Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels

Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and...

Full description

Saved in:
Bibliographic Details
Published inHypertension (Dallas, Tex. 1979) Vol. 81; no. 4; pp. 752 - 763
Main Authors Lamb, Fred S, Choi, Hyehun, Miller, Michael R, Stark, Ryan J
Format Journal Article
LanguageEnglish
Published United States 01.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O ). The mechanisms of O signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
AbstractList Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O 2 •− ). The mechanisms of O 2 •− signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O 2 •− to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O 2 •− and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O ). The mechanisms of O signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension.
Author Choi, Hyehun
Miller, Michael R
Stark, Ryan J
Lamb, Fred S
Author_xml – sequence: 1
  givenname: Fred S
  orcidid: 0000-0003-2955-5133
  surname: Lamb
  fullname: Lamb, Fred S
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
– sequence: 2
  givenname: Hyehun
  orcidid: 0000-0002-9915-6632
  surname: Choi
  fullname: Choi, Hyehun
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
– sequence: 3
  givenname: Michael R
  orcidid: 0000-0002-7726-0519
  surname: Miller
  fullname: Miller, Michael R
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
– sequence: 4
  givenname: Ryan J
  orcidid: 0000-0001-6142-5502
  surname: Stark
  fullname: Stark, Ryan J
  organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38174563$$D View this record in MEDLINE/PubMed
BookMark eNpdkF1PwjAUhhuDEUT_gql33gx71tEx78hEIUE0iEavlq47CzNbi-1m9N87EL3w6iTveT-S55h0tNFIyDmwAYCAy-nrw2S5miweZ_eL8XQ8AJ8PIAp4cEB6MPQDLxgK3iE91opeBPDSJcfOvTEGQRCER6TLRxBuPT3inqVTTSktnem8lFUl68JoKnVGHytj6jW9a5wqkcZG11aquiiL-uuKrtZIl6bVTU4X5hO8a7TFB7apZoPWfBYZ7krmy2U8omO9LY3XUmss3Qk5zGXp8HR_--TpZrKKp978_nYWj-ee8gXUXsZExBGFSIWQIlcgWOjzbMQwFZiylOdhJOUIVPtkMspFnoVKsjBFnzHMBO-Ti5_ejTXvDbo6qQqnsCylRtO4xI-gJRQGAK01-rEqa5yzmCcbW1TSfiXAki3z5B_zpGWe7Ji32bP9TJNWmP0lfyHzb-r3ggA
Cites_doi 10.1161/ATVBAHA.116.308929
10.1007/s00109-019-01845-2
10.1016/j.freeradbiomed.2016.11.003
10.1016/j.bbamem.2013.09.016
10.1161/JAHA.119.012748
10.1161/01.res.81.5.797
10.1016/j.lfs.2017.05.002
10.1038/nm1119
10.1152/ajpcell.00281.2019
10.1016/j.vph.2015.03.005
10.1016/j.str.2007.10.014
10.1002/jcb.21488
10.1016/j.cmet.2020.02.003
10.1093/ajh/hpaa089
10.1089/ars.2008.2390
10.1038/nature08206
10.1016/j.freeradbiomed.2017.02.049
10.1016/j.freeradbiomed.2020.11.020
10.1152/ajprenal.00236.2022
10.1093/cvr/cvm031
10.1113/JP283321
10.1161/HYPERTENSIONAHA.110.158071
10.1016/j.jash.2011.02.001
10.7554/eLife.61313
10.1093/cvr/cvy023
10.14814/phy2.14220
10.1007/s11906-022-01214-4
10.1161/CIRCRESAHA.115.306361
10.1161/CIRCRESAHA.107.151076
10.1161/HYPERTENSIONAHA.122.20588
10.1152/ajpheart.00741.2018
10.1016/j.cpcardiol.2023.102060
10.1016/j.molcel.2007.04.021
10.3164/jcbn.19-119
10.1007/s10753-017-0653-y
10.1097/01.mnh.0000203190.34643.d4
10.3389/fphys.2021.691045
10.1016/j.cub.2019.07.035
10.1016/j.freeradbiomed.2012.03.008
10.4161/chan.3.5.9568
10.1093/cvr/cvs295
10.1021/bi0610101
10.1152/ajpcell.00253.2008
10.1128/MCB.02038-07
10.1161/01.ATV.0000112024.13727.2c
10.1111/j.1469-7793.1999.067aa.x
10.1016/j.yjmcc.2013.10.013
10.1161/CIRCRESAHA.117.311401
10.1161/ATVBAHA.110.215004
10.3389/fchem.2015.00024
10.1371/journal.pone.0008045
10.1161/HYPERTENSIONAHA.107.102152
10.1080/19336950.2022.2033511
10.1016/j.freeradbiomed.2021.01.022
10.1161/HYPERTENSIONAHA.107.089706
10.1016/j.bcp.2022.115263
10.1124/mol.63.3.714
10.1093/emboj/18.3.578
10.1016/j.cardiores.2006.10.020
10.1074/jbc.M112.394551
10.1016/j.redox.2014.03.004
10.1097/MD.0000000000015773
10.1016/j.freeradbiomed.2020.11.021
10.1016/j.freeradbiomed.2017.06.022
10.1161/ATVBAHA.118.311038
10.2165/00129784-200101060-00001
10.1152/ajpheart.00231.2012
10.1089/ars.2021.0047
10.1016/j.cmet.2015.11.013
10.1152/physrev.00053.2021
10.1089/ars.2009.2857
10.1016/j.freeradbiomed.2019.09.029
10.1091/mbc.e06-09-0830
10.1097/00005344-200211000-00013
10.1161/01.res.0000033523.08033.16
10.1161/ATVBAHA.107.142117
10.3390/biology11050662
10.1161/01.hyp.18.5_suppl.iii69
10.1016/j.redox.2016.08.015
10.1016/s0891-5849(99)00051-9
10.1089/ars.2008.2378
10.3390/pathophysiology27010005
10.1161/CIRCRESAHA.112.267054
10.1111/micc.12756
10.33594/000000341
10.3390/biomedicines10051168
10.3390/antiox12020281
10.3109/08037051.2014.940710
10.1161/01.res.0000020404.01971.2f
10.1113/jphysiol.2005.094748
10.1179/174329210X12650506623401
10.1074/jbc.M410909200
10.1161/CIRCULATIONAHA.105.573709
10.1161/ATVBAHA.121.317239
10.1085/jgp.200409040
10.1038/s41580-020-0230-3
10.1152/ajpheart.00220.2020
10.3389/fphar.2022.896532
10.1161/HYP.0000000000000228
10.1007/s00018-010-0460-1
10.1016/j.bbamcr.2022.119276
10.1016/j.mcna.2016.08.015
10.1161/CIRCULATIONAHA.105.538934
10.1016/j.freeradbiomed.2015.05.015
10.1016/s0022-2143(97)90178-5
10.1080/21541248.2020.1822721
10.1096/fj.202300561R
10.1016/j.febslet.2005.12.049
10.1161/ATVBAHA.108.168021
10.3389/fncel.2022.962714
10.1371/journal.pone.0062461
10.1038/jcbfm.2012.144
10.14814/phy2.14303
10.1038/43459
10.1016/j.semcdb.2023.02.006
10.1042/EBC20190015
10.1161/ATVBAHA.118.311229
10.1016/j.freeradbiomed.2023.10.397
10.1016/j.ejcb.2022.151249
10.1016/j.phrs.2016.10.015
10.1007/s00232-022-00271-9
10.1093/ajh/hpaa195
10.2741/s506
10.1152/ajpheart.00026.2004
10.1113/JP281577
10.1016/j.freeradbiomed.2008.11.015
10.1073/pnas.2015666118
10.1161/ATVBAHA.114.304936
10.1161/hh0901.090299
10.1089/ars.2013.5500
10.1161/01.RES.0000059987.90200.44
10.1007/978-1-60761-500-2_23
10.1007/s11906-019-1003-2
10.1089/ars.2018.7583
10.1155/2020/1954398
10.1152/ajpheart.00168.2015
10.1111/imr.12437
10.1074/jbc.M109.099838
10.1113/JP274795
10.1038/nrcardio.2010.136
10.1182/blood-2010-08-299438
10.1038/ncomms14805
10.1074/jbc.M506863200
10.1074/jbc.m111.268284
10.1096/fj.00-0735fje
10.1016/j.chembiol.2014.02.020
10.1089/ars.2010.3648
10.1074/jbc.M509255200
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
DOI 10.1161/HYPERTENSIONAHA.123.19434
DatabaseName PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1524-4563
EndPage 763
ExternalDocumentID 10_1161_HYPERTENSIONAHA_123_19434
38174563
Genre Journal Article
Review
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL160975
– fundername: NIDDK NIH HHS
  grantid: R01 DK132948
– fundername: NIGMS NIH HHS
  grantid: R35 GM138191
GroupedDBID ---
.-D
.3C
.55
.GJ
.XZ
.Z2
01R
0R~
18M
1J1
2WC
3O-
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
71W
77Y
7O~
AAAAV
AAAXR
AAFWJ
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AAXQO
AAYEP
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABQRW
ABVCZ
ABXVJ
ABZAD
ACCJW
ACDDN
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACWDW
ACWRI
ACXJB
ACXNZ
ADBBV
ADFPA
ADGGA
ADHPY
ADNKB
AE3
AE6
AEBDS
AEETU
AENEX
AFDTB
AFEXH
AFFNX
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHRYX
AHVBC
AIJEX
AINUH
AJIOK
AJNWD
AJNYG
AJZMW
AKULP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AWKKM
BAWUL
BCGUY
BOYCO
BQLVK
BS7
C1A
C45
CS3
DIK
DIWNM
DUNZO
E.X
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
FL-
FW0
GNXGY
GQDEL
GX1
H0~
H13
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
JK8
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N4W
N9A
NPM
N~7
N~B
N~M
O9-
OAG
OAH
OB3
OCUKA
ODA
ODMTH
OGROG
OHYEH
OK1
OL1
OLG
OLH
OLU
OLV
OLW
OLY
OLZ
OPUJH
ORVUJ
OUVQU
OVD
OVDNE
OVIDH
OVLEI
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P-K
P2P
PQQKQ
R58
RAH
RHF
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
V2I
VVN
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
X7M
XXN
XYM
YFH
YHZ
YOC
YYM
YYP
ZFV
ZGI
ZZMQN
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c261t-d0693ee66b66a6fc160723d80eb6eb0b3f79aa81ca6f0a9f6fd7ca07be200ed63
ISSN 0194-911X
IngestDate Sat Oct 26 05:59:54 EDT 2024
Fri Dec 06 02:22:41 EST 2024
Sat Nov 02 12:32:01 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords blood pressure
NADPH oxidases
inflammation
blood vessels
rho-associated kinases
hypertension
superoxides
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-d0693ee66b66a6fc160723d80eb6eb0b3f79aa81ca6f0a9f6fd7ca07be200ed63
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-3
content type line 23
ObjectType-Review-1
ORCID 0000-0002-7726-0519
0000-0003-2955-5133
0000-0001-6142-5502
0000-0002-9915-6632
PMID 38174563
PQID 2910197411
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_2910197411
crossref_primary_10_1161_HYPERTENSIONAHA_123_19434
pubmed_primary_38174563
PublicationCentury 2000
PublicationDate 2024-Apr
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-Apr
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Hypertension (Dallas, Tex. 1979)
PublicationTitleAlternate Hypertension
PublicationYear 2024
References e_1_3_3_96_2
e_1_3_3_50_2
e_1_3_3_77_2
e_1_3_3_117_2
e_1_3_3_16_2
e_1_3_3_39_2
e_1_3_3_132_2
e_1_3_3_12_2
e_1_3_3_58_2
e_1_3_3_35_2
e_1_3_3_92_2
e_1_3_3_113_2
e_1_3_3_136_2
e_1_3_3_151_2
e_1_3_3_54_2
e_1_3_3_31_2
e_1_3_3_73_2
e_1_3_3_61_2
e_1_3_3_88_2
e_1_3_3_150_2
e_1_3_3_5_2
e_1_3_3_128_2
e_1_3_3_105_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_109_2
e_1_3_3_23_2
e_1_3_3_69_2
e_1_3_3_120_2
e_1_3_3_46_2
e_1_3_3_80_2
e_1_3_3_147_2
e_1_3_3_65_2
e_1_3_3_124_2
e_1_3_3_42_2
e_1_3_3_84_2
e_1_3_3_101_2
e_1_3_3_143_2
e_1_3_3_76_2
e_1_3_3_99_2
e_1_3_3_139_2
e_1_3_3_116_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_131_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_91_2
e_1_3_3_135_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_72_2
e_1_3_3_95_2
e_1_3_3_112_2
e_1_3_3_60_2
e_1_3_3_87_2
e_1_3_3_8_2
e_1_3_3_104_2
e_1_3_3_127_2
e_1_3_3_49_2
e_1_3_3_108_2
e_1_3_3_142_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_68_2
e_1_3_3_146_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
e_1_3_3_83_2
e_1_3_3_100_2
e_1_3_3_123_2
e_1_3_3_75_2
e_1_3_3_71_2
e_1_3_3_98_2
e_1_3_3_79_2
e_1_3_3_115_2
e_1_3_3_138_2
Afanas’ev IB (e_1_3_3_110_2) 1989
e_1_3_3_119_2
e_1_3_3_18_2
e_1_3_3_37_2
e_1_3_3_90_2
e_1_3_3_130_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_94_2
e_1_3_3_111_2
e_1_3_3_134_2
e_1_3_3_10_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_86_2
e_1_3_3_107_2
e_1_3_3_7_2
e_1_3_3_126_2
e_1_3_3_149_2
e_1_3_3_29_2
e_1_3_3_48_2
e_1_3_3_145_2
e_1_3_3_141_2
e_1_3_3_25_2
e_1_3_3_67_2
e_1_3_3_44_2
e_1_3_3_82_2
e_1_3_3_103_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_63_2
e_1_3_3_122_2
e_1_3_3_51_2
e_1_3_3_74_2
e_1_3_3_97_2
e_1_3_3_70_2
e_1_3_3_78_2
e_1_3_3_118_2
e_1_3_3_137_2
e_1_3_3_17_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_93_2
e_1_3_3_114_2
Kedzierski L (e_1_3_3_121_2) 2004; 52
e_1_3_3_133_2
e_1_3_3_62_2
e_1_3_3_85_2
e_1_3_3_89_2
e_1_3_3_6_2
e_1_3_3_106_2
e_1_3_3_129_2
e_1_3_3_28_2
e_1_3_3_148_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_144_2
e_1_3_3_140_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_66_2
e_1_3_3_81_2
e_1_3_3_102_2
e_1_3_3_125_2
References_xml – ident: e_1_3_3_46_2
  doi: 10.1161/ATVBAHA.116.308929
– ident: e_1_3_3_113_2
  doi: 10.1007/s00109-019-01845-2
– ident: e_1_3_3_38_2
  doi: 10.1016/j.freeradbiomed.2016.11.003
– ident: e_1_3_3_114_2
  doi: 10.1016/j.bbamem.2013.09.016
– ident: e_1_3_3_151_2
  doi: 10.1161/JAHA.119.012748
– ident: e_1_3_3_72_2
  doi: 10.1161/01.res.81.5.797
– ident: e_1_3_3_48_2
  doi: 10.1016/j.lfs.2017.05.002
– ident: e_1_3_3_109_2
  doi: 10.1038/nm1119
– ident: e_1_3_3_148_2
  doi: 10.1152/ajpcell.00281.2019
– ident: e_1_3_3_26_2
  doi: 10.1016/j.vph.2015.03.005
– ident: e_1_3_3_89_2
  doi: 10.1016/j.str.2007.10.014
– ident: e_1_3_3_123_2
  doi: 10.1002/jcb.21488
– ident: e_1_3_3_124_2
  doi: 10.1016/j.cmet.2020.02.003
– ident: e_1_3_3_104_2
  doi: 10.1093/ajh/hpaa089
– ident: e_1_3_3_18_2
  doi: 10.1089/ars.2008.2390
– ident: e_1_3_3_107_2
  doi: 10.1038/nature08206
– ident: e_1_3_3_36_2
  doi: 10.1016/j.freeradbiomed.2017.02.049
– ident: e_1_3_3_55_2
  doi: 10.1016/j.freeradbiomed.2020.11.020
– ident: e_1_3_3_58_2
  doi: 10.1152/ajprenal.00236.2022
– ident: e_1_3_3_139_2
  doi: 10.1093/cvr/cvm031
– ident: e_1_3_3_143_2
  doi: 10.1113/JP283321
– ident: e_1_3_3_68_2
  doi: 10.1161/HYPERTENSIONAHA.110.158071
– ident: e_1_3_3_57_2
  doi: 10.1016/j.jash.2011.02.001
– ident: e_1_3_3_150_2
  doi: 10.7554/eLife.61313
– ident: e_1_3_3_3_2
  doi: 10.1093/cvr/cvy023
– ident: e_1_3_3_131_2
  doi: 10.14814/phy2.14220
– ident: e_1_3_3_7_2
  doi: 10.1007/s11906-022-01214-4
– ident: e_1_3_3_17_2
  doi: 10.1161/CIRCRESAHA.115.306361
– ident: e_1_3_3_44_2
  doi: 10.1161/CIRCRESAHA.107.151076
– volume-title: Superoxide Ion: Chemistry and Biological Implications
  year: 1989
  ident: e_1_3_3_110_2
  contributor:
    fullname: Afanas’ev IB
– ident: e_1_3_3_10_2
  doi: 10.1161/HYPERTENSIONAHA.122.20588
– ident: e_1_3_3_102_2
  doi: 10.1152/ajpheart.00741.2018
– ident: e_1_3_3_29_2
  doi: 10.1016/j.cpcardiol.2023.102060
– ident: e_1_3_3_106_2
  doi: 10.1016/j.molcel.2007.04.021
– ident: e_1_3_3_135_2
  doi: 10.3164/jcbn.19-119
– ident: e_1_3_3_20_2
  doi: 10.1007/s10753-017-0653-y
– ident: e_1_3_3_14_2
  doi: 10.1097/01.mnh.0000203190.34643.d4
– ident: e_1_3_3_149_2
  doi: 10.3389/fphys.2021.691045
– ident: e_1_3_3_88_2
  doi: 10.1016/j.cub.2019.07.035
– ident: e_1_3_3_111_2
  doi: 10.1016/j.freeradbiomed.2012.03.008
– ident: e_1_3_3_146_2
  doi: 10.4161/chan.3.5.9568
– ident: e_1_3_3_115_2
  doi: 10.1093/cvr/cvs295
– ident: e_1_3_3_23_2
  doi: 10.1021/bi0610101
– ident: e_1_3_3_100_2
  doi: 10.1152/ajpcell.00253.2008
– ident: e_1_3_3_62_2
  doi: 10.1128/MCB.02038-07
– ident: e_1_3_3_85_2
  doi: 10.1161/01.ATV.0000112024.13727.2c
– ident: e_1_3_3_137_2
  doi: 10.1111/j.1469-7793.1999.067aa.x
– ident: e_1_3_3_79_2
  doi: 10.1016/j.yjmcc.2013.10.013
– ident: e_1_3_3_24_2
  doi: 10.1161/CIRCRESAHA.117.311401
– ident: e_1_3_3_34_2
  doi: 10.1161/ATVBAHA.110.215004
– ident: e_1_3_3_56_2
  doi: 10.3389/fchem.2015.00024
– ident: e_1_3_3_92_2
  doi: 10.1371/journal.pone.0008045
– ident: e_1_3_3_69_2
  doi: 10.1161/HYPERTENSIONAHA.107.102152
– ident: e_1_3_3_145_2
  doi: 10.1080/19336950.2022.2033511
– ident: e_1_3_3_108_2
  doi: 10.1016/j.freeradbiomed.2021.01.022
– ident: e_1_3_3_80_2
  doi: 10.1161/HYPERTENSIONAHA.107.089706
– ident: e_1_3_3_11_2
  doi: 10.1016/j.bcp.2022.115263
– ident: e_1_3_3_91_2
  doi: 10.1124/mol.63.3.714
– ident: e_1_3_3_82_2
  doi: 10.1093/emboj/18.3.578
– ident: e_1_3_3_86_2
  doi: 10.1016/j.cardiores.2006.10.020
– ident: e_1_3_3_15_2
  doi: 10.1074/jbc.M112.394551
– ident: e_1_3_3_32_2
  doi: 10.1016/j.redox.2014.03.004
– ident: e_1_3_3_12_2
  doi: 10.1097/MD.0000000000015773
– ident: e_1_3_3_21_2
  doi: 10.1016/j.freeradbiomed.2020.11.021
– ident: e_1_3_3_22_2
  doi: 10.1016/j.freeradbiomed.2017.06.022
– ident: e_1_3_3_54_2
  doi: 10.1161/ATVBAHA.118.311038
– ident: e_1_3_3_28_2
  doi: 10.2165/00129784-200101060-00001
– ident: e_1_3_3_78_2
  doi: 10.1152/ajpheart.00231.2012
– ident: e_1_3_3_51_2
  doi: 10.1089/ars.2021.0047
– ident: e_1_3_3_67_2
  doi: 10.1016/j.cmet.2015.11.013
– ident: e_1_3_3_19_2
  doi: 10.1152/physrev.00053.2021
– ident: e_1_3_3_75_2
  doi: 10.1089/ars.2009.2857
– ident: e_1_3_3_37_2
  doi: 10.1016/j.freeradbiomed.2019.09.029
– ident: e_1_3_3_63_2
  doi: 10.1091/mbc.e06-09-0830
– ident: e_1_3_3_97_2
  doi: 10.1097/00005344-200211000-00013
– volume: 52
  start-page: 104
  year: 2004
  ident: e_1_3_3_121_2
  article-title: Leucine-rich repeats in host-pathogen interactions.
  publication-title: Arch Immunol Ther Exp (Warsz)
  contributor:
    fullname: Kedzierski L
– ident: e_1_3_3_61_2
  doi: 10.1161/01.res.0000033523.08033.16
– ident: e_1_3_3_74_2
  doi: 10.1161/ATVBAHA.107.142117
– ident: e_1_3_3_127_2
  doi: 10.3390/biology11050662
– ident: e_1_3_3_2_2
  doi: 10.1161/01.hyp.18.5_suppl.iii69
– ident: e_1_3_3_116_2
  doi: 10.1016/j.redox.2016.08.015
– ident: e_1_3_3_118_2
  doi: 10.1016/s0891-5849(99)00051-9
– ident: e_1_3_3_64_2
  doi: 10.1089/ars.2008.2378
– ident: e_1_3_3_66_2
  doi: 10.3390/pathophysiology27010005
– ident: e_1_3_3_40_2
  doi: 10.1161/CIRCRESAHA.112.267054
– ident: e_1_3_3_99_2
  doi: 10.1111/micc.12756
– ident: e_1_3_3_141_2
  doi: 10.33594/000000341
– ident: e_1_3_3_35_2
  doi: 10.3390/biomedicines10051168
– ident: e_1_3_3_25_2
  doi: 10.3390/antiox12020281
– ident: e_1_3_3_13_2
  doi: 10.3109/08037051.2014.940710
– ident: e_1_3_3_42_2
  doi: 10.1161/01.res.0000020404.01971.2f
– ident: e_1_3_3_134_2
  doi: 10.1113/jphysiol.2005.094748
– ident: e_1_3_3_120_2
  doi: 10.1179/174329210X12650506623401
– ident: e_1_3_3_133_2
  doi: 10.1074/jbc.M410909200
– ident: e_1_3_3_49_2
  doi: 10.1161/CIRCULATIONAHA.105.573709
– ident: e_1_3_3_59_2
  doi: 10.1161/ATVBAHA.121.317239
– ident: e_1_3_3_138_2
  doi: 10.1085/jgp.200409040
– ident: e_1_3_3_27_2
  doi: 10.1038/s41580-020-0230-3
– ident: e_1_3_3_33_2
  doi: 10.1152/ajpheart.00220.2020
– ident: e_1_3_3_144_2
  doi: 10.3389/fphar.2022.896532
– ident: e_1_3_3_5_2
  doi: 10.1161/HYP.0000000000000228
– ident: e_1_3_3_83_2
  doi: 10.1007/s00018-010-0460-1
– ident: e_1_3_3_132_2
  doi: 10.1016/j.bbamcr.2022.119276
– ident: e_1_3_3_6_2
  doi: 10.1016/j.mcna.2016.08.015
– ident: e_1_3_3_52_2
  doi: 10.1161/CIRCULATIONAHA.105.538934
– ident: e_1_3_3_39_2
  doi: 10.1016/j.freeradbiomed.2015.05.015
– ident: e_1_3_3_65_2
  doi: 10.1016/s0022-2143(97)90178-5
– ident: e_1_3_3_84_2
  doi: 10.1080/21541248.2020.1822721
– ident: e_1_3_3_119_2
  doi: 10.1096/fj.202300561R
– ident: e_1_3_3_50_2
  doi: 10.1016/j.febslet.2005.12.049
– ident: e_1_3_3_93_2
  doi: 10.1161/ATVBAHA.108.168021
– ident: e_1_3_3_136_2
  doi: 10.3389/fncel.2022.962714
– ident: e_1_3_3_129_2
  doi: 10.1371/journal.pone.0062461
– ident: e_1_3_3_98_2
  doi: 10.1038/jcbfm.2012.144
– ident: e_1_3_3_147_2
  doi: 10.14814/phy2.14303
– ident: e_1_3_3_43_2
  doi: 10.1038/43459
– ident: e_1_3_3_9_2
  doi: 10.1016/j.semcdb.2023.02.006
– ident: e_1_3_3_130_2
  doi: 10.1042/EBC20190015
– ident: e_1_3_3_73_2
  doi: 10.1161/ATVBAHA.118.311229
– ident: e_1_3_3_112_2
  doi: 10.1016/j.freeradbiomed.2023.10.397
– ident: e_1_3_3_128_2
  doi: 10.1016/j.ejcb.2022.151249
– ident: e_1_3_3_81_2
  doi: 10.1016/j.phrs.2016.10.015
– ident: e_1_3_3_125_2
  doi: 10.1007/s00232-022-00271-9
– ident: e_1_3_3_4_2
  doi: 10.1093/ajh/hpaa195
– ident: e_1_3_3_30_2
  doi: 10.2741/s506
– ident: e_1_3_3_31_2
  doi: 10.1152/ajpheart.00026.2004
– ident: e_1_3_3_103_2
  doi: 10.1113/JP281577
– ident: e_1_3_3_105_2
  doi: 10.1016/j.freeradbiomed.2008.11.015
– ident: e_1_3_3_47_2
  doi: 10.1073/pnas.2015666118
– ident: e_1_3_3_71_2
  doi: 10.1161/ATVBAHA.114.304936
– ident: e_1_3_3_45_2
  doi: 10.1161/hh0901.090299
– ident: e_1_3_3_77_2
  doi: 10.1089/ars.2013.5500
– ident: e_1_3_3_95_2
  doi: 10.1161/01.RES.0000059987.90200.44
– ident: e_1_3_3_94_2
  doi: 10.1007/978-1-60761-500-2_23
– ident: e_1_3_3_16_2
  doi: 10.1007/s11906-019-1003-2
– ident: e_1_3_3_41_2
  doi: 10.1089/ars.2018.7583
– ident: e_1_3_3_8_2
  doi: 10.1155/2020/1954398
– ident: e_1_3_3_101_2
  doi: 10.1152/ajpheart.00168.2015
– ident: e_1_3_3_117_2
  doi: 10.1111/imr.12437
– ident: e_1_3_3_140_2
  doi: 10.1074/jbc.M109.099838
– ident: e_1_3_3_142_2
  doi: 10.1113/JP274795
– ident: e_1_3_3_96_2
  doi: 10.1038/nrcardio.2010.136
– ident: e_1_3_3_87_2
  doi: 10.1182/blood-2010-08-299438
– ident: e_1_3_3_70_2
  doi: 10.1038/ncomms14805
– ident: e_1_3_3_122_2
  doi: 10.1074/jbc.M506863200
– ident: e_1_3_3_76_2
  doi: 10.1074/jbc.m111.268284
– ident: e_1_3_3_90_2
  doi: 10.1096/fj.00-0735fje
– ident: e_1_3_3_126_2
  doi: 10.1016/j.chembiol.2014.02.020
– ident: e_1_3_3_60_2
  doi: 10.1089/ars.2010.3648
– ident: e_1_3_3_53_2
  doi: 10.1074/jbc.M509255200
SSID ssj0014447
Score 2.5037215
SecondaryResourceType review_article
Snippet Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 752
Title Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels
URI https://www.ncbi.nlm.nih.gov/pubmed/38174563
https://search.proquest.com/docview/2910197411
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIlVcEG_CS1uJW-Rgx856zS1qUwVIAkQJCidrn4JDbdTEKOXMD2fGa8cuUKlwsaKNPLZmPs_O7H4zS8hLJTRTikNaohPfizS3HmdSedFQJyocBopxrEaezdlkFb1dD9edzs8Wa6nYyr768de6kv-xKoyBXbFK9h8suxcKA_Ab7AtXsDBcr2XjTzWN9E1mwbKuCtGRMc9yMEFvVmzgFizr25bVUBhz1zyLRcUrnOe7wDuB1_2OsWeBjcN3X7XbVZguFse8N8pQLNYhZK758j6cnUAWe15y4EsQ8RNclnfEI7Pr94IkTlpLDVNxJl2wjE9qiAW5Ozn7wnwp9lBtahQrYn_DbIT42PG7FxdYe9Vetxi06S6m8rUwCPFb2HbG7vyWCnRRy7PGrtFtNUlXXvFP_8_Q_08-fxhDNjDH6Wg0wfXesB9gI7xm0qs3-ufv09PVdJoux-vlDXIT2yniCQzvPjZ7UVEUxYfkqBL_6krhlyObK9KVMmxZ3iG3q3yDjhx47pKOye6Rw1nFqLhPNjWGaBtDFIxPHYaowxC9hKHXFBBEEUE0t7SNINogqBRSIoiWCKI1gh6Q1el4eTzxqoM4PAUJ9tbTPktCYxiTjAlmFTYlHISa-0YyI30Z2jgRggcK_vRFYpnVsRJ-LA18rUaz8CE5yPLMPCZUCx4nksc2jHhkuRVykNghyGDWxFqwLhnUSky_uX4raZmnsiD9TfMpaD4tNd8lR7W6U_COuOUlMpMXm3QA0TBgPQqCLnnk7LAXi70pEX5PrnH3U3KrwfAzcrA9L8xziEa38kUJll_hJIrk
link.rule.ids 314,780,784,27924,27925
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Inflammation+and+Smooth+Muscle+Contractility%3A+The+Role+of+Nox1-Derived+Superoxide+and+LRRC8+Anion+Channels&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=Lamb%2C+Fred+S&rft.au=Choi%2C+Hyehun&rft.au=Miller%2C+Michael+R&rft.au=Stark%2C+Ryan+J&rft.date=2024-04-01&rft.eissn=1524-4563&rft.volume=81&rft.issue=4&rft.spage=752&rft.epage=763&rft_id=info:doi/10.1161%2FHYPERTENSIONAHA.123.19434&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon