Data Processing Integrating Singular Value Decomposition Algorithm and Tensor Chain Decomposition Algorithm

In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decompos...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 38964 - 38978
Main Author Zhang, Hao
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decomposition algorithm is constructed. The results show that the parallel efficiency of the algorithm reaches 0.95 with 30 cores, the compression ratio is 10, the accuracy and recall rate are 0.98 and 0.96, respectively. On the ImageNet dataset, model indicators are all over 0.9, showing excellent performance. The research not only improves the efficiency of data processing, but also provides new solutions for high-dimensional data analysis, especially in the aspects of feature extraction and dimensionality reduction. Combined with the advantages of LSTM in processing time series data, the overall performance of the model is improved.
AbstractList In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on unilateral Jacobi is proposed, and a data processing model of long and short memory network combined with the parallel tensor chain decomposition algorithm is constructed. The results show that the parallel efficiency of the algorithm reaches 0.95 with 30 cores, the compression ratio is 10, the accuracy and recall rate are 0.98 and 0.96, respectively. On the ImageNet dataset, model indicators are all over 0.9, showing excellent performance. The research not only improves the efficiency of data processing, but also provides new solutions for high-dimensional data analysis, especially in the aspects of feature extraction and dimensionality reduction. Combined with the advantages of LSTM in processing time series data, the overall performance of the model is improved.
Author Zhang, Hao
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0005-6763-4125
  surname: Zhang
  fullname: Zhang, Hao
  email: zh18351267686@126.com
  organization: College of Economics and Management, Nanjing Forestry University, Nanjing, China
BookMark eNp1kMtOwzAQRS0EEs8vgEV-oMXv2MsqvCohgVRga02cSeuSxsgOC_6elFaIDbOYuRrNvdKcU3LYxx4JuWR0yhi117Oqul0sppxyNRVKasrtATnhTNuJUEIf_tHH5CLnNR3LjCtVnpD3GxigeE7RY86hXxbzfsBlgmGrF2P77CAVb9B9YnGDPm4-Yg5DiH0x65YxhWG1KaBvihfsc0xFtYLQ_3d4To5a6DJe7OcZeb27fakeJo9P9_Nq9jjxXLNhgprzpqU1ei5bVByb8U1TWlMyoymWutHAoFbGC-2FalswtpFlCV6WpjVMnJH5LreJsHYfKWwgfbkIwf0sYlo6SEPwHbq2tlYoa6RsUNYCYYRkUTFLfU1r2YxZYpflU8w5Yfubx6jb4nc7_G6L3-3xj66rnSsg4h-HpZIrKr4BJ6WEuA
CODEN IAECCG
Cites_doi 10.1007/s10543-023-01004-7
10.47852/bonviewJDSIS32021078
10.1093/gji/ggac211
10.1190/geo2020-0539.1
10.1007/s11042-021-11738-7
10.15748/jasse.9.136
10.3390/sym13020345
10.1109/TSUSC.2018.2881439
10.1007/s00034-023-02537-6
10.1007/s10957-023-02177-5
10.2174/1574893617666220421101459
10.1007/s11464-021-0088-5
10.1111/1365-2478.13374
10.1364/AO.421081
10.1007/s10589-021-00315-1
10.1109/JSTSP.2021.3056959
10.1109/JSTSP.2021.3058763
10.47852/bonviewAAES32021220
10.1109/TSE.2021.3056139
10.1007/s10957-022-02050-x
10.1007/s42967-022-00218-w
10.1109/TIT.2022.3203972
10.3390/axioms12030232
10.58496/ADSA/2024/003
10.1016/j.jvcir.2023.103960
10.1007/s11004-022-10005-1
10.1007/s11760-021-02026-w
10.1002/nla.2444
10.1109/TCAD.2021.3058317
10.1007/s00006-021-01195-8
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3546029
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 38978
ExternalDocumentID oai_doaj_org_article_fb99359844de4b3ea5369e5190cb0b4d
10_1109_ACCESS_2025_3546029
10904250
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c261t-e622df0bec24fe52ed110879871860e76d6a1ab58c36c35ffa89d477ac478f813
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 00:47:50 EDT 2025
Tue Jul 01 05:21:55 EDT 2025
Wed Aug 27 01:48:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-e622df0bec24fe52ed110879871860e76d6a1ab58c36c35ffa89d477ac478f813
ORCID 0009-0005-6763-4125
OpenAccessLink https://doaj.org/article/fb99359844de4b3ea5369e5190cb0b4d
PageCount 15
ParticipantIDs crossref_primary_10_1109_ACCESS_2025_3546029
ieee_primary_10904250
doaj_primary_oai_doaj_org_article_fb99359844de4b3ea5369e5190cb0b4d
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
Su (ref4) 2021; 30
References_xml – ident: ref2
  doi: 10.1007/s10543-023-01004-7
– ident: ref31
  doi: 10.47852/bonviewJDSIS32021078
– ident: ref14
  doi: 10.1093/gji/ggac211
– ident: ref19
  doi: 10.1190/geo2020-0539.1
– ident: ref21
  doi: 10.1007/s11042-021-11738-7
– ident: ref3
  doi: 10.15748/jasse.9.136
– ident: ref5
  doi: 10.3390/sym13020345
– volume: 30
  start-page: 274
  issue: 3
  year: 2021
  ident: ref4
  article-title: A new tensor factorization based on the discrete simplified fractional Fourier transform
  publication-title: J. Beijing Inst. Technol.
– ident: ref16
  doi: 10.1109/TSUSC.2018.2881439
– ident: ref8
  doi: 10.1007/s00034-023-02537-6
– ident: ref10
  doi: 10.1007/s10957-023-02177-5
– ident: ref25
  doi: 10.2174/1574893617666220421101459
– ident: ref20
  doi: 10.1007/s11464-021-0088-5
– ident: ref7
  doi: 10.1111/1365-2478.13374
– ident: ref18
  doi: 10.1364/AO.421081
– ident: ref27
  doi: 10.1007/s10589-021-00315-1
– ident: ref17
  doi: 10.1109/JSTSP.2021.3056959
– ident: ref29
  doi: 10.1109/JSTSP.2021.3058763
– ident: ref12
  doi: 10.47852/bonviewAAES32021220
– ident: ref30
  doi: 10.1109/TSE.2021.3056139
– ident: ref22
  doi: 10.1007/s10957-022-02050-x
– ident: ref1
  doi: 10.1007/s42967-022-00218-w
– ident: ref13
  doi: 10.1109/TIT.2022.3203972
– ident: ref9
  doi: 10.3390/axioms12030232
– ident: ref11
  doi: 10.58496/ADSA/2024/003
– ident: ref6
  doi: 10.1016/j.jvcir.2023.103960
– ident: ref23
  doi: 10.1007/s11004-022-10005-1
– ident: ref24
  doi: 10.1007/s11760-021-02026-w
– ident: ref26
  doi: 10.1002/nla.2444
– ident: ref15
  doi: 10.1109/TCAD.2021.3058317
– ident: ref28
  doi: 10.1007/s00006-021-01195-8
SSID ssj0000816957
Score 2.3338993
Snippet In the era of big data, processing information in multi-linear arrays is a challenge. In this paper, a parallel singular value decomposition algorithm based on...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 38964
SubjectTerms Accuracy
Data models
data processing
Eigenvalues and eigenfunctions
Feature extraction
Jacobian matrices
long short-term memory network
Matrix decomposition
parallel algorithm
Singular value decomposition
Support vector machines
tensor chain decomposition
Tensors
Vectors
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLaAEzswGEyUweTDjktJHNuxj6WAYNJ6GaDeIv94AVRIUZVe9tfv2XGhm4S0S2RZluLkc-Tvc977HiHfrGKaF4XLvPY8487azAqmskZ5JBiyMCxWa_g5kVe3_MdUTFOyesyFAYAYfAbD0Iz_8v3cLcNR2WkIIsQ1hgp9E5Vbn6z1eqASKkhoUSVnIRx6OhqP8SFQAzIxLAWXeeSRb7tPNOn_q6pK3FQuP5LJajp9LMlsuOzs0P3-x6nxv-e7S3YSvaSjfj3skQ1oP5EPa6aD-2R2bjpDU4IA9tDr5BgR2r_wEgJT6Z15WgI9hxBynuK66Ojpfr547B6eqWk9vUEBPF_Q8YN5bN8beEBuLy9uxldZKrmQOZRSXQaSMd_kCCzjDQgGPqQJVBpllZI5VNJLUxgrlCulK0XTGIUYV5VxvFKNKsrPZKudt3BIqM-dBO08qxSyQqe1Qe5nKqNtwSw0fEC-r6CoX3pnjToqklzXPXJ1QK5OyA3IWYDrdWiwxY4d-Mbr9JXVjdUh01hx7oHbEowopQYkqbmzueV-QA4CSmv36wE6eqf_C9kOc-iPXI7JVrdYwgmSkM5-jYvvD8Jz2u4
  priority: 102
  providerName: IEEE
Title Data Processing Integrating Singular Value Decomposition Algorithm and Tensor Chain Decomposition Algorithm
URI https://ieeexplore.ieee.org/document/10904250
https://doaj.org/article/fb99359844de4b3ea5369e5190cb0b4d
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQEwyIRxHlUXlgJNRxbMceS0pVkGChRd0iv0IrSoqq9P9jOwHCgFhYosiyEucuuvs-6_wdAJeKY0HiWEdGGBIRrVSkKOZRwY0DGCyWOHRreHhk4ym5n9FZq9WXrwmr5YFrw_ULJfzhUU6IsUQlVtKECetwB9IKKWJ89HU5r0WmQgzmMRM0bWSGYiT6gyxzX-QIIabXCSUMBVD5nYqCYv-PFishw4z2wV4DDeGgXtIB2LLlIdhtCQYegdehrCRsivvdCLxr1B78_ZO7-KJS-CyXGwuH1peLNzVZcLB8Wa0X1fwNytLAiSOvqzXM5nJR_jaxA6aj20k2jpp2CZF2NKiKLMPYFMg5BZPCUmyNL_FPhaNEnCGbMsNkLBXlOmE6oUUhufNPmkpNUl7wODkG2-WqtCcAGqSZFdrglDtEp4WQDrfJVAoVY2UL0gVXn5bL32tVjDywCSTy2tC5N3TeGLoLbrx1v6Z6Sesw4BydN47O_3J0F3S8b1rvEz7goNP_ePgZ2PELrvdWzsF2td7YC4c2KtULP1YvHAz8AOoG0iw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOPFuxPH2AG9kmju3YBw7LLtUufVzYot6CHxNatexW26wQ_Bf-Cr-NcZIuBanHSlwiy7KSif0p_sb5ZgbgldPciCzzSTBBJMI7lzjJdVLpQARDZZY31Rr29tX4QHw4lIdr8HMVC4OIjfgM-7HZ_MsPc7-MR2VbUURIGEs7DeUOfv9GHtr528mIlvM159vvp8Nx0hURSDw5B3WCivNQpWQqFxVKjiEK3wtytTOtUixUUDazTmqfK5_LqrKarC4K60WhK53ldN8bcJOIhuRteNjqCCfWrDCy6HIZkXFbg-GQpo28Ti77uRQqbZjrn_2uKQvwVx2XZhvbvge_LiagVa-c9Je16_sf_-SG_G9n6D7c7Qg0G7SIfwBrOHsIdy6lVXwEJyNbW9aFQFAPm3Q5MWL7I12i9JZ9sqdLZCOMovpOucYGp1_mi-P66Cuzs8Cm5OLPF2x4ZI9nVw3cgINredtNWJ_NZ_gYWEi9QuMDLzTxXm-MJXZrC2tcxh1WogdvLpa-PGtzh5SNz5WaskVKGZFSdkjpwbsIj9XQmPi76aAVLrvvSFk5E2OptRABhcvRylwZJBqeepc6EXqwEVFx6XktIJ5c0f8Sbo2ne7vl7mR_5yncjva0B0zPYL1eLPE5Ua7avWiAz-DzdePoN5pTOGE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data+Processing+Integrating+Singular+Value+Decomposition+Algorithm+and+Tensor+Chain+Decomposition+Algorithm&rft.jtitle=IEEE+access&rft.au=Zhang%2C+Hao&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=38964&rft.epage=38978&rft_id=info:doi/10.1109%2FACCESS.2025.3546029&rft.externalDocID=10904250
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon