Natural mass hierarchy among three heavy Majorana neutrinos for resonant leptogenesis under modular A4 symmetry

A bstract It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2022; no. 7; p. 50
Main Authors Kang, Dong Woo, Kim, Jongkuk, Nomura, Takaaki, Okada, Hiroshi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A bstract It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular A 4 symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular A 4 with large imaginary part of modulus τ , and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[ τ ] through our numerical analysis satisfying the neutrino oscillation data.
AbstractList A bstract It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular A 4 symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular A 4 with large imaginary part of modulus τ , and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[ τ ] through our numerical analysis satisfying the neutrino oscillation data.
It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally determined by both cosmic microwave background and big bang nucleosynthesis measurements. To resolve the baryon number asymmetry of the Universe as well as neutrino oscillations, we study a radiative seesaw model in a modular A4 symmetry. Degenerate heavy Majorana neutrino masses can be naturally realized in an appropriate assignments under modular A4 with large imaginary part of modulus τ, and it can induce measured baryon number via resonant leptogenesis that is valid in around TeV scale energy theory. We also find that the dominant contribution to the CP asymmetry arises from Re[τ] through our numerical analysis satisfying the neutrino oscillation data.
ArticleNumber 50
Author Kim, Jongkuk
Nomura, Takaaki
Kang, Dong Woo
Okada, Hiroshi
Author_xml – sequence: 1
  givenname: Dong Woo
  surname: Kang
  fullname: Kang, Dong Woo
  organization: School of Physics, KIAS
– sequence: 2
  givenname: Jongkuk
  orcidid: 0000-0002-0854-1560
  surname: Kim
  fullname: Kim, Jongkuk
  email: jkkim@kias.re.kr
  organization: School of Physics, KIAS
– sequence: 3
  givenname: Takaaki
  surname: Nomura
  fullname: Nomura, Takaaki
  organization: College of Physics, Sichuan University
– sequence: 4
  givenname: Hiroshi
  surname: Okada
  fullname: Okada, Hiroshi
  organization: Asia Pacific Center for Theoretical Physics (APCTP) — Headquarters San 31, Department of Physics, Pohang University of Science and Technology
BookMark eNp1kEtLw0AQxxepYFs9e13woofY2W3SbI6lVKv4Oug5TJPZPmh262wi5NubUkEvMocZmP8DfgPRc96REJcKbhVAOnpczN8gvdag9Q0kcCL6CnQWmTjNen_uMzEIYQugEpVBX_gXrBvGnawwBLneECMX61Zi5d1K1msmkmvCr1Y-49YzOpSOmpo3zgdpPUum4B26Wu5oX_sVOQqbIBtXEsvKl80OWU5jGdqqoprbc3FqcRfo4mcPxcfd_H22iJ5e7x9m06eo0BMNkUlTE2tMs0LhUpnS6IKKMjOqMEBx943t0i6NpVIldglZCuM4ySal1RhnFvV4KK6OuXv2nw2FOt_6hl1XmWsTH0YnaacaHVUF-xCYbL7nTYXc5gryA9X8SDU_UM07qp0Djo7QKd2K-Df3P8s3Mp19IA
CitedBy_id crossref_primary_10_1016_j_dark_2024_101440
crossref_primary_10_1142_S0217751X24410124
crossref_primary_10_1007_JHEP01_2023_036
crossref_primary_10_1016_j_ppnp_2024_104126
crossref_primary_10_1007_JHEP01_2024_121
crossref_primary_10_1007_JHEP05_2024_020
crossref_primary_10_1007_JHEP09_2023_196
crossref_primary_10_1007_JHEP11_2022_002
Cites_doi 10.1016/0370-2693(77)90435-X
10.1007/978-3-662-64679-3
10.1007/JHEP01(2019)106
10.1007/JHEP09(2021)100
10.1007/JHEP11(2021)007
10.1016/j.dark.2022.101027
10.1143/PTPS.183.1
10.1103/PhysRevD.86.053014
10.1016/j.nuclphysb.2022.115841
10.1007/JHEP03(2021)010
10.21468/SciPostPhys.5.5.042
10.1140/epjc/s10052-021-08845-y
10.1103/PhysRevLett.117.109903
10.1007/JHEP05(2021)242
10.1103/PhysRevD.102.035019
10.1016/j.nuclphysb.2021.115395
10.1016/j.physletb.2018.05.083
10.1007/JHEP04(2021)239
10.1146/annurev.ns.43.120193.000331
10.1016/j.physletb.2020.135956
10.1016/j.nuclphysb.2020.115216
10.1088/1367-2630/16/4/045018
10.1007/JHEP05(2020)017
10.1007/JHEP09(2019)074
10.1007/JHEP01(2020)144
10.3389/fphy.2022.854595
10.1016/j.nuclphysb.2004.05.029
10.1016/j.dark.2022.101039
10.1016/j.nuclphysb.2020.114935
10.1140/epjc/s10052-021-09667-8
10.1007/JHEP03(2021)161
10.1007/JHEP11(2018)196
10.1007/JHEP05(2021)102
10.1103/PhysRevD.30.2212
10.1016/j.physletb.2019.134799
10.1016/j.physletb.2020.135294
10.1016/0370-2693(86)91126-3
10.1007/JHEP12(2019)030
10.1007/JHEP07(2019)165
10.1016/j.nuclphysb.2022.115793
10.1016/0370-2693(85)91028-7
10.1140/epjc/s10052-018-6158-5
10.1142/9789813238053_0012
10.1016/j.nuclphysb.2021.115372
10.1088/0034-4885/76/5/056201
10.1103/PhysRevD.105.055022
10.1007/JHEP07(2021)184
10.1016/j.nuclphysb.2012.01.017
10.1016/j.nuclphysb.2020.115105
10.1103/PhysRevD.56.5431
10.1103/RevModPhys.82.2701
10.1016/j.ppnp.2017.01.003
10.1007/978-3-642-30805-5_1
10.1016/j.physletb.2019.02.028
10.1103/PhysRevD.103.015005
10.1103/PhysRevD.86.053001
10.1103/PhysRevLett.44.912
10.1103/PhysRevD.104.115015
10.1103/PhysRevD.73.077301
10.1103/PhysRevD.20.2986
10.1016/S0370-2693(96)80011-6
10.1016/j.physletb.2019.04.043
ContentType Journal Article
Copyright The Author(s) 2022
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
DOI 10.1007/JHEP07(2022)050
DatabaseName Springer_OA刊
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
ExternalDocumentID 10_1007_JHEP07_2022_050
GroupedDBID -5F
-5G
-A0
-BR
0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
AAYZJ
ACACY
ACGFS
ACHIP
ACREN
ADBBV
ADINQ
AEGXH
AENEX
AFGXO
AFKRA
AFNRJ
AFPKN
AFWTZ
AHBXF
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GQ6
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
M~E
N5L
N9A
NB0
O93
OK1
P62
P9T
PIMPY
PROAC
R9I
RO9
RSV
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
02O
1JI
1PV
1WK
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
AAYXX
ABEEZ
ABTEG
ACAFW
ACBXY
ACMRT
ACULB
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AFLOW
AGJBK
AHSBF
AHSEE
AIYBF
AKPSB
AOAED
BAPOH
BBWZM
BGNMA
CAG
CITATION
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
HAK
IJHAN
IOP
IZVLO
JCGBZ
KC5
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S1Z
S3P
SY9
T37
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c2620-877842a79c1ab18d82cecd981c80e48774fbfb8fed15fb097034596df2a49fa23
IEDL.DBID BENPR
ISSN 1029-8479
IngestDate Fri Nov 08 23:06:18 EST 2024
Thu Sep 26 17:08:33 EDT 2024
Sat Dec 16 12:10:14 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Cosmology of Theories BSM
Sterile or Heavy Neutrinos
Baryo-and Leptogenesis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2620-877842a79c1ab18d82cecd981c80e48774fbfb8fed15fb097034596df2a49fa23
ORCID 0000-0002-0854-1560
OpenAccessLink https://www.proquest.com/docview/2848484257?pq-origsite=%requestingapplication%
PQID 2848484257
PQPubID 2034718
ParticipantIDs proquest_journals_2848484257
crossref_primary_10_1007_JHEP07_2022_050
springer_journals_10_1007_JHEP07_2022_050
PublicationCentury 2000
PublicationDate 20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 20220701
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References DingG-JKingSFLiuX-GLuJ-NModular S4and A4symmetries and their fixed points: new predictive examples of lepton mixingJHEP2019120302019JHEP...12..030D10.1007/JHEP12(2019)030[arXiv:1910.03460] [INSPIRE]
P. Minkowski, μ → eγ at a Rate of One Out of 109Muon Decays?, Phys. Lett. B67 (1977) 421 [INSPIRE].
IshiguroKKobayashiTOtsukaHLandscape of Modular Symmetric Flavor ModelsJHEP2021031612021JHEP...03..161I426265410.1007/JHEP03(2021)161[arXiv:2011.09154] [INSPIRE]
LiuX-GDingG-JModular flavor symmetry and vector-valued modular formsJHEP2022031232022JHEP...03..123L4426209[arXiv:2112.14761] [INSPIRE]
F.R. Klinkhamer and N.S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D30 (1984) 2212 [INSPIRE].
KobayashiTOmotoNShimizuYTakagiKTanimotoMTatsuishiTHModular A4invariance and neutrino mixingJHEP2018111962018JHEP...11..196K10.1007/JHEP11(2018)196[arXiv:1808.03012] [INSPIRE]
H. Okada and Y. Shoji, A radiative seesaw model with three Higgs doublets in modular A4symmetry, Nucl. Phys. B961 (2020) 115216 [arXiv:2003.13219] [INSPIRE].
H. Okada and M. Tanimoto, Modular invariant flavor model of A4and hierarchical structures at nearby fixed points, Phys. Rev. D103 (2021) 015005 [arXiv:2009.14242] [INSPIRE].
D. Hernandez and A.Y. Smirnov, Lepton mixing and discrete symmetries, Phys. Rev. D86 (2012) 053014 [arXiv:1204.0445] [INSPIRE].
T. Nomura and H. Okada, A two loop induced neutrino mass model with modular A4symmetry, Nucl. Phys. B966 (2021) 115372 [arXiv:1906.03927] [INSPIRE].
G. Chauhan et al., Discrete Flavor Symmetries and Lepton Masses and Mixings, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.08105] [INSPIRE].
M. Kashav and S. Verma, On Minimal realization of Topological Lorentz Structures with one-loop Seesaw extensions in A4Modular Symmetry, arXiv:2205.06545 [INSPIRE].
H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An introduction to non-Abelian discrete symmetries for particle physicists, Lect. Notes Phys.858 (2012) 1 [INSPIRE].
OkadaHTanimotoMCP violation of quarks in A4modular invariancePhys. Lett. B2019791542019PhLB..791...54O10.1016/j.physletb.2019.02.028[arXiv:1812.09677] [INSPIRE]
M.K. Behera, S. Mishra, S. Singirala and R. Mohanta, Implications of A4 modular symmetry on neutrino mass, mixing and leptogenesis with linear seesaw, Phys. Dark Univ.36 (2022) 101027 [arXiv:2007.00545] [INSPIRE].
T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, An Introduction to Non-Abelian Discrete Symmetries for Particle Physicists, DOI (2022) [INSPIRE].
AltarelliGFeruglioFDiscrete Flavor Symmetries and Models of Neutrino MixingRev. Mod. Phys.20108227012010RvMP...82.2701A10.1103/RevModPhys.82.2701[arXiv:1002.0211] [INSPIRE]
OkadaHShimizuYTanimotoMYoshidaTModulus τ linking leptonic CP-violation to baryon asymmetry in A4modular invariant flavor modelJHEP2021071842021JHEP...07..184O10.1007/JHEP07(2021)184[arXiv:2105.14292] [INSPIRE]
T. Nomura and H. Okada, A linear seesaw model with A4-modular flavor and local U(1)B−Lsymmetries, arXiv:2007.04801 [INSPIRE].
I. de Medeiros Varzielas and J. Lourenço, Two A4modular symmetries for Tri-Maximal 2 mixing, Nucl. Phys. B979 (2022) 115793 [arXiv:2107.04042] [INSPIRE].
T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, Lepton flavor violation, lepton (g − 2)μ,eand electron EDM in the modular symmetry, arXiv:2204.12325 [INSPIRE].
R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Nonconservation, Phys. Rev. Lett.44 (1980) 912 [INSPIRE].
T. Nomura and H. Okada, A radiative seesaw model in a supersymmetric modular A4group, arXiv:2201.10244 [INSPIRE].
IshimoriHKobayashiTOhkiHShimizuYOkadaHTanimotoMNon-Abelian Discrete Symmetries in Particle PhysicsProg. Theor. Phys. Suppl.201018312010PThPS.183....1I10.1143/PTPS.183.1[arXiv:1003.3552] [INSPIRE]
AsakaTHeoYTatsuishiTHYoshidaTModular A4invariance and leptogenesisJHEP2020011442020JHEP...01..144A10.1007/JHEP01(2020)144[arXiv:1909.06520] [INSPIRE]
A. Dasgupta, T. Nomura, H. Okada, O. Popov and M. Tanimoto, Dirac Radiative Neutrino Mass with Modular Symmetry and Leptogenesis, arXiv:2111.06898 [INSPIRE].
K.I. Nagao and H. Okada, Modular A4symmetry and light dark matter with gauged U(1)B−L, Phys. Dark Univ.36 (2022) 101039 [arXiv:2108.09984] [INSPIRE].
WangXZhouSThe minimal seesaw model with a modular S4symmetryJHEP2020050172020JHEP...05..017W10.1007/JHEP05(2020)017[arXiv:1910.09473] [INSPIRE]
H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4modular symmetry, arXiv:2005.00775 [INSPIRE].
E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D73 (2006) 077301 [hep-ph/0601225] [INSPIRE].
S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog. Phys.76 (2013) 056201 [arXiv:1301.1340] [INSPIRE].
T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4symmetry, Phys. Rev. D102 (2020) 035019 [arXiv:1912.00637] [INSPIRE].
S. Kashiwase and D. Suematsu, Baryon number asymmetry and dark matter in the neutrino mass model with an inert doublet, Phys. Rev. D86 (2012) 053001 [arXiv:1207.2594] [INSPIRE].
F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire. . . : Guido Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi, eds., pp. 227–266 (2019) [DOI] [arXiv:1706.08749] [INSPIRE].
YaoC-YLuJ-NDingG-JModular Invariant A4Models for Quarks and Leptons with Generalized CP SymmetryJHEP2021051022021JHEP...05..102Y10.1007/JHEP05(2021)102[arXiv:2012.13390] [INSPIRE]
ChoiK-YKangSKKimJNon-thermal WIMP baryogenesisPhys. Lett. B20187826572018PhLB..782..657C10.1016/j.physletb.2018.05.083[arXiv:1803.00820] [INSPIRE]
OkadaHTanimotoMTowards unification of quark and lepton flavors in A4modular invarianceEur. Phys. J. C202181522021EPJC...81...52O10.1140/epjc/s10052-021-08845-y[arXiv:1905.13421] [INSPIRE]
NovichkovPPPenedoJTPetcovSTTitovAVGeneralised CP Symmetry in Modular-Invariant Models of FlavourJHEP2019071652019JHEP...07..165N399056310.1007/JHEP07(2019)165[arXiv:1905.11970] [INSPIRE]
D. Zhang, A modular A4symmetry realization of two-zero textures of the Majorana neutrino mass matrix, Nucl. Phys. B952 (2020) 114935 [arXiv:1910.07869] [INSPIRE].
H. Okada and Y.-h. Qi, Zee-Babu model in modular A4symmetry, arXiv:2109.13779 [INSPIRE].
FeruglioFGherardiVRomaninoATitovAModular invariant dynamics and fermion mass hierarchies around τ = iJHEP2021052422021JHEP...05..242F429580110.1007/JHEP05(2021)242[arXiv:2101.08718] [INSPIRE]
A.G. Cohen, D.B. Kaplan and A.E. Nelson, Progress in electroweak baryogenesis, Ann. Rev. Nucl. Part. Sci.43 (1993) 27 [hep-ph/9302210] [INSPIRE].
T. Asaka, Y. Heo and T. Yoshida, Lepton flavor model with modular A4symmetry in large volume limit, Phys. Lett. B811 (2020) 135956 [arXiv:2009.12120] [INSPIRE].
H. Otsuka and H. Okada, Radiative neutrino masses from modular A4symmetry and supersymmetry breaking, arXiv:2202.10089 [INSPIRE].
DingG-JKingSFLuJ-NSO(10) models with A4modular symmetryJHEP2021110072021JHEP...11..007D10.1007/JHEP11(2021)007[arXiv:2108.09655] [INSPIRE]
V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B155 (1985) 36 [INSPIRE].
M. Flanz, E.A. Paschos, U. Sarkar and J. Weiss, Baryogenesis through mixing of heavy Majorana neutrinos, Phys. Lett. B389 (1996) 693 [hep-ph/9607310] [INSPIRE].
T. Kobayashi, H. Okada and Y. Orikasa, Dark matter stability at fixed points in a modular A4symmetry, arXiv:2111.05674 [INSPIRE].
M.K. Behera, S. Singirala, S. Mishra and R. Mohanta, A modular A4symmetric scotogenic model for neutrino mass and dark matter, J. Phys. G49 (2022) 035002 [arXiv:2009.01806] [INSPIRE].
OkadaHTanimotoMSpontaneous CP-violation by modulus τ in A4model of lepton flavorsJHEP2021030102021JHEP...03..010O10.1007/JHEP03(2021)010[arXiv:2012.01688] [INSPIRE]
P.T.P. Hutauruk, D.W. Kang, J. Kim and H. Okada, Muon g 2 and neutrino mass explanations in a modular A4symmetry, arXiv:2012.11156 [INSPIRE].
T. Nomura and H. Okada, Modular A4symmetric inverse seesaw model with SU(2)Lmultiplet fields, arXiv:2007.15459 [INSPIRE].
ChenPDingG-JKingSFSU(5) GUTs with A4modular symmetryJHEP2021042392021JHEP...04..239C10.1007/JHEP04(2021)239[arXiv:2101.12724] [INSPIRE]
X. Wang, Lepton flavor mixing and CP-violation in the minimal type-(I+II) seesaw model with a modular A4symmetry, Nucl. Phys. B957 (2020) 115105 [arXiv:1912.13284] [INSPIRE].
J. Gehrlein, S. Petcov, M. Spinrath and A. Titov, Testing neutrino flavor models, in 2022 Snowmass Summer Study, (2022) [arXiv:2203.06219] [INSPIRE].
NovichkovPPPetcovSTTanimotoMTrimaximal Neutrino Mixing from Modular A4 Invariance with Residual SymmetriesPhys. Lett. B20197932472019PhLB..793..247N394633810.1016/j.physletb.2019.04.043[arXiv:1812.11289] [INSPIRE]
EstebanIGonzalez-GarciaMCHernandez-CabezudoAMaltoniMSchwetzTGlobal analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass orderingJHEP2019011062019JHEP...01..106E10.1007/JHEP01(2019)106[arXiv:1811.05487] [INSPIRE]
T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C7902131 (1979) 95 [INSPIRE].
T. Yanagida, Horizontal Symmetry and Mass of the Top Quark, Phys. Rev. D20 (1979) 2986 [INSPIRE].
A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
KashavMVermaSBroken scaling neutrino mass matrix and leptogenesis based on A4modular invarianceJHEP2021091002021JHEP...09..100K10.1007/JHEP09(2021)100[arXiv:2103.07207] [INSPIRE]
T. Nomura, H. Okada and S. Patra, An inverse seesaw model with A4-modular symmetry, Nucl. Phys. B967 (2021) 115395 [arXiv:1912.00379] [INSPIRE].
KingSFUnified Models of Neutrinos, Flavour and CP-violationProg. Part. Nucl. Phys.2017942172017PrPNP..94..217K10.1016/j.ppnp.2017.01.003[arXiv:1701.04413] [INSPIRE]
A. Pilaftsis and T.E.J. Underwood, Resonant leptogenesis, Nucl. Phys. B692 (2004) 303 [hep-ph/0309342] [INSPIRE].
G. Charalampous, S.F. King, G.K. Leontaris
G Altarelli (18699_CR68) 2010; 82
SF King (18699_CR74) 2017; 94
M Kashav (18699_CR45) 2021; 09
H Okada (18699_CR16) 2019; 791
18699_CR23
18699_CR67
18699_CR25
18699_CR27
18699_CR29
18699_CR70
18699_CR71
18699_CR72
18699_CR73
18699_CR30
18699_CR31
18699_CR32
18699_CR76
PP Novichkov (18699_CR78) 2019; 07
18699_CR33
K-Y Choi (18699_CR3) 2018; 782
P Chen (18699_CR44) 2021; 04
H Okada (18699_CR46) 2021; 07
T Nomura (18699_CR48) 2021; 81
18699_CR12
18699_CR56
18699_CR13
18699_CR58
18699_CR59
18699_CR17
18699_CR18
G-J Ding (18699_CR24) 2019; 09
18699_CR60
18699_CR61
G-J Ding (18699_CR50) 2021; 11
18699_CR62
18699_CR63
18699_CR20
18699_CR64
ST Petcov (18699_CR75) 2018; 78
18699_CR65
18699_CR22
18699_CR66
T Asaka (18699_CR26) 2020; 01
18699_CR9
18699_CR8
18699_CR7
18699_CR6
18699_CR5
18699_CR4
18699_CR47
18699_CR2
18699_CR49
X Wang (18699_CR80) 2020; 05
18699_CR1
K Ishiguro (18699_CR77) 2021; 03
PP Novichkov (18699_CR21) 2019; 793
18699_CR51
18699_CR52
H Ishimori (18699_CR69) 2010; 183
18699_CR53
18699_CR10
18699_CR54
18699_CR11
18699_CR55
G-J Ding (18699_CR28) 2019; 12
H Okada (18699_CR19) 2021; 81
C-Y Yao (18699_CR42) 2021; 05
18699_CR34
T Kobayashi (18699_CR15) 2018; 11
18699_CR35
18699_CR79
18699_CR36
18699_CR37
18699_CR38
18699_CR39
18699_CR81
F Feruglio (18699_CR43) 2021; 05
18699_CR82
18699_CR83
18699_CR40
H Okada (18699_CR41) 2021; 03
JC Criado (18699_CR14) 2018; 5
18699_CR85
18699_CR86
I Esteban (18699_CR84) 2019; 01
X-G Liu (18699_CR57) 2022; 03
References_xml – ident: 18699_CR7
  doi: 10.1016/0370-2693(77)90435-X
– ident: 18699_CR76
  doi: 10.1007/978-3-662-64679-3
– ident: 18699_CR64
– volume: 01
  start-page: 106
  year: 2019
  ident: 18699_CR84
  publication-title: JHEP
  doi: 10.1007/JHEP01(2019)106
  contributor:
    fullname: I Esteban
– volume: 09
  start-page: 100
  year: 2021
  ident: 18699_CR45
  publication-title: JHEP
  doi: 10.1007/JHEP09(2021)100
  contributor:
    fullname: M Kashav
– volume: 11
  start-page: 007
  year: 2021
  ident: 18699_CR50
  publication-title: JHEP
  doi: 10.1007/JHEP11(2021)007
  contributor:
    fullname: G-J Ding
– ident: 18699_CR35
  doi: 10.1016/j.dark.2022.101027
– ident: 18699_CR54
– volume: 183
  start-page: 1
  year: 2010
  ident: 18699_CR69
  publication-title: Prog. Theor. Phys. Suppl.
  doi: 10.1143/PTPS.183.1
  contributor:
    fullname: H Ishimori
– ident: 18699_CR71
  doi: 10.1103/PhysRevD.86.053014
– ident: 18699_CR58
– ident: 18699_CR40
  doi: 10.1016/j.nuclphysb.2022.115841
– ident: 18699_CR49
– volume: 03
  start-page: 010
  year: 2021
  ident: 18699_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)010
  contributor:
    fullname: H Okada
– volume: 5
  start-page: 042
  year: 2018
  ident: 18699_CR14
  publication-title: SciPost Phys.
  doi: 10.21468/SciPostPhys.5.5.042
  contributor:
    fullname: JC Criado
– volume: 81
  start-page: 52
  year: 2021
  ident: 18699_CR19
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-08845-y
  contributor:
    fullname: H Okada
– ident: 18699_CR83
  doi: 10.1103/PhysRevLett.117.109903
– ident: 18699_CR61
– volume: 05
  start-page: 242
  year: 2021
  ident: 18699_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)242
  contributor:
    fullname: F Feruglio
– ident: 18699_CR17
– ident: 18699_CR29
  doi: 10.1103/PhysRevD.102.035019
– ident: 18699_CR34
– ident: 18699_CR30
  doi: 10.1016/j.nuclphysb.2021.115395
– volume: 782
  start-page: 657
  year: 2018
  ident: 18699_CR3
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.05.083
  contributor:
    fullname: K-Y Choi
– volume: 04
  start-page: 239
  year: 2021
  ident: 18699_CR44
  publication-title: JHEP
  doi: 10.1007/JHEP04(2021)239
  contributor:
    fullname: P Chen
– ident: 18699_CR59
– ident: 18699_CR2
  doi: 10.1146/annurev.ns.43.120193.000331
– ident: 18699_CR38
  doi: 10.1016/j.physletb.2020.135956
– ident: 18699_CR32
  doi: 10.1016/j.nuclphysb.2020.115216
– ident: 18699_CR5
– ident: 18699_CR23
– ident: 18699_CR73
  doi: 10.1088/1367-2630/16/4/045018
– volume: 05
  start-page: 017
  year: 2020
  ident: 18699_CR80
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)017
  contributor:
    fullname: X Wang
– volume: 09
  start-page: 074
  year: 2019
  ident: 18699_CR24
  publication-title: JHEP
  doi: 10.1007/JHEP09(2019)074
  contributor:
    fullname: G-J Ding
– volume: 01
  start-page: 144
  year: 2020
  ident: 18699_CR26
  publication-title: JHEP
  doi: 10.1007/JHEP01(2020)144
  contributor:
    fullname: T Asaka
– ident: 18699_CR81
  doi: 10.3389/fphy.2022.854595
– ident: 18699_CR9
  doi: 10.1016/j.nuclphysb.2004.05.029
– ident: 18699_CR51
  doi: 10.1016/j.dark.2022.101039
– ident: 18699_CR27
  doi: 10.1016/j.nuclphysb.2020.114935
– volume: 81
  start-page: 947
  year: 2021
  ident: 18699_CR48
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-021-09667-8
  contributor:
    fullname: T Nomura
– ident: 18699_CR65
– volume: 03
  start-page: 123
  year: 2022
  ident: 18699_CR57
  publication-title: JHEP
  contributor:
    fullname: X-G Liu
– volume: 03
  start-page: 161
  year: 2021
  ident: 18699_CR77
  publication-title: JHEP
  doi: 10.1007/JHEP03(2021)161
  contributor:
    fullname: K Ishiguro
– volume: 11
  start-page: 196
  year: 2018
  ident: 18699_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)196
  contributor:
    fullname: T Kobayashi
– volume: 05
  start-page: 102
  year: 2021
  ident: 18699_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP05(2021)102
  contributor:
    fullname: C-Y Yao
– ident: 18699_CR37
– ident: 18699_CR62
– ident: 18699_CR85
  doi: 10.1103/PhysRevD.30.2212
– ident: 18699_CR18
  doi: 10.1016/j.physletb.2019.134799
– ident: 18699_CR60
  doi: 10.1016/j.physletb.2020.135294
– ident: 18699_CR4
  doi: 10.1016/0370-2693(86)91126-3
– ident: 18699_CR20
– ident: 18699_CR56
– ident: 18699_CR33
– ident: 18699_CR1
– volume: 12
  start-page: 030
  year: 2019
  ident: 18699_CR28
  publication-title: JHEP
  doi: 10.1007/JHEP12(2019)030
  contributor:
    fullname: G-J Ding
– volume: 07
  start-page: 165
  year: 2019
  ident: 18699_CR78
  publication-title: JHEP
  doi: 10.1007/JHEP07(2019)165
  contributor:
    fullname: PP Novichkov
– ident: 18699_CR47
  doi: 10.1016/j.nuclphysb.2022.115793
– ident: 18699_CR86
  doi: 10.1016/0370-2693(85)91028-7
– volume: 78
  start-page: 709
  year: 2018
  ident: 18699_CR75
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-018-6158-5
  contributor:
    fullname: ST Petcov
– ident: 18699_CR12
  doi: 10.1142/9789813238053_0012
– ident: 18699_CR22
  doi: 10.1016/j.nuclphysb.2021.115372
– ident: 18699_CR66
– ident: 18699_CR72
  doi: 10.1088/0034-4885/76/5/056201
– ident: 18699_CR55
  doi: 10.1103/PhysRevD.105.055022
– ident: 18699_CR36
– ident: 18699_CR63
– volume: 07
  start-page: 184
  year: 2021
  ident: 18699_CR46
  publication-title: JHEP
  doi: 10.1007/JHEP07(2021)184
  contributor:
    fullname: H Okada
– ident: 18699_CR13
  doi: 10.1016/j.nuclphysb.2012.01.017
– ident: 18699_CR31
  doi: 10.1016/j.nuclphysb.2020.115105
– ident: 18699_CR10
  doi: 10.1103/PhysRevD.56.5431
– volume: 82
  start-page: 2701
  year: 2010
  ident: 18699_CR68
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.2701
  contributor:
    fullname: G Altarelli
– volume: 94
  start-page: 217
  year: 2017
  ident: 18699_CR74
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2017.01.003
  contributor:
    fullname: SF King
– ident: 18699_CR70
  doi: 10.1007/978-3-642-30805-5_1
– volume: 791
  start-page: 54
  year: 2019
  ident: 18699_CR16
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.02.028
  contributor:
    fullname: H Okada
– ident: 18699_CR39
  doi: 10.1103/PhysRevD.103.015005
– ident: 18699_CR25
– ident: 18699_CR79
  doi: 10.1103/PhysRevD.86.053001
– ident: 18699_CR8
  doi: 10.1103/PhysRevLett.44.912
– ident: 18699_CR52
  doi: 10.1103/PhysRevD.104.115015
– ident: 18699_CR82
  doi: 10.1103/PhysRevD.73.077301
– ident: 18699_CR53
– ident: 18699_CR6
  doi: 10.1103/PhysRevD.20.2986
– ident: 18699_CR11
  doi: 10.1016/S0370-2693(96)80011-6
– volume: 793
  start-page: 247
  year: 2019
  ident: 18699_CR21
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2019.04.043
  contributor:
    fullname: PP Novichkov
– ident: 18699_CR67
SSID ssj0015190
Score 2.4296582
Snippet A bstract It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is...
It is clear that matter is dominant in the Universe compared to antimatter. We call this problem baryon asymmetry. The baryon asymmetry is experimentally...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 50
SubjectTerms Antimatter
Asymmetry
Baryons
Big bang cosmology
Classical and Quantum Gravitation
Cosmic microwave background
Cosmology
Eigenvalues
Elementary Particles
Energy theory
High energy physics
Neutrinos
Nuclear fusion
Nuclei (nuclear physics)
Numerical analysis
Phase transitions
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
String Theory
Symmetry
Universe
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6KIngRn1itsgcP7SGySTfZzbFISym0eLDQW9in-GhSmijk3zubNC0qHiSXQDYJzMzOY2fmG4TueESZobLvhVJxj1KhPW4095gfEKOFNMy6fufpLBrP6WQRLlqIbI8u0rf7JiNZKeqm120yHj4S1oVYPegRF6Tvhw4LDSR4Hgy2eQPwR0gD4PP7pe-2Z-dQ_siBVqZldIyONj4hHtRMPEEtk56ig6o2U-VnKJuJChwDL8HRxW52tRPOEldzgnABzDAYVOpniafiFTiaCpwaB7KfZjkGnxRDRJ25ehf8blZF9uy020uOXffYGi8z7QpR8YDivFwuTbEuz9F8NHx6GHubOQmecnDyoNAYp4FgsfKF9LnmgTJKx9xXnBgISBi10kpujfZDK0kMm5yGcaRtIGhsRdC_QHtplppLhGOiIndQrIhvaejQ_UKluBaKKviXZG3UbSiYrGo4jKQBPq6JnThiJ0DsNuo0FE42-yJPwBi6C_REG_Uaqu8e__Gpq3-svUaH7rauqO2gvWL9YW7AbyjkbSUqXyr5vqg
  priority: 102
  providerName: Springer Nature
Title Natural mass hierarchy among three heavy Majorana neutrinos for resonant leptogenesis under modular A4 symmetry
URI https://link.springer.com/article/10.1007/JHEP07(2022)050
https://www.proquest.com/docview/2848484257
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fa9swED7WlEJfytp1NGsX9NCH9sFUdmVLfipZSBoKDWUs0DejXx4bjZ3FbiH_fe8cexmDFoPAyMjwnXS6052-AzhXiZBemOsgNlYFQmgXKO9UIMOIe6eNlzndd76fJdO5uHuMH9sDt6pNq-x0YqOoXWnpjPwK1Sg9OMNuln8CqhpF0dW2hMYO7EboKfAe7H4bzx6-_40joH3CO0IfLq_upuMHLi_Q4Y8uOV21_3cv2hqY_8VEm61m8hEOWhuRDTdCPYQPvjiCvSZX01afoJzphiyDLdDwZVTLmibrmjV1g1iNwvEMVezLmt3r3yjhQrPCE-l-UVYMbVSGHnZJ-S_syS_r8idpu18Vo9tkK7YoHSWmsqFg1Xqx8PVqfQzzyfjHaBq0dRMCS_TyqOAkAqVlakNtQuVUZL11qQqt4h4dFClykxuVexfGueEpLnoRp4nLIy3SXEfXn6FXlIU_AZZym9DBseVhLmJi-4utVU5bYfFfRvbhokMwW27oMbKOCHkDdkZgZwh2H846hLN2nVTZVqp9uOxQ33a_MdSX94c6hX36cpNUewa9evXsv6LpUJsB7KjJ7aCdJfg2igS1yWjQOOPYzqPhKwL8yU8
link.rule.ids 315,783,787,867,12777,21400,27936,27937,33385,33756,41131,41132,41535,42200,42201,42604,43612,43817,51588,52245,52246,74369,74636
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60InoRn1itugcPeghu0k13c5Ii1vpo8aDgLewrotikNlHov3cmTawISo4hG_hmdnZ2Ht8Qciw7XDiu216ojfQ4V9aTzkpP-AFzVmknEux3Hgw7_Ud-8xQ-VQG3vCqrrG1iaahtZjBGfgZmFB_QsPPxu4dTozC7Wo3QWCRLvA1nNXaK966-swjgnbCazoeJs5v-5T0TJ3DdD04ZNtr_PInm7uWvjGh50PTWyVrlIdLuTKQbZMGlm2S5rNQ0-RbJhqqkyqAjcHspTrJGVZ3ScmoQLUA0joKB_ZzSgXoF-aaKpg4p99Msp-ChUrhfZ1j9Qt_cuMie0da95BR7ySZ0lFksS6VdTvPpaOSKyXSbPPYuHy76XjU1wTNILg_mTQBMSkTGV9qXVgbGGRtJ30jm4HoieKITLRNn_TDRLIItz8OoY5NA8ShRQXuHNNIsdbuERsx0MGxsmJ_wELn-QmOkVYYb-JcWTXJSIxiPZ-QYcU2DPAM7RrBjALtJWjXCcbVL8ngu0yY5rVGfv_5jqb3_lzoiK_2HwV18dz283Ser-NWsvLZFGsXkwx2AE1How1JTvgC_S8Zv
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nj9MwELXYol3tBcEuKwoFfODQHqI6WSd2TqiCllJo1cNW2lvkzxWIJN0mIPXfM5MmFCGxyjGKI70Zj8f2mzeEvJMJF47r6yDWRgacKxtIZ2Ugwog5q7QTHuudl6tkvuGL2_i25T9VLa2yi4lNoLalwTPyMYRRfMDDxr6lRaw_zt5v7wPsIIU3rW07jRPyGFbFBD1czj79uVGATIV10j5MjBfz6ZqJIWz9oxHDovu_V6VjqvnP7Wiz6MyekidttkgnB_M-I49ccUFOG9amqS5JuVKNbAbNIQWm2NUa3XZPmw5CtAYzOQrB9teeLtV3sHWhaOFQfr8oKwrZKoW9dolMGPrDbevyDuPet4piXdmO5qVFiiqdcFrt89zVu_1zsplNbz7Mg7aDQmBQaB5CnQDIlEhNqHQorYyMMzaVoZHMwVZFcK-9lt7ZMPaapTD9eZwm1keKp15F11ekV5SFe0FoykyCR8iGhZ7HqPsXGyOtMtzAv7Tok2GHYLY9CGVknSTyAewMwc4A7D4ZdAhn7YypsqN9-2TUoX58_Z-hXj481FtyBk6Sff28-vKKnONHB6btgPTq3U_3GvKJWr9pHOU3653KrQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Natural+mass+hierarchy+among+three+heavy+Majorana+neutrinos+for+resonant+leptogenesis+under+modular+A4+symmetry&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Kang%2C+Dong+Woo&rft.au=Kim%2C+Jongkuk&rft.au=Nomura%2C+Takaaki&rft.au=Okada%2C+Hiroshi&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.eissn=1029-8479&rft.volume=2022&rft.issue=7&rft.spage=50&rft_id=info:doi/10.1007%2FJHEP07%282022%29050&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon