.4.2166 – ident: e_1_2_14_134_1 doi: 10.1016/S0166-2236(00)01570-8 – ident: e_1_2_14_14_1 doi: 10.1016/0166-4328(95)00182-4 – ident: e_1_2_14_69_1 doi: 10.1016/j.neuron.2004.12.004 – ident: e_1_2_14_103_1 doi: 10.1007/s00221-001-0912-9 – ident: e_1_2_14_109_1 doi: 10.1152/jn.2001.85.4.1673 – ident: e_1_2_14_22_1 doi: 10.1152/jn.01171.2004 – ident: e_1_2_14_87_1 doi: 10.1001/archneurpsyc.1951.02320090038004 – ident: e_1_2_14_18_1 doi: 10.1152/jn.1995.73.3.1101 – ident: e_1_2_14_26_1 doi: 10.1152/jn.00407.2005 – ident: e_1_2_14_10_1 doi: 10.1152/jn.01213.2003 – ident: e_1_2_14_119_1 doi: 10.1016/S0006-8993(00)02663-9 – ident: e_1_2_14_29_1 doi: 10.1146/annurev.ps.20.020169.001445 – ident: e_1_2_14_96_1 doi: 10.1016/S0079-6123(05)49012-3 – ident: e_1_2_14_112_1 doi: 10.1016/0042-6989(94)90260-7 – ident: e_1_2_14_117_1 doi: 10.1016/0165-0270(95)00131-X – ident: e_1_2_14_24_1 doi: 10.1152/jn.1994.72.6.2648 – ident: e_1_2_14_43_1 doi: 10.1038/35006062 – ident: e_1_2_14_51_1 doi: 10.1016/S0896-6273(02)01003-6 – ident: e_1_2_14_136_1 doi: 10.1016/0014-4886(82)90228-X – volume: 28 start-page: 623 year: 1965 ident: e_1_2_14_28_1 article-title: Conditioned reflexes elicited by electrical stimulation of the brain in macaques publication-title: J. Neurophysiol. doi: 10.1152/jn.1965.28.4.623 – ident: e_1_2_14_4_1 doi: 10.1007/BF00235447 – ident: e_1_2_14_86_1 doi: 10.1093/brain/86.4.595 – ident: e_1_2_14_41_1 doi: 10.1016/S0042-6989(01)00054-2 – ident: e_1_2_14_130_1 doi: 10.1007/BF00230204 – ident: e_1_2_14_50_1 doi: 10.1016/S0896-6273(02)00698-0 – ident: e_1_2_14_115_1 doi: 10.1007/s00221-001-0928-1 – volume: 25 start-page: 277 year: 1919 ident: e_1_2_14_129_1 article-title: Allgemeinere ergebnisse unserer hirforschung publication-title: J. fur Psychologie Neurologie Leipzig – ident: e_1_2_14_82_1 doi: 10.1016/S0042-6989(01)00224-3 – ident: e_1_2_14_12_1 doi: 10.1152/jn.1985.53.3.603 – ident: e_1_2_14_107_1 doi: 10.1152/jn.00886.2000 – ident: e_1_2_14_30_1 doi: 10.1098/rspl.1874.0058 – ident: e_1_2_14_55_1 doi: 10.1152/jn.1990.64.2.509 – ident: e_1_2_14_85_1 doi: 10.1093/brain/60.4.389 – volume: 76 start-page: 927 year: 1996 ident: e_1_2_14_32_1 article-title: Combined eye‐head gaze shifts produced by electrical stimulation of the superior colliculus in rhesus monkeys publication-title: J. Neurophysiol. doi: 10.1152/jn.1996.76.2.927 – ident: e_1_2_14_102_1 doi: 10.1093/brain/119.2.507 – ident: e_1_2_14_125_1 doi: 10.1016/j.neuron.2005.11.034 – ident: e_1_2_14_34_1 doi: 10.1152/jn.00101.2005 – ident: e_1_2_14_44_1 doi: 10.1016/S0896-6273(02)00971-6 – ident: e_1_2_14_78_1 doi: 10.1152/jn.1999.81.3.1443 – volume: 30 start-page: 238 year: 1952 ident: e_1_2_14_135_1 article-title: Patterns of localization in precentral and ‘supplementary’ motor areas and their relation to the concept of a premotor area publication-title: Res. Publ. Assoc. Res. Nerv. Ment. Dis – ident: e_1_2_14_128_1 doi: 10.1152/jn.00027.2005 – ident: e_1_2_14_106_1 doi: 10.1038/386167a0 – ident: e_1_2_14_97_1 doi: 10.1126/science.115091 – volume: 56 start-page: 1542 year: 1986 ident: e_1_2_14_126_1 article-title: Combined eye‐head gaze shifts in the primate. I. Metrics publication-title: J. Neurophysiol. doi: 10.1152/jn.1986.56.6.1542 – ident: e_1_2_14_76_1 doi: 10.1007/BF00234475 – volume: 29 start-page: 858.18 year: 2005 ident: e_1_2_14_74_1 article-title: Gaze shifts evoked by electrical stimulation of the frontal eye field in head‐free macaque publication-title: Soc. Neurosci. Abstr. – ident: e_1_2_14_58_1 doi: 10.1016/0006-8993(88)91343-1 – ident: e_1_2_14_72_1 doi: 10.1017/S0952523800002911 – ident: e_1_2_14_64_1 doi: 10.1212/WNL.54.4.849 – ident: e_1_2_14_59_1 doi: 10.1152/jn.00256.2006 – ident: e_1_2_14_62_1 doi: 10.1113/jphysiol.1986.sp016043 – start-page: 307 volume-title: The Precentral Motor Cortex year: 1949 ident: e_1_2_14_105_1 – ident: e_1_2_14_71_1 doi: 10.1523/JNEUROSCI.5120-03.2004 – ident: e_1_2_14_40_1 doi: 10.1111/j.1749-6632.2002.tb02825.x – ident: e_1_2_14_124_1 doi: 10.1016/S0165-0173(99)00092-2 – ident: e_1_2_14_80_1 doi: 10.1007/BF00243222 – ident: e_1_2_14_56_1 doi: 10.1007/BF00242022 – ident: e_1_2_14_65_1 doi: 10.1007/BF01995380 |
SSID | ssj0008645 |
Score | 1.8249615 |
SecondaryResourceType | review_article |
Snippet | The cortical control of eye movements is well known. It remains unclear, however, as to how the eye fields of the frontal lobes generate and coordinate eye and... |
SourceID | crossref wiley istex |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1253 |
SubjectTerms | eye field gaze shift human monkey phosphene stimulation |
Title | REVIEW ARTICLE: Cortical control of eye and head movements: integration of movements and percepts |
URI | https://api.istex.fr/ark:/67375/WNG-4THQ2XCC-N/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1460-9568.2007.05392.x |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT8IwFG8MHvTitxG_0oPhNrLR0g5vZqJolEQDkVvTr12QQQAT9K-3rxsYiAdivC1ZX7O17-197NffQ-jKNNKGieGIsku9Aqq5CRTVJqjrOCJaU2kt_NF9brNWlz726r0C_wRnYXJ-iEXBDSzDf6_BwKWarBp5GMBxt4KJsO58fRXiyYgwoNG_ff1hkoqZ71cM7GpBHLHeMqjn14mWPNUmLPpsOYL1LuhuF_XnD58jT_rVj6mq6q8VXsf_ebs9tFNEqvgmV619tGGzA3R4k7ksffCJK9hjR31R_gBtJfO-cYdI5oAL7CLlh-SpeY2T4dgXzHEBi8fDFNtPi2VmsHMFBg-GnrR8OrnGc_YKpy0wbHHHDx7lIJzJEereNTtJKygaOQS6xlyyW2PKShqFxm2CSUOdahkrpSk1KbeUc_cRUIQrF240rGkQFZOIcEMkp4zYUClyjErZMLMnCNswBUo5Nxwa3rNQ6tTWWBppp2CQapYRn2-a0AXLOTTbeBdL2U4oYGWhBycXfmXFrIyiheQoZ_pYQ6bi9WIhIMd9QMrxunhr3wvaab3Uekki2mXE_G6vPbNoPrbh6vSvgmdoOy9DA1zuHJWm4w974eKnqbr0lvENZqsKAA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED4hGGDhUUCUpwfElippXDvthkKhlBIJVEQ3K35kKaSoFIny6_E5aVERA0JskeKzEvsu98jn7wBOdTNr6giPKNvUy6OKa09Spb2GioJQKZoag390bxPWeaDdQWNQtgPCszAFP8S84IaW4b7XaOBYkP5u5b6H591KKsKGdfY1G1CuUBt3YCZ2cf_FJRUx17EY-dW8KGCDRVjPjzMt-KoVXPb3xRjWOaHLDXiaPX6BPRnW3iaypj6-MTv-0_ttwnoZrJLzQru2YMnkFdg-z22i_jwlZ8TBR11dvgKr8ax13DakBeaC2GD5Ou61WyQejV3NnJTIeDLKiJkakuaaWG-gyfPI8ZZPXltkRmBhFQaHze-4wS8FDud1Bx4u2_2445W9HDxVZzbfrTNpUhr42u6CznyVqTSSUlGqM24o5_Y7IEMubcTRNLoZyigMQq7DlFMWGl_KcBeW81Fu9oAYP0NWOTsce94zP1WZqbMsUFbHMNusAp_tmlAl0Tn223gSCwmPL3BlsQ0nF25lxXsVgrnkS0H28QuZM6cYc4F0PESwHG-Ix-RK0H7nrj6IY5FUgbnt_vXMot1N8Gr_r4InsNrp3_ZE7zq5OYC1oiqN6LlDWJ6M38yRDacm8tiZyScpww4f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NT9swFH-aqDS4jK2AKAzmA-KWKmlcO-0NhZbCuoghEL1Z8dela1q1RQL--vk5aaeiHdC0W5TYVmK_5_eRn38P4Ex3bEcneETZhV4BVVwHkiodtFUSxUrR3Bj8o_sjY4MHejNqjyr8E56FKfkh1gk31Ay_X6OCz7R9q-RhgMfdKibCtrP1TedP1tz9xIdXd3-opBLmCxYjvVqQRGy0ier560gbpqqGs_686cJ6G9TfhfHq7Uvoybj5tJRN9fqG2PH_fN5n-FS5quSilK0v8MEUddi7KFyYPnkh58SDR31Wvg7b6apw3B7kJeKCOFf5Oh32uiSdzn3GnFS4eDK1xLwYkheaOFugyWTqWcuXiy5Z0Vc4ccFm6ye-8axE4Sz24aHfu08HQVXJIVAt5qLdFpMmp1Go3SJoGyqr8kRKRam23FDO3S4gYy6dv9ExuhPLJI5iruOcUxabUMr4ALaKaWEOgZjQIqeca44V71mYK2tazEbKSRjGmg3gq0UTqqI5x2obv8RGuBMKnFkswsmFn1nx3IBo3XNWUn28o8-5l4t1h3w-Rqgcb4vH7ErQ-8HP1ihNRdYA5lf73SOL3k2GV0f_2vEbfLy97Ivhdfb9GHbKlDRC577C1nL-ZE6cL7WUp15JfgPbkwzO |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=REVIEW+ARTICLE%3A+Cortical+control+of+eye+and+head+movements%3A+integration+of+movements+and+percepts&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Longtang+Chen%2C+L.&rft.au=Tehovnik%2C+Edward+J.&rft.date=2007-03-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=25&rft.issue=5&rft.spage=1253&rft.epage=1264&rft_id=info:doi/10.1111%2Fj.1460-9568.2007.05392.x&rft.externalDBID=10.1111%252Fj.1460-9568.2007.05392.x&rft.externalDocID=EJN5392 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |