Natural mass hierarchy among three heavy Majorana neutrinos for resonant leptogenesis under modular A4 symmetry
A bstract It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the...
Saved in:
Published in | The journal of high energy physics Vol. 2022; no. 7; p. 50 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A
bstract
It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular
A
4
symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular
A
4
with large imaginary part of modulus
τ
, and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[
τ
] through our numerical analysis satisfying the neutrino oscillation data. |
---|---|
AbstractList | A
bstract
It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular
A
4
symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular
A
4
with large imaginary part of modulus
τ
, and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[
τ
] through our numerical analysis satisfying the neutrino oscillation data. It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular A4 symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular A4 with large imaginary part of modulus τ, and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[τ] through our numerical analysis satisfying the neutrino oscillation data. |
ArticleNumber | 50 |
Author | Kim, Jongkuk Nomura, Takaaki Kang, Dong Woo Okada, Hiroshi |
Author_xml | – sequence: 1 givenname: Dong Woo surname: Kang fullname: Kang, Dong Woo organization: School of Physics, KIAS – sequence: 2 givenname: Jongkuk orcidid: 0000-0002-0854-1560 surname: Kim fullname: Kim, Jongkuk email: jkkim@kias.re.kr organization: School of Physics, KIAS – sequence: 3 givenname: Takaaki surname: Nomura fullname: Nomura, Takaaki organization: College of Physics, Sichuan University – sequence: 4 givenname: Hiroshi surname: Okada fullname: Okada, Hiroshi organization: Asia Pacific Center for Theoretical Physics (APCTP) — Headquarters San 31, Department of Physics, Pohang University of Science and Technology |
BookMark | eNp1kEtLw0AQxxepYFs9e13woofY2W3SbI6lVKv4Oug5TJPZPmh262wi5NubUkEvMocZmP8DfgPRc96REJcKbhVAOnpczN8gvdag9Q0kcCL6CnQWmTjNen_uMzEIYQugEpVBX_gXrBvGnawwBLneECMX61Zi5d1K1msmkmvCr1Y-49YzOpSOmpo3zgdpPUum4B26Wu5oX_sVOQqbIBtXEsvKl80OWU5jGdqqoprbc3FqcRfo4mcPxcfd_H22iJ5e7x9m06eo0BMNkUlTE2tMs0LhUpnS6IKKMjOqMEBx943t0i6NpVIldglZCuM4ySal1RhnFvV4KK6OuXv2nw2FOt_6hl1XmWsTH0YnaacaHVUF-xCYbL7nTYXc5gryA9X8SDU_UM07qp0Djo7QKd2K-Df3P8s3Mp19IA |
CitedBy_id | crossref_primary_10_1016_j_dark_2024_101440 crossref_primary_10_1142_S0217751X24410124 crossref_primary_10_1007_JHEP01_2023_036 crossref_primary_10_1016_j_ppnp_2024_104126 crossref_primary_10_1007_JHEP01_2024_121 crossref_primary_10_1007_JHEP05_2024_020 crossref_primary_10_1007_JHEP09_2023_196 crossref_primary_10_1007_JHEP11_2022_002 |
Cites_doi | 10.1016/0370-2693(77)90435-X 10.1007/978-3-662-64679-3 10.1007/JHEP01(2019)106 10.1007/JHEP09(2021)100 10.1007/JHEP11(2021)007 10.1016/j.dark.2022.101027 10.1143/PTPS.183.1 10.1103/PhysRevD.86.053014 10.1016/j.nuclphysb.2022.115841 10.1007/JHEP03(2021)010 10.21468/SciPostPhys.5.5.042 10.1140/epjc/s10052-021-08845-y 10.1103/PhysRevLett.117.109903 10.1007/JHEP05(2021)242 10.1103/PhysRevD.102.035019 10.1016/j.nuclphysb.2021.115395 10.1016/j.physletb.2018.05.083 10.1007/JHEP04(2021)239 10.1146/annurev.ns.43.120193.000331 10.1016/j.physletb.2020.135956 10.1016/j.nuclphysb.2020.115216 10.1088/1367-2630/16/4/045018 10.1007/JHEP05(2020)017 10.1007/JHEP09(2019)074 10.1007/JHEP01(2020)144 10.3389/fphy.2022.854595 10.1016/j.nuclphysb.2004.05.029 10.1016/j.dark.2022.101039 10.1016/j.nuclphysb.2020.114935 10.1140/epjc/s10052-021-09667-8 10.1007/JHEP03(2021)161 10.1007/JHEP11(2018)196 10.1007/JHEP05(2021)102 10.1103/PhysRevD.30.2212 10.1016/j.physletb.2019.134799 10.1016/j.physletb.2020.135294 10.1016/0370-2693(86)91126-3 10.1007/JHEP12(2019)030 10.1007/JHEP07(2019)165 10.1016/j.nuclphysb.2022.115793 10.1016/0370-2693(85)91028-7 10.1140/epjc/s10052-018-6158-5 10.1142/9789813238053_0012 10.1016/j.nuclphysb.2021.115372 10.1088/0034-4885/76/5/056201 10.1103/PhysRevD.105.055022 10.1007/JHEP07(2021)184 10.1016/j.nuclphysb.2012.01.017 10.1016/j.nuclphysb.2020.115105 10.1103/PhysRevD.56.5431 10.1103/RevModPhys.82.2701 10.1016/j.ppnp.2017.01.003 10.1007/978-3-642-30805-5_1 10.1016/j.physletb.2019.02.028 10.1103/PhysRevD.103.015005 10.1103/PhysRevD.86.053001 10.1103/PhysRevLett.44.912 10.1103/PhysRevD.104.115015 10.1103/PhysRevD.73.077301 10.1103/PhysRevD.20.2986 10.1016/S0370-2693(96)80011-6 10.1016/j.physletb.2019.04.043 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI |
DOI | 10.1007/JHEP07(2022)050 |
DatabaseName | Springer_OA刊 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1029-8479 |
ExternalDocumentID | 10_1007_JHEP07_2022_050 |
GroupedDBID | -5F -5G -A0 -BR 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN AAYZJ ACACY ACGFS ACHIP ACREN ADBBV ADINQ AEGXH AENEX AFGXO AFKRA AFNRJ AFPKN AFWTZ AHBXF AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GQ6 GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP M~E N5L N9A NB0 O93 OK1 P62 P9T PIMPY PROAC R9I RO9 RSV S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT 02O 1JI 1PV 1WK 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI AAYXX ABEEZ ABTEG ACAFW ACBXY ACMRT ACULB ADKPE ADRFC AEFHF AEJGL AERVB AFLOW AGJBK AHSBF AHSEE AIYBF AKPSB AOAED BAPOH BBWZM BGNMA CAG CITATION CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 HAK IJHAN IOP IZVLO JCGBZ KC5 KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S1Z S3P SY9 T37 ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c2620-877842a79c1ab18d82cecd981c80e48774fbfb8fed15fb097034596df2a49fa23 |
IEDL.DBID | BENPR |
ISSN | 1029-8479 |
IngestDate | Fri Nov 08 23:06:18 EST 2024 Thu Sep 26 17:08:33 EDT 2024 Sat Dec 16 12:10:14 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Cosmology of Theories BSM Sterile or Heavy Neutrinos Baryo-and Leptogenesis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2620-877842a79c1ab18d82cecd981c80e48774fbfb8fed15fb097034596df2a49fa23 |
ORCID | 0000-0002-0854-1560 |
OpenAccessLink | https://www.proquest.com/docview/2848484257?pq-origsite=%requestingapplication% |
PQID | 2848484257 |
PQPubID | 2034718 |
ParticipantIDs | proquest_journals_2848484257 crossref_primary_10_1007_JHEP07_2022_050 springer_journals_10_1007_JHEP07_2022_050 |
PublicationCentury | 2000 |
PublicationDate | 20220701 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 20220701 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | The journal of high energy physics |
PublicationTitleAbbrev | J. High Energ. Phys |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | DingG-JKingSFLiuX-GLuJ-NModular S4and A4symmetries and their fixed points: new predictive examples of lepton mixingJHEP2019120302019JHEP...12..030D10.1007/JHEP12(2019)030[arXiv:1910.03460] [INSPIRE] P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett. B67 (1977) 421 [INSPIRE]. IshiguroKKobayashiTOtsukaHLandscape of Modular Symmetric Flavor ModelsJHEP2021031612021JHEP...03..161I426265410.1007/JHEP03(2021)161[arXiv:2011.09154] [INSPIRE] LiuX-GDingG-JModular flavor symmetry and vector-valued modular formsJHEP2022031232022JHEP...03..123L4426209[arXiv:2112.14761] [INSPIRE] F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D30 (1984) 2212 [INSPIRE]. KobayashiTOmotoNShimizuYTakagiKTanimotoMTatsuishiTHModular A4invariance and neutrino mixingJHEP2018111962018JHEP...11..196K10.1007/JHEP11(2018)196[arXiv:1808.03012] [INSPIRE] H. Okada and Y. Shoji, A radiative seesaw model with three Higgs doublets in modular A4symmetry, Nucl. Phys. B961 (2020) 115216 [arXiv:2003.13219] [INSPIRE]. H. Okada and M. Tanimoto, Modular invariant flavor model of A4and hierarchical structures at nearby fixed points, Phys. Rev. D103 (2021) 015005 [arXiv:2009.14242] [INSPIRE]. D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D86 (2012) 053014 [arXiv:1204.0445] [INSPIRE]. T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A4symmetry, Nucl. Phys. B966 (2021) 115372 [arXiv:1906.03927] [INSPIRE]. G. Chauhan et al., Discrete Flavor Symmetries and Lepton Masses and Mixings, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.08105] [INSPIRE]. M. Kashav and S. Verma, On Minimal realization of Topological Lorentz Structures with one-loop Seesaw extensions in A4Modular Symmetry, arXiv:2205.06545 [INSPIRE]. H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys.858 (2012) 1 [INSPIRE]. OkadaHTanimotoMCP violation of quarks in A4modular invariancePhys. Lett. B2019791542019PhLB..791...54O10.1016/j.physletb.2019.02.028[arXiv:1812.09677] [INSPIRE] M.K. Behera, S. Mishra, S. Singirala and R. Mohanta, Implications of A4 modular symmetry on neutrino mass, mixing and leptogenesis with linear seesaw, Phys. Dark Univ.36 (2022) 101027 [arXiv:2007.00545] [INSPIRE]. T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists, DOI (2022) [INSPIRE]. AltarelliGFeruglioFDiscrete Flavor Symmetries and Models of Neutrino MixingRev. Mod. Phys.20108227012010RvMP...82.2701A10.1103/RevModPhys.82.2701[arXiv:1002.0211] [INSPIRE] OkadaHShimizuYTanimotoMYoshidaTModulus τ linking leptonic CP-violation to baryon asymmetry in A4modular invariant flavor modelJHEP2021071842021JHEP...07..184O10.1007/JHEP07(2021)184[arXiv:2105.14292] [INSPIRE] T. Nomura and H. Okada, A linear seesaw model with A4-modular flavor and local U(1)B−Lsymmetries, arXiv:2007.04801 [INSPIRE]. I. de Medeiros Varzielas and J. Lourenço, Two A4modular symmetries for Tri-Maximal 2 mixing, Nucl. Phys. B979 (2022) 115793 [arXiv:2107.04042] [INSPIRE]. T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, Lepton flavor violation, lepton (g − 2)μ,eand electron EDM in the modular symmetry, arXiv:2204.12325 [INSPIRE]. R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE]. T. Nomura and H. Okada, A radiative seesaw model in a supersymmetric modular A4group, arXiv:2201.10244 [INSPIRE]. IshimoriHKobayashiTOhkiHShimizuYOkadaHTanimotoMNon-Abelian Discrete Symmetries in Particle PhysicsProg. Theor. Phys. Suppl.201018312010PThPS.183....1I10.1143/PTPS.183.1[arXiv:1003.3552] [INSPIRE] AsakaTHeoYTatsuishiTHYoshidaTModular A4invariance and leptogenesisJHEP2020011442020JHEP...01..144A10.1007/JHEP01(2020)144[arXiv:1909.06520] [INSPIRE] A. Dasgupta, T. Nomura, H. Okada, O. Popov and M. Tanimoto, Dirac Radiative Neutrino Mass with Modular Symmetry and Leptogenesis, arXiv:2111.06898 [INSPIRE]. K.I. Nagao and H. Okada, Modular A4symmetry and light dark matter with gauged U(1)B−L, Phys. Dark Univ.36 (2022) 101039 [arXiv:2108.09984] [INSPIRE]. WangXZhouSThe minimal seesaw model with a modular S4symmetryJHEP2020050172020JHEP...05..017W10.1007/JHEP05(2020)017[arXiv:1910.09473] [INSPIRE] H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4modular symmetry, arXiv:2005.00775 [INSPIRE]. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D73 (2006) 077301 [hep-ph/0601225] [INSPIRE]. S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys.76 (2013) 056201 [arXiv:1301.1340] [INSPIRE]. T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4symmetry, Phys. Rev. D102 (2020) 035019 [arXiv:1912.00637] [INSPIRE]. S. Kashiwase and D. Suematsu, Baryon number asymmetry and dark matter in the neutrino mass model with an inert doublet, Phys. Rev. D86 (2012) 053001 [arXiv:1207.2594] [INSPIRE]. F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire. . . : Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi, eds., pp. 227–266 (2019) [DOI] [arXiv:1706.08749] [INSPIRE]. YaoC-YLuJ-NDingG-JModular Invariant A4Models for Quarks and Leptons with Generalized CP SymmetryJHEP2021051022021JHEP...05..102Y10.1007/JHEP05(2021)102[arXiv:2012.13390] [INSPIRE] ChoiK-YKangSKKimJNon-thermal WIMP baryogenesisPhys. Lett. B20187826572018PhLB..782..657C10.1016/j.physletb.2018.05.083[arXiv:1803.00820] [INSPIRE] OkadaHTanimotoMTowards unification of quark and lepton flavors in A4modular invarianceEur. Phys. J. C202181522021EPJC...81...52O10.1140/epjc/s10052-021-08845-y[arXiv:1905.13421] [INSPIRE] NovichkovPPPenedoJTPetcovSTTitovAVGeneralised CP Symmetry in Modular-Invariant Models of FlavourJHEP2019071652019JHEP...07..165N399056310.1007/JHEP07(2019)165[arXiv:1905.11970] [INSPIRE] D. Zhang, A modular A4symmetry realization of two-zero textures of the Majorana neutrino mass matrix, Nucl. Phys. B952 (2020) 114935 [arXiv:1910.07869] [INSPIRE]. H. Okada and Y.-h. Qi, Zee-Babu model in modular A4symmetry, arXiv:2109.13779 [INSPIRE]. FeruglioFGherardiVRomaninoATitovAModular invariant dynamics and fermion mass hierarchies around τ = iJHEP2021052422021JHEP...05..242F429580110.1007/JHEP05(2021)242[arXiv:2101.08718] [INSPIRE] A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci.43 (1993) 27 [hep-ph/9302210] [INSPIRE]. T. Asaka, Y. Heo and T. Yoshida, Lepton flavor model with modular A4symmetry in large volume limit, Phys. Lett. B811 (2020) 135956 [arXiv:2009.12120] [INSPIRE]. H. Otsuka and H. Okada, Radiative neutrino masses from modular A4symmetry and supersymmetry breaking, arXiv:2202.10089 [INSPIRE]. DingG-JKingSFLuJ-NSO(10) models with A4modular symmetryJHEP2021110072021JHEP...11..007D10.1007/JHEP11(2021)007[arXiv:2108.09655] [INSPIRE] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B155 (1985) 36 [INSPIRE]. M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B389 (1996) 693 [hep-ph/9607310] [INSPIRE]. T. Kobayashi, H. Okada and Y. Orikasa, Dark matter stability at fixed points in a modular A4symmetry, arXiv:2111.05674 [INSPIRE]. M.K. Behera, S. Singirala, S. Mishra and R. Mohanta, A modular A4symmetric scotogenic model for neutrino mass and dark matter, J. Phys. G49 (2022) 035002 [arXiv:2009.01806] [INSPIRE]. OkadaHTanimotoMSpontaneous CP-violation by modulus τ in A4model of lepton flavorsJHEP2021030102021JHEP...03..010O10.1007/JHEP03(2021)010[arXiv:2012.01688] [INSPIRE] P.T.P. Hutauruk, D.W. Kang, J. Kim and H. Okada, Muon g 2 and neutrino mass explanations in a modular A4symmetry, arXiv:2012.11156 [INSPIRE]. T. Nomura and H. Okada, Modular A4symmetric inverse seesaw model with SU(2)Lmultiplet fields, arXiv:2007.15459 [INSPIRE]. ChenPDingG-JKingSFSU(5) GUTs with A4modular symmetryJHEP2021042392021JHEP...04..239C10.1007/JHEP04(2021)239[arXiv:2101.12724] [INSPIRE] X. Wang, Lepton flavor mixing and CP-violation in the minimal type-(I+II) seesaw model with a modular A4symmetry, Nucl. Phys. B957 (2020) 115105 [arXiv:1912.13284] [INSPIRE]. J. Gehrlein, S. Petcov, M. Spinrath and A. Titov, Testing neutrino flavor models, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.06219] [INSPIRE]. NovichkovPPPetcovSTTanimotoMTrimaximal Neutrino Mixing from Modular A4 Invariance with Residual SymmetriesPhys. Lett. B20197932472019PhLB..793..247N394633810.1016/j.physletb.2019.04.043[arXiv:1812.11289] [INSPIRE] EstebanIGonzalez-GarciaMCHernandez-CabezudoAMaltoniMSchwetzTGlobal analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass orderingJHEP2019011062019JHEP...01..106E10.1007/JHEP01(2019)106[arXiv:1811.05487] [INSPIRE] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE]. T. Yanagida, Horizontal Symmetry and Mass of the Top Quark, Phys. Rev. D20 (1979) 2986 [INSPIRE]. A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D56 (1997) 5431 [hep-ph/9707235] [INSPIRE]. KashavMVermaSBroken scaling neutrino mass matrix and leptogenesis based on A4modular invarianceJHEP2021091002021JHEP...09..100K10.1007/JHEP09(2021)100[arXiv:2103.07207] [INSPIRE] T. Nomura, H. Okada and S. Patra, An inverse seesaw model with A4-modular symmetry, Nucl. Phys. B967 (2021) 115395 [arXiv:1912.00379] [INSPIRE]. KingSFUnified Models of Neutrinos, Flavour and CP-violationProg. Part. Nucl. Phys.2017942172017PrPNP..94..217K10.1016/j.ppnp.2017.01.003[arXiv:1701.04413] [INSPIRE] A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B692 (2004) 303 [hep-ph/0309342] [INSPIRE]. G. Charalampous, S.F. King, G.K. Leontaris G Altarelli (18699_CR68) 2010; 82 SF King (18699_CR74) 2017; 94 M Kashav (18699_CR45) 2021; 09 H Okada (18699_CR16) 2019; 791 18699_CR23 18699_CR67 18699_CR25 18699_CR27 18699_CR29 18699_CR70 18699_CR71 18699_CR72 18699_CR73 18699_CR30 18699_CR31 18699_CR32 18699_CR76 PP Novichkov (18699_CR78) 2019; 07 18699_CR33 K-Y Choi (18699_CR3) 2018; 782 P Chen (18699_CR44) 2021; 04 H Okada (18699_CR46) 2021; 07 T Nomura (18699_CR48) 2021; 81 18699_CR12 18699_CR56 18699_CR13 18699_CR58 18699_CR59 18699_CR17 18699_CR18 G-J Ding (18699_CR24) 2019; 09 18699_CR60 18699_CR61 G-J Ding (18699_CR50) 2021; 11 18699_CR62 18699_CR63 18699_CR20 18699_CR64 ST Petcov (18699_CR75) 2018; 78 18699_CR65 18699_CR22 18699_CR66 T Asaka (18699_CR26) 2020; 01 18699_CR9 18699_CR8 18699_CR7 18699_CR6 18699_CR5 18699_CR4 18699_CR47 18699_CR2 18699_CR49 X Wang (18699_CR80) 2020; 05 18699_CR1 K Ishiguro (18699_CR77) 2021; 03 PP Novichkov (18699_CR21) 2019; 793 18699_CR51 18699_CR52 H Ishimori (18699_CR69) 2010; 183 18699_CR53 18699_CR10 18699_CR54 18699_CR11 18699_CR55 G-J Ding (18699_CR28) 2019; 12 H Okada (18699_CR19) 2021; 81 C-Y Yao (18699_CR42) 2021; 05 18699_CR34 T Kobayashi (18699_CR15) 2018; 11 18699_CR35 18699_CR79 18699_CR36 18699_CR37 18699_CR38 18699_CR39 18699_CR81 F Feruglio (18699_CR43) 2021; 05 18699_CR82 18699_CR83 18699_CR40 H Okada (18699_CR41) 2021; 03 JC Criado (18699_CR14) 2018; 5 18699_CR85 18699_CR86 I Esteban (18699_CR84) 2019; 01 X-G Liu (18699_CR57) 2022; 03 |
References_xml | – ident: 18699_CR7 doi: 10.1016/0370-2693(77)90435-X – ident: 18699_CR76 doi: 10.1007/978-3-662-64679-3 – ident: 18699_CR64 – volume: 01 start-page: 106 year: 2019 ident: 18699_CR84 publication-title: JHEP doi: 10.1007/JHEP01(2019)106 contributor: fullname: I Esteban – volume: 09 start-page: 100 year: 2021 ident: 18699_CR45 publication-title: JHEP doi: 10.1007/JHEP09(2021)100 contributor: fullname: M Kashav – volume: 11 start-page: 007 year: 2021 ident: 18699_CR50 publication-title: JHEP doi: 10.1007/JHEP11(2021)007 contributor: fullname: G-J Ding – ident: 18699_CR35 doi: 10.1016/j.dark.2022.101027 – ident: 18699_CR54 – volume: 183 start-page: 1 year: 2010 ident: 18699_CR69 publication-title: Prog. Theor. Phys. Suppl. doi: 10.1143/PTPS.183.1 contributor: fullname: H Ishimori – ident: 18699_CR71 doi: 10.1103/PhysRevD.86.053014 – ident: 18699_CR58 – ident: 18699_CR40 doi: 10.1016/j.nuclphysb.2022.115841 – ident: 18699_CR49 – volume: 03 start-page: 010 year: 2021 ident: 18699_CR41 publication-title: JHEP doi: 10.1007/JHEP03(2021)010 contributor: fullname: H Okada – volume: 5 start-page: 042 year: 2018 ident: 18699_CR14 publication-title: SciPost Phys. doi: 10.21468/SciPostPhys.5.5.042 contributor: fullname: JC Criado – volume: 81 start-page: 52 year: 2021 ident: 18699_CR19 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-08845-y contributor: fullname: H Okada – ident: 18699_CR83 doi: 10.1103/PhysRevLett.117.109903 – ident: 18699_CR61 – volume: 05 start-page: 242 year: 2021 ident: 18699_CR43 publication-title: JHEP doi: 10.1007/JHEP05(2021)242 contributor: fullname: F Feruglio – ident: 18699_CR17 – ident: 18699_CR29 doi: 10.1103/PhysRevD.102.035019 – ident: 18699_CR34 – ident: 18699_CR30 doi: 10.1016/j.nuclphysb.2021.115395 – volume: 782 start-page: 657 year: 2018 ident: 18699_CR3 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.05.083 contributor: fullname: K-Y Choi – volume: 04 start-page: 239 year: 2021 ident: 18699_CR44 publication-title: JHEP doi: 10.1007/JHEP04(2021)239 contributor: fullname: P Chen – ident: 18699_CR59 – ident: 18699_CR2 doi: 10.1146/annurev.ns.43.120193.000331 – ident: 18699_CR38 doi: 10.1016/j.physletb.2020.135956 – ident: 18699_CR32 doi: 10.1016/j.nuclphysb.2020.115216 – ident: 18699_CR5 – ident: 18699_CR23 – ident: 18699_CR73 doi: 10.1088/1367-2630/16/4/045018 – volume: 05 start-page: 017 year: 2020 ident: 18699_CR80 publication-title: JHEP doi: 10.1007/JHEP05(2020)017 contributor: fullname: X Wang – volume: 09 start-page: 074 year: 2019 ident: 18699_CR24 publication-title: JHEP doi: 10.1007/JHEP09(2019)074 contributor: fullname: G-J Ding – volume: 01 start-page: 144 year: 2020 ident: 18699_CR26 publication-title: JHEP doi: 10.1007/JHEP01(2020)144 contributor: fullname: T Asaka – ident: 18699_CR81 doi: 10.3389/fphy.2022.854595 – ident: 18699_CR9 doi: 10.1016/j.nuclphysb.2004.05.029 – ident: 18699_CR51 doi: 10.1016/j.dark.2022.101039 – ident: 18699_CR27 doi: 10.1016/j.nuclphysb.2020.114935 – volume: 81 start-page: 947 year: 2021 ident: 18699_CR48 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-021-09667-8 contributor: fullname: T Nomura – ident: 18699_CR65 – volume: 03 start-page: 123 year: 2022 ident: 18699_CR57 publication-title: JHEP contributor: fullname: X-G Liu – volume: 03 start-page: 161 year: 2021 ident: 18699_CR77 publication-title: JHEP doi: 10.1007/JHEP03(2021)161 contributor: fullname: K Ishiguro – volume: 11 start-page: 196 year: 2018 ident: 18699_CR15 publication-title: JHEP doi: 10.1007/JHEP11(2018)196 contributor: fullname: T Kobayashi – volume: 05 start-page: 102 year: 2021 ident: 18699_CR42 publication-title: JHEP doi: 10.1007/JHEP05(2021)102 contributor: fullname: C-Y Yao – ident: 18699_CR37 – ident: 18699_CR62 – ident: 18699_CR85 doi: 10.1103/PhysRevD.30.2212 – ident: 18699_CR18 doi: 10.1016/j.physletb.2019.134799 – ident: 18699_CR60 doi: 10.1016/j.physletb.2020.135294 – ident: 18699_CR4 doi: 10.1016/0370-2693(86)91126-3 – ident: 18699_CR20 – ident: 18699_CR56 – ident: 18699_CR33 – ident: 18699_CR1 – volume: 12 start-page: 030 year: 2019 ident: 18699_CR28 publication-title: JHEP doi: 10.1007/JHEP12(2019)030 contributor: fullname: G-J Ding – volume: 07 start-page: 165 year: 2019 ident: 18699_CR78 publication-title: JHEP doi: 10.1007/JHEP07(2019)165 contributor: fullname: PP Novichkov – ident: 18699_CR47 doi: 10.1016/j.nuclphysb.2022.115793 – ident: 18699_CR86 doi: 10.1016/0370-2693(85)91028-7 – volume: 78 start-page: 709 year: 2018 ident: 18699_CR75 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-018-6158-5 contributor: fullname: ST Petcov – ident: 18699_CR12 doi: 10.1142/9789813238053_0012 – ident: 18699_CR22 doi: 10.1016/j.nuclphysb.2021.115372 – ident: 18699_CR66 – ident: 18699_CR72 doi: 10.1088/0034-4885/76/5/056201 – ident: 18699_CR55 doi: 10.1103/PhysRevD.105.055022 – ident: 18699_CR36 – ident: 18699_CR63 – volume: 07 start-page: 184 year: 2021 ident: 18699_CR46 publication-title: JHEP doi: 10.1007/JHEP07(2021)184 contributor: fullname: H Okada – ident: 18699_CR13 doi: 10.1016/j.nuclphysb.2012.01.017 – ident: 18699_CR31 doi: 10.1016/j.nuclphysb.2020.115105 – ident: 18699_CR10 doi: 10.1103/PhysRevD.56.5431 – volume: 82 start-page: 2701 year: 2010 ident: 18699_CR68 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.2701 contributor: fullname: G Altarelli – volume: 94 start-page: 217 year: 2017 ident: 18699_CR74 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2017.01.003 contributor: fullname: SF King – ident: 18699_CR70 doi: 10.1007/978-3-642-30805-5_1 – volume: 791 start-page: 54 year: 2019 ident: 18699_CR16 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.02.028 contributor: fullname: H Okada – ident: 18699_CR39 doi: 10.1103/PhysRevD.103.015005 – ident: 18699_CR25 – ident: 18699_CR79 doi: 10.1103/PhysRevD.86.053001 – ident: 18699_CR8 doi: 10.1103/PhysRevLett.44.912 – ident: 18699_CR52 doi: 10.1103/PhysRevD.104.115015 – ident: 18699_CR82 doi: 10.1103/PhysRevD.73.077301 – ident: 18699_CR53 – ident: 18699_CR6 doi: 10.1103/PhysRevD.20.2986 – ident: 18699_CR11 doi: 10.1016/S0370-2693(96)80011-6 – volume: 793 start-page: 247 year: 2019 ident: 18699_CR21 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2019.04.043 contributor: fullname: PP Novichkov – ident: 18699_CR67 |
SSID | ssj0015190 |
Score | 2.4296582 |
Snippet | A
bstract
It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is... It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 50 |
SubjectTerms | Antimatter Asymmetry Baryons Big bang cosmology Classical and Quantum Gravitation Cosmic microwave background Cosmology Eigenvalues Elementary Particles Energy theory High energy physics Neutrinos Nuclear fusion Nuclei (nuclear physics) Numerical analysis Phase transitions Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory String Theory Symmetry Universe |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KIngRn1itsgcP7SGySTfZzbFISym0eLDQW9in-GhSmijk3zubNC0qHiSXQDYJzMzOY2fmG4TueESZobLvhVJxj1KhPW4095gfEKOFNMy6fufpLBrP6WQRLlqIbI8u0rf7JiNZKeqm120yHj4S1oVYPegRF6Tvhw4LDSR4Hgy2eQPwR0gD4PP7pe-2Z-dQ_siBVqZldIyONj4hHtRMPEEtk56ig6o2U-VnKJuJChwDL8HRxW52tRPOEldzgnABzDAYVOpniafiFTiaCpwaB7KfZjkGnxRDRJ25ehf8blZF9uy020uOXffYGi8z7QpR8YDivFwuTbEuz9F8NHx6GHubOQmecnDyoNAYp4FgsfKF9LnmgTJKx9xXnBgISBi10kpujfZDK0kMm5yGcaRtIGhsRdC_QHtplppLhGOiIndQrIhvaejQ_UKluBaKKviXZG3UbSiYrGo4jKQBPq6JnThiJ0DsNuo0FE42-yJPwBi6C_REG_Uaqu8e__Gpq3-svUaH7rauqO2gvWL9YW7AbyjkbSUqXyr5vqg priority: 102 providerName: Springer Nature |
Title | Natural mass hierarchy among three heavy Majorana neutrinos for resonant leptogenesis under modular A4 symmetry |
URI | https://link.springer.com/article/10.1007/JHEP07(2022)050 https://www.proquest.com/docview/2848484257 |
Volume | 2022 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7WlEJfytp1NGsX9NCH9sFUdmVLfipZSBoKDWUs0DejXx4bjZ3FbiH_fe8cexmDFoPAyMjwnXS6052-AzhXiZBemOsgNlYFQmgXKO9UIMOIe6eNlzndd76fJdO5uHuMH9sDt6pNq-x0YqOoXWnpjPwK1Sg9OMNuln8CqhpF0dW2hMYO7EboKfAe7H4bzx6-_40joH3CO0IfLq_upuMHLi_Q4Y8uOV21_3cv2hqY_8VEm61m8hEOWhuRDTdCPYQPvjiCvSZX01afoJzphiyDLdDwZVTLmibrmjV1g1iNwvEMVezLmt3r3yjhQrPCE-l-UVYMbVSGHnZJ-S_syS_r8idpu18Vo9tkK7YoHSWmsqFg1Xqx8PVqfQzzyfjHaBq0dRMCS_TyqOAkAqVlakNtQuVUZL11qQqt4h4dFClykxuVexfGueEpLnoRp4nLIy3SXEfXn6FXlIU_AZZym9DBseVhLmJi-4utVU5bYfFfRvbhokMwW27oMbKOCHkDdkZgZwh2H846hLN2nVTZVqp9uOxQ33a_MdSX94c6hX36cpNUewa9evXsv6LpUJsB7KjJ7aCdJfg2igS1yWjQOOPYzqPhKwL8yU8 |
link.rule.ids | 315,783,787,867,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74369,74636 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60InoRn1itugcPeghu0k13c5Ii1vpo8aDgLewrotikNlHov3cmTawISo4hG_hmdnZ2Ht8Qciw7XDiu216ojfQ4V9aTzkpP-AFzVmknEux3Hgw7_Ud-8xQ-VQG3vCqrrG1iaahtZjBGfgZmFB_QsPPxu4dTozC7Wo3QWCRLvA1nNXaK966-swjgnbCazoeJs5v-5T0TJ3DdD04ZNtr_PInm7uWvjGh50PTWyVrlIdLuTKQbZMGlm2S5rNQ0-RbJhqqkyqAjcHspTrJGVZ3ScmoQLUA0joKB_ZzSgXoF-aaKpg4p99Msp-ChUrhfZ1j9Qt_cuMie0da95BR7ySZ0lFksS6VdTvPpaOSKyXSbPPYuHy76XjU1wTNILg_mTQBMSkTGV9qXVgbGGRtJ30jm4HoieKITLRNn_TDRLIItz8OoY5NA8ShRQXuHNNIsdbuERsx0MGxsmJ_wELn-QmOkVYYb-JcWTXJSIxiPZ-QYcU2DPAM7RrBjALtJWjXCcbVL8ngu0yY5rVGfv_5jqb3_lzoiK_2HwV18dz283Ser-NWsvLZFGsXkwx2AE1How1JTvgC_S8Zv |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELXYol3tBcEuKwoFfODQHqI6WSd2TqiCllJo1cNW2lvkzxWIJN0mIPXfM5MmFCGxyjGKI70Zj8f2mzeEvJMJF47r6yDWRgacKxtIZ2Ugwog5q7QTHuudl6tkvuGL2_i25T9VLa2yi4lNoLalwTPyMYRRfMDDxr6lRaw_zt5v7wPsIIU3rW07jRPyGFbFBD1czj79uVGATIV10j5MjBfz6ZqJIWz9oxHDovu_V6VjqvnP7Wiz6MyekidttkgnB_M-I49ccUFOG9amqS5JuVKNbAbNIQWm2NUa3XZPmw5CtAYzOQrB9teeLtV3sHWhaOFQfr8oKwrZKoW9dolMGPrDbevyDuPet4piXdmO5qVFiiqdcFrt89zVu_1zsplNbz7Mg7aDQmBQaB5CnQDIlEhNqHQorYyMMzaVoZHMwVZFcK-9lt7ZMPaapTD9eZwm1keKp15F11ekV5SFe0FoykyCR8iGhZ7HqPsXGyOtMtzAv7Tok2GHYLY9CGVknSTyAewMwc4A7D4ZdAhn7YypsqN9-2TUoX58_Z-hXj481FtyBk6Sff28-vKKnONHB6btgPTq3U_3GvKJWr9pHOU3653KrQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+mass+hierarchy+among+three+heavy+Majorana+neutrinos+for+resonant+leptogenesis+under+modular+A4+symmetry&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kang%2C+Dong+Woo&rft.au=Kim%2C+Jongkuk&rft.au=Nomura%2C+Takaaki&rft.au=Okada%2C+Hiroshi&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2022&rft.issue=7&rft.spage=50&rft_id=info:doi/10.1007%2FJHEP07%282022%29050&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |