Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey

Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretc...

Full description

Saved in:
Bibliographic Details
Published inBioinspiration & biomimetics Vol. 20; no. 2; pp. 26024 - 26039
Main Authors Hausdörfer, Oliver, Gupta, Astha, Ijspeert, Auke J, Renjewski, Daniel
Format Journal Article
LanguageEnglish
Published England IOP Publishing 05.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.
AbstractList Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.
Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a variety of motion control strategies. While it is known that many factors contribute to motion control, we specifically focus on the role of stretch sensory feedback. We investigate how stretch feedback potentially serves as a way to coordinate locomotion, and how different stretch feedback topologies, such as networks spanning varying ranges along the spinal cord, impact the locomotion. We conduct our studies on a simulated robot model of the lamprey consisting of an articulated spine with eleven segments connected by actuated joints. The stretch feedback is modeled with neural networks trained with deep reinforcement learning. We find that the topology of the feedback influences the energy efficiency and smoothness of the swimming, along with various other metrics characterizing the locomotion, such as frequency, amplitude and stride length. By analyzing the learned feedback networks, we highlight the importances of very local, caudally-directed, as well as stretch derivative information. Our results deliver valuable insights into the potential mechanisms and benefits of stretch feedback control and inspire novel decentralized control strategies for complex robots.
Author Hausdörfer, Oliver
Ijspeert, Auke J
Renjewski, Daniel
Gupta, Astha
Author_xml – sequence: 1
  givenname: Oliver
  orcidid: 0009-0006-8879-2701
  surname: Hausdörfer
  fullname: Hausdörfer, Oliver
  organization: Technical University of Munich (TUM) Chair of Applied Mechanics, Garching 85748, Germany
– sequence: 2
  givenname: Astha
  surname: Gupta
  fullname: Gupta, Astha
  organization: Biorobotics Laboratory , École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 3
  givenname: Auke J
  orcidid: 0000-0003-1417-9980
  surname: Ijspeert
  fullname: Ijspeert, Auke J
  organization: Biorobotics Laboratory , École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
– sequence: 4
  givenname: Daniel
  orcidid: 0000-0001-9615-2241
  surname: Renjewski
  fullname: Renjewski, Daniel
  organization: Technical University of Munich (TUM) Chair of Applied Mechanics, Garching 85748, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39978082$$D View this record in MEDLINE/PubMed
BookMark eNp1kD1PxDAMQCN0CDhgZ0IZGSiXNG2TjAjxJZ3Ews0hTR0otElJWhD_nlY9bmOyZT9b9luihfMOEDqj5IoSIVaUZyJhVJKVrkpR0j10tCstdrlID9EyxndC8kyK9AAdMim5ICI9Qi-bWLtXXAF0OEDtrA8GWnA9bkAHN_V6j2v3BbGvX3UPOPYBevOGLUBVavOBqyFMWPyu23ZKvMX9G-BGt12AnxO0b3UT4XQbj9Hm7vb55iFZP90_3lyvE5MWtE_AaikLmhumK2tlynLIClkVhcgLXhouhTGWl9bwsV4RXrA8B6kzmpOS5VnJjtHFvLcL_nMYr1VtHQ00jXbgh6gYLSTlnIl0RM-36FC2UKku1K0OP-rPygiQGTDBxxjA7hBK1CReTWbVZFnN4seRy3mk9p1690Nw47P_47-5AYUr
CODEN BBIICI
Cites_doi 10.1007/BF01185408
10.1109/LRA.2022.3218167
10.1038/s41467-024-47443-w
10.1016/j.dsp.2017.10.011
10.1126/science.6691161
10.1038/s42256-023-00701-w
10.1016/j.conb.2023.102777
10.3389/fnbot.2011.00003
10.1126/scirobotics.abf6354
10.1126/science.1411575
10.3389/fnbot.2020.604426
10.1126/science.1138353
10.1016/j.neunet.2021.09.017
10.1242/jeb.245784
10.1101/2023.09.25.559130
10.1371/journal.pcbi.1006324
10.1016/j.neuron.2009.12.009
10.1242/jeb.242639
10.1111/j.1749-6632.1998.tb09035.x
10.1002/cne.23382
10.1073/pnas.2213302120
10.1111/brv.13116
10.1016/j.neunet.2008.03.014
ContentType Journal Article
Copyright 2025 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2025 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1748-3190/adb8b1
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1748-3190
ExternalDocumentID 39978082
10_1088_1748_3190_adb8b1
bbadb8b1
Genre Journal Article
GrantInformation_xml – fundername: ERC Synergy grant
  grantid: Grant agreement ID: 951477. DOI: 10.3030/951477
GroupedDBID ---
1JI
4.4
53G
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TN5
TSCCA
W28
AAYXX
ADEQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AEINN
ID FETCH-LOGICAL-c261t-efa99615c3adff9235e469d668567bc798ccf7bfc7e46d076355e9a4150b354b3
IEDL.DBID IOP
ISSN 1748-3182
1748-3190
IngestDate Thu Jul 31 13:47:58 EDT 2025
Sat May 10 01:40:21 EDT 2025
Tue Jul 01 05:25:11 EDT 2025
Tue Mar 11 23:40:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords animal locomotion
stretch feedback
control
deep reinforcement learning
bio-inspiration
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-efa99615c3adff9235e469d668567bc798ccf7bfc7e46d076355e9a4150b354b3
Notes BB-104059.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1417-9980
0009-0006-8879-2701
0000-0001-9615-2241
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1748-3190/adb8b1
PMID 39978082
PQID 3169177382
PQPubID 23479
PageCount 16
ParticipantIDs pubmed_primary_39978082
proquest_miscellaneous_3169177382
iop_journals_10_1088_1748_3190_adb8b1
crossref_primary_10_1088_1748_3190_adb8b1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Mar-05
PublicationDateYYYYMMDD 2025-03-05
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinspiration & biomimetics
PublicationTitleAbbrev BB
PublicationTitleAlternate Bioinspir. Biomim
PublicationYear 2025
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Ijspeert (bbadb8b1bib17) 2008; 21
Schulman (bbadb8b1bib20) 2017
Grillner (bbadb8b1bib6) 1984; 223
Todorov (bbadb8b1bib14) 2012
Gay (bbadb8b1bib15) 2013
Arreguit (bbadb8b1bib31) 2023
Hamlet (bbadb8b1bib4) 2023; 120
Schilling (bbadb8b1bib27) 2021; 144
Stin (bbadb8b1bib21) 2024; 99
Wang (bbadb8b1bib30) 2018
Fies (bbadb8b1bib3) 2021; 224
Wyart (bbadb8b1bib7) 2023; 83
Grillner (bbadb8b1bib12) 1998; 860
Yu (bbadb8b1bib23) 2023; 5
Knüsel (bbadb8b1bib8) 2020; 14
Sferrazza (bbadb8b1bib28) 2024
Montavon (bbadb8b1bib22) 2018; 73
Ijspeert (bbadb8b1bib1) 2023; 226
Hamlet (bbadb8b1bib5) 2018; 14
Ekeberg (bbadb8b1bib2) 1993; 69
Harischandra (bbadb8b1bib9) 2011; 5
Ijspeert (bbadb8b1bib16) 2007; 315
Kurin (bbadb8b1bib29) 2021
Pazzaglia (bbadb8b1bib10) 2024
Huang (bbadb8b1bib26) 2020
Hsu (bbadb8b1bib24) 2013; 521
Bellegarda (bbadb8b1bib19) 2022; 7
Williams (bbadb8b1bib11) 1992; 258
Shafiee (bbadb8b1bib18) 2023; 15
Gollisch (bbadb8b1bib25) 2010; 65
Thandiackal (bbadb8b1bib13) 2021; 6
References_xml – volume: 69
  start-page: 363
  year: 1993
  ident: bbadb8b1bib2
  article-title: A combined neuronal and mechanical model of fish swimming
  publication-title: Biol. Cybern.
  doi: 10.1007/BF01185408
– volume: 7
  start-page: 12547
  year: 2022
  ident: bbadb8b1bib19
  article-title: Cpg-RL: learning central pattern generators for quadruped locomotion
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2022.3218167
– volume: 15
  start-page: 3073
  year: 2023
  ident: bbadb8b1bib18
  article-title: Deeptransition: viability leads to the emergence of gait transitions in learning anticipatory quadrupedal locomotion skills
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-47443-w
– year: 2017
  ident: bbadb8b1bib20
  article-title: Proximal policy optimization algorithms
– volume: 73
  start-page: 1
  year: 2018
  ident: bbadb8b1bib22
  article-title: Methods for interpreting and understanding deep neural networks
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2017.10.011
– volume: 223
  start-page: 500
  year: 1984
  ident: bbadb8b1bib6
  article-title: The edge cell, a possible intraspinal mechanoreceptor
  publication-title: Science
  doi: 10.1126/science.6691161
– volume: 5
  start-page: 919
  year: 2023
  ident: bbadb8b1bib23
  article-title: Identifying important sensory feedback for learning locomotion skills
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00701-w
– year: 2024
  ident: bbadb8b1bib28
  article-title: Body transformer: leveraging robot embodiment for policy learning
– volume: 83
  year: 2023
  ident: bbadb8b1bib7
  article-title: Design of mechanosensory feedback during undulatory locomotion to enhance speed and stability
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2023.102777
– volume: 5
  start-page: 3
  year: 2011
  ident: bbadb8b1bib9
  article-title: Sensory feedback plays a significant role in generating walking gait and in gait transition in salamanders: a simulation study
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2011.00003
– start-page: pp 5026
  year: 2012
  ident: bbadb8b1bib14
  article-title: Mujoco: a physics engine for model-based control
– volume: 6
  start-page: 1
  year: 2021
  ident: bbadb8b1bib13
  article-title: Emergence of robust self-organized undulatory swimming based on local hydrodynamic force sensing
  publication-title: Sci. Robot.
  doi: 10.1126/scirobotics.abf6354
– volume: 258
  start-page: 662
  year: 1992
  ident: bbadb8b1bib11
  article-title: Phase coupling by synaptic spread in chains of coupled neuronal oscillators
  publication-title: Science
  doi: 10.1126/science.1411575
– year: 2024
  ident: bbadb8b1bib10
  article-title: Sensory and central contributions to motor pattern generation in a spiking, neuro-mechanical model of the salamander spinal cord
– volume: 14
  year: 2020
  ident: bbadb8b1bib8
  article-title: Reproducing five motor behaviors in a salamander robot with virtual muscles and a distributed cpg controller regulated by drive signals and proprioceptive feedback
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2020.604426
– volume: 315
  start-page: 1416
  year: 2007
  ident: bbadb8b1bib16
  article-title: From swimming to walking with a salamander robot driven by a spinal cord model
  publication-title: Science
  doi: 10.1126/science.1138353
– year: 2020
  ident: bbadb8b1bib26
  article-title: One policy to control them all: shared modular policies for agent-agnostic control
– volume: 144
  start-page: 699
  year: 2021
  ident: bbadb8b1bib27
  article-title: Decentralized control and local information for robust and adaptive decentralized deep reinforcement learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.09.017
– volume: 226
  year: 2023
  ident: bbadb8b1bib1
  article-title: Integration of feedforward and feedback control in the neuromechanics of vertebrate locomotion: a review of experimental, simulation and robotic studies
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.245784
– year: 2023
  ident: bbadb8b1bib31
  article-title: FARMS: framework for animal and robot modeling and simulation
  doi: 10.1101/2023.09.25.559130
– volume: 14
  year: 2018
  ident: bbadb8b1bib5
  article-title: The role of curvature feedback in the energetics and dynamics of lamprey swimming: a closed-loop model
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1006324
– year: 2021
  ident: bbadb8b1bib29
  article-title: My body is a cage: the role of morphology in graph-based incompatible control
– volume: 65
  start-page: 150
  year: 2010
  ident: bbadb8b1bib25
  article-title: Eye smarter than scientists believed: neural computations in circuits of the retina
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.12.009
– volume: 224
  year: 2021
  ident: bbadb8b1bib3
  article-title: Swimming kinematics and performance of spinal transected lampreys with different levels of axon regeneration
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.242639
– year: 2018
  ident: bbadb8b1bib30
  article-title: Nervenet: Learning structured policy with graph neural networks
– start-page: pp 194
  year: 2013
  ident: bbadb8b1bib15
  article-title: Learning robot gait stability using neural networks as sensory feedback function for central pattern generators
– volume: 860
  start-page: 1
  year: 1998
  ident: bbadb8b1bib12
  article-title: Vertebrate locomotion-a lamprey perspective
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1111/j.1749-6632.1998.tb09035.x
– volume: 521
  start-page: 3847
  year: 2013
  ident: bbadb8b1bib24
  article-title: Intraspinal stretch receptor neurons mediate different motor responses along the body in lamprey
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.23382
– volume: 120
  start-page: 20
  year: 2023
  ident: bbadb8b1bib4
  article-title: Proprioceptive feedback amplification restores effective locomotion in a neuromechanical model of lampreys with spinal injuries
  doi: 10.1073/pnas.2213302120
– volume: 99
  start-page: 2190
  year: 2024
  ident: bbadb8b1bib21
  article-title: Form and function of anguilliform swimming
  publication-title: Biol. Rev.
  doi: 10.1111/brv.13116
– volume: 21
  start-page: 642
  year: 2008
  ident: bbadb8b1bib17
  article-title: Central pattern generators for locomotion control in animals and robots: a review
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.014
SSID ssj0054982
Score 2.376433
Snippet Animals have to navigate complex environments and perform intricate swimming maneuvers in the real world. To conquer these challenges, animals evolved a...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Publisher
StartPage 26024
SubjectTerms animal locomotion
Animals
bio-inspiration
Biomechanical Phenomena
Computer Simulation
control
Deep Learning
deep reinforcement learning
Feedback, Sensory - physiology
Lampreys - physiology
Locomotion - physiology
Models, Biological
Neural Networks, Computer
Reinforcement Machine Learning
Robotics - methods
stretch feedback
Swimming - physiology
Title Using deep reinforcement learning to investigate stretch feedback during swimming of the lamprey
URI https://iopscience.iop.org/article/10.1088/1748-3190/adb8b1
https://www.ncbi.nlm.nih.gov/pubmed/39978082
https://www.proquest.com/docview/3169177382
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-Ll58rY_1RQQVPHS33SRNiicRFxF0PSh6EGrzEpFtF7eL6K93knYXFBXxUkIZmnYy6XwzmQdCe9Qkrs-RDiJFaEB1EgWghmRAbBhJoQ2zxvk7Li7jsxt6fsfuptDRJBemGNS__hYMq0LBFQvrgDjRBgztXHpJ2M60FBJMn1kiQHG67L3e1fg3DHaP7xRVU4tOfUb53RM-6aRpmPdnuOnVTncB3Y9fuIo2eW6NStlS719qOf7zixbRfA1H8XFFuoSmTL6MGsc5mOL9N3yAfYCo97w30IMPL8DamAF-Mb7iqvLORVy3nnjEZYGfJoU7DHaJKCAV2IKKlJl6xlVSJB6-PvX7blBYDAAUg1QOQKRW0E339PrkLKgbNAQKDK8yMDYDcyliimTaWoCKzIC1reNYsJhLxROhlOXSKg73dehq3zGTZIAZQkkYlWQVzeRFbtYRDpmljGbAA51Rwq0kEeWSyxDmiAjTTXQ4XqJ0UNXhSP35uRCpY1_q2JdW7GuifeB0Wm_G4S90u-NVTmFTuZOSLDfFaAhEMZixnIhOE61Vyz-ZFRAdFwCcNv44yyaa67iewS5ujW2hmfJlZLYByJRyxwssXHvk9gNGr-1K
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xkKpeEI-2bCmtK0GlHtJNYjt2DhxQ6QpKgR6Kyi3EL4SqTSJ2EeJX9S8ydrwrIbVVL9yiyIqdz2PPN-PxDMAOs6Wvc2SSTFOWMFNmCaohlVCXZkoay531_o6T0-LwnH294BcL8Ht-F6bt4tb_CR_7RME9hDEgTg6RQ3uXXpkOa6OkyoadcTGq8tje36HNNtk7OsAJ3s3z0Zcfnw-TWFYg0WguTBPraiT5Gde0Ns4hweEWbURTFJIXQmlRSq2dUE4LfG9Sn7GN27JGTZcqypmi-N1FWOYUVRsuoDP6c7b1o60VqlPFEco8nov-adSP9OAi_uvfKW5QdaNVWIkclez3iKzBgm3WYWO_Qft8fE8-kBA1GtzxG3AZYg6IsbYjNzakYdXB40hiPYorMm3J9TybhyX-dgqKCnGoN1Wtf5H-piSZ3F2Px_6hdQRZKUFR7VDOXsD5k8D7EpaatrGbQFLuGGc1gmZqRoVTNGNCCZViHxnlZgAfZxhWXZ-cowqH6lJWHu_K4131eA9gF0Gu4gqd_KPd-9k0VLjS_PFJ3dj2doKNCrRtBZX5AF718zPvFWmekMimXv9nL-_g2feDUfXt6PR4C57nvqawj2vjb2BpenNrt5HoTNXbIFwELp9amh8AixkLFQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+deep+reinforcement+learning+to+investigate+stretch+feedback+during+swimming+of+the+lamprey&rft.jtitle=Bioinspiration+%26+biomimetics&rft.au=Hausd%C3%B6rfer%2C+Oliver&rft.au=Gupta%2C+Astha&rft.au=Ijspeert%2C+Auke+J&rft.au=Renjewski%2C+Daniel&rft.date=2025-03-05&rft.issn=1748-3190&rft.eissn=1748-3190&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1748-3190%2Fadb8b1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1748-3182&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1748-3182&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1748-3182&client=summon