Data Processing Integrating Singular Value Decomposition Algorithm and Tensor Chain Decomposition Algorithm
In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decompos...
Saved in:
Published in | IEEE access Vol. 13; pp. 38964 - 38978 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decomposition algorithm is constructed. The results show that the parallel efficiency of the algorithm reaches 0.95 with 30 cores, the compression ratio is 10, the accuracy and recall rate are 0.98 and 0.96, respectively. On the ImageNet dataset, model indicators are all over 0.9, showing excellent performance. The research not only improves the efficiency of data processing, but also provides new solutions for high-dimensional data analysis, especially in the aspects of feature extraction and dimensionality reduction. Combined with the advantages of LSTM in processing time series data, the overall performance of the model is improved. |
---|---|
AbstractList | In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decomposition algorithm is constructed. The results show that the parallel efficiency of the algorithm reaches 0.95 with 30 cores, the compression ratio is 10, the accuracy and recall rate are 0.98 and 0.96, respectively. On the ImageNet dataset, model indicators are all over 0.9, showing excellent performance. The research not only improves the efficiency of data processing, but also provides new solutions for high-dimensional data analysis, especially in the aspects of feature extraction and dimensionality reduction. Combined with the advantages of LSTM in processing time series data, the overall performance of the model is improved. |
Author | Zhang, Hao |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0005-6763-4125 surname: Zhang fullname: Zhang, Hao email: zh18351267686@126.com organization: College of Economics and Management, Nanjing Forestry University, Nanjing, China |
BookMark | eNp1kMtOwzAQRS0EEs8vgEV-oMXv2MsqvCohgVRga02cSeuSxsgOC_6elFaIDbOYuRrNvdKcU3LYxx4JuWR0yhi117Oqul0sppxyNRVKasrtATnhTNuJUEIf_tHH5CLnNR3LjCtVnpD3GxigeE7RY86hXxbzfsBlgmGrF2P77CAVb9B9YnGDPm4-Yg5DiH0x65YxhWG1KaBvihfsc0xFtYLQ_3d4To5a6DJe7OcZeb27fakeJo9P9_Nq9jjxXLNhgprzpqU1ei5bVByb8U1TWlMyoymWutHAoFbGC-2FalswtpFlCV6WpjVMnJH5LreJsHYfKWwgfbkIwf0sYlo6SEPwHbq2tlYoa6RsUNYCYYRkUTFLfU1r2YxZYpflU8w5Yfubx6jb4nc7_G6L3-3xj66rnSsg4h-HpZIrKr4BJ6WEuA |
CODEN | IAECCG |
Cites_doi | 10.1007/s10543-023-01004-7 10.47852/bonviewJDSIS32021078 10.1093/gji/ggac211 10.1190/geo2020-0539.1 10.1007/s11042-021-11738-7 10.15748/jasse.9.136 10.3390/sym13020345 10.1109/TSUSC.2018.2881439 10.1007/s00034-023-02537-6 10.1007/s10957-023-02177-5 10.2174/1574893617666220421101459 10.1007/s11464-021-0088-5 10.1111/1365-2478.13374 10.1364/AO.421081 10.1007/s10589-021-00315-1 10.1109/JSTSP.2021.3056959 10.1109/JSTSP.2021.3058763 10.47852/bonviewAAES32021220 10.1109/TSE.2021.3056139 10.1007/s10957-022-02050-x 10.1007/s42967-022-00218-w 10.1109/TIT.2022.3203972 10.3390/axioms12030232 10.58496/ADSA/2024/003 10.1016/j.jvcir.2023.103960 10.1007/s11004-022-10005-1 10.1007/s11760-021-02026-w 10.1002/nla.2444 10.1109/TCAD.2021.3058317 10.1007/s00006-021-01195-8 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2025.3546029 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 38978 |
ExternalDocumentID | oai_doaj_org_article_fb99359844de4b3ea5369e5190cb0b4d 10_1109_ACCESS_2025_3546029 10904250 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c261t-e622df0bec24fe52ed110879871860e76d6a1ab58c36c35ffa89d477ac478f813 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:47:50 EDT 2025 Tue Jul 01 05:21:55 EDT 2025 Wed Aug 27 01:48:44 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-e622df0bec24fe52ed110879871860e76d6a1ab58c36c35ffa89d477ac478f813 |
ORCID | 0009-0005-6763-4125 |
OpenAccessLink | https://doaj.org/article/fb99359844de4b3ea5369e5190cb0b4d |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2025_3546029 ieee_primary_10904250 doaj_primary_oai_doaj_org_article_fb99359844de4b3ea5369e5190cb0b4d |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref31 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 Su (ref4) 2021; 30 |
References_xml | – ident: ref2 doi: 10.1007/s10543-023-01004-7 – ident: ref31 doi: 10.47852/bonviewJDSIS32021078 – ident: ref14 doi: 10.1093/gji/ggac211 – ident: ref19 doi: 10.1190/geo2020-0539.1 – ident: ref21 doi: 10.1007/s11042-021-11738-7 – ident: ref3 doi: 10.15748/jasse.9.136 – ident: ref5 doi: 10.3390/sym13020345 – volume: 30 start-page: 274 issue: 3 year: 2021 ident: ref4 article-title: A new tensor factorization based on the discrete simplified fractional Fourier transform publication-title: J. Beijing Inst. Technol. – ident: ref16 doi: 10.1109/TSUSC.2018.2881439 – ident: ref8 doi: 10.1007/s00034-023-02537-6 – ident: ref10 doi: 10.1007/s10957-023-02177-5 – ident: ref25 doi: 10.2174/1574893617666220421101459 – ident: ref20 doi: 10.1007/s11464-021-0088-5 – ident: ref7 doi: 10.1111/1365-2478.13374 – ident: ref18 doi: 10.1364/AO.421081 – ident: ref27 doi: 10.1007/s10589-021-00315-1 – ident: ref17 doi: 10.1109/JSTSP.2021.3056959 – ident: ref29 doi: 10.1109/JSTSP.2021.3058763 – ident: ref12 doi: 10.47852/bonviewAAES32021220 – ident: ref30 doi: 10.1109/TSE.2021.3056139 – ident: ref22 doi: 10.1007/s10957-022-02050-x – ident: ref1 doi: 10.1007/s42967-022-00218-w – ident: ref13 doi: 10.1109/TIT.2022.3203972 – ident: ref9 doi: 10.3390/axioms12030232 – ident: ref11 doi: 10.58496/ADSA/2024/003 – ident: ref6 doi: 10.1016/j.jvcir.2023.103960 – ident: ref23 doi: 10.1007/s11004-022-10005-1 – ident: ref24 doi: 10.1007/s11760-021-02026-w – ident: ref26 doi: 10.1002/nla.2444 – ident: ref15 doi: 10.1109/TCAD.2021.3058317 – ident: ref28 doi: 10.1007/s00006-021-01195-8 |
SSID | ssj0000816957 |
Score | 2.3338993 |
Snippet | In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 38964 |
SubjectTerms | Accuracy Data models data processing Eigenvalues and eigenfunctions Feature extraction Jacobian matrices long short-term memory network Matrix decomposition parallel algorithm Singular value decomposition Support vector machines tensor chain decomposition Tensors Vectors |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLaAEzswGEyUweTDjktJHNuxj6WAYNJ6GaDeIv94AVRIUZVe9tfv2XGhm4S0S2RZluLkc-Tvc977HiHfrGKaF4XLvPY8487azAqmskZ5JBiyMCxWa_g5kVe3_MdUTFOyesyFAYAYfAbD0Iz_8v3cLcNR2WkIIsQ1hgp9E5Vbn6z1eqASKkhoUSVnIRx6OhqP8SFQAzIxLAWXeeSRb7tPNOn_q6pK3FQuP5LJajp9LMlsuOzs0P3-x6nxv-e7S3YSvaSjfj3skQ1oP5EPa6aD-2R2bjpDU4IA9tDr5BgR2r_wEgJT6Z15WgI9hxBynuK66Ojpfr547B6eqWk9vUEBPF_Q8YN5bN8beEBuLy9uxldZKrmQOZRSXQaSMd_kCCzjDQgGPqQJVBpllZI5VNJLUxgrlCulK0XTGIUYV5VxvFKNKsrPZKudt3BIqM-dBO08qxSyQqe1Qe5nKqNtwSw0fEC-r6CoX3pnjToqklzXPXJ1QK5OyA3IWYDrdWiwxY4d-Mbr9JXVjdUh01hx7oHbEowopQYkqbmzueV-QA4CSmv36wE6eqf_C9kOc-iPXI7JVrdYwgmSkM5-jYvvD8Jz2u4 priority: 102 providerName: IEEE |
Title | Data Processing Integrating Singular Value Decomposition Algorithm and Tensor Chain Decomposition Algorithm |
URI | https://ieeexplore.ieee.org/document/10904250 https://doaj.org/article/fb99359844de4b3ea5369e5190cb0b4d |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxHlUXlgJNRxbMceS0pVkGChRd0iv0IrSoqq9P9jOwHCgFhYosiyEucuuvs-6_wdAJeKY0HiWEdGGBIRrVSkKOZRwY0DGCyWOHRreHhk4ym5n9FZq9WXrwmr5YFrw_ULJfzhUU6IsUQlVtKECetwB9IKKWJ89HU5r0WmQgzmMRM0bWSGYiT6gyxzX-QIIabXCSUMBVD5nYqCYv-PFishw4z2wV4DDeGgXtIB2LLlIdhtCQYegdehrCRsivvdCLxr1B78_ZO7-KJS-CyXGwuH1peLNzVZcLB8Wa0X1fwNytLAiSOvqzXM5nJR_jaxA6aj20k2jpp2CZF2NKiKLMPYFMg5BZPCUmyNL_FPhaNEnCGbMsNkLBXlOmE6oUUhufNPmkpNUl7wODkG2-WqtCcAGqSZFdrglDtEp4WQDrfJVAoVY2UL0gVXn5bL32tVjDywCSTy2tC5N3TeGLoLbrx1v6Z6Sesw4BydN47O_3J0F3S8b1rvEz7goNP_ePgZ2PELrvdWzsF2td7YC4c2KtULP1YvHAz8AOoG0iw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPFuxPH2AG9kmju3YBw7LLtUufVzYot6CHxNatexW26wQ_Bf-Cr-NcZIuBanHSlwiy7KSif0p_sb5ZgbgldPciCzzSTBBJMI7lzjJdVLpQARDZZY31Rr29tX4QHw4lIdr8HMVC4OIjfgM-7HZ_MsPc7-MR2VbUURIGEs7DeUOfv9GHtr528mIlvM159vvp8Nx0hURSDw5B3WCivNQpWQqFxVKjiEK3wtytTOtUixUUDazTmqfK5_LqrKarC4K60WhK53ldN8bcJOIhuRteNjqCCfWrDCy6HIZkXFbg-GQpo28Ti77uRQqbZjrn_2uKQvwVx2XZhvbvge_LiagVa-c9Je16_sf_-SG_G9n6D7c7Qg0G7SIfwBrOHsIdy6lVXwEJyNbW9aFQFAPm3Q5MWL7I12i9JZ9sqdLZCOMovpOucYGp1_mi-P66Cuzs8Cm5OLPF2x4ZI9nVw3cgINredtNWJ_NZ_gYWEi9QuMDLzTxXm-MJXZrC2tcxh1WogdvLpa-PGtzh5SNz5WaskVKGZFSdkjpwbsIj9XQmPi76aAVLrvvSFk5E2OptRABhcvRylwZJBqeepc6EXqwEVFx6XktIJ5c0f8Sbo2ne7vl7mR_5yncjva0B0zPYL1eLPE5Ua7avWiAz-DzdePoN5pTOGE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Processing+Integrating+Singular+Value+Decomposition+Algorithm+and+Tensor+Chain+Decomposition+Algorithm&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Hao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=38964&rft.epage=38978&rft_id=info:doi/10.1109%2FACCESS.2025.3546029&rft.externalDocID=10904250 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |