Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels
Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and...
Saved in:
Published in | Hypertension (Dallas, Tex. 1979) Vol. 81; no. 4; pp. 752 - 763 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O
). The mechanisms of O
signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O
to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O
and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension. |
---|---|
AbstractList | Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O2•-). The mechanisms of O2•- signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O2•- to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O2•- and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension. Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O 2 •− ). The mechanisms of O 2 •− signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O 2 •− to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O 2 •− and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension. Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense investigation. Proinflammatory factors including glucose, salt, vasoconstrictors, cytokines, wall stress, and growth factors enhance contractility and impair relaxation of vascular smooth muscle cells. These pathways share a dependence upon redox signaling, and excessive activation promotes oxidative stress that promotes vascular aging. Vascular smooth muscle cell phenotypic switching and migration into the intima contribute to atherosclerosis, while hypercontractility increases systemic vascular resistance and vasospasm that can trigger ischemia. Here, we review factors that drive the initiation and progression of this vasculopathy in vascular smooth muscle cells. Emphasis is placed on the contribution of reactive oxygen species generated by the Nox1 NADPH oxidase which produces extracellular superoxide (O ). The mechanisms of O signaling remain poorly defined, but recent evidence demonstrates physical association of Nox1 with leucine-rich repeat containing 8 family volume-sensitive anion channels. These may provide a pathway for influx of O to the cytoplasm, creating an oxidized cytoplasmic nanodomain where redox-based signals can affect both cytoskeletal structure and vasomotor function. Understanding the mechanistic links between inflammation, O and vascular smooth muscle cell contractility may facilitate targeting of anti-inflammatory therapy in hypertension. |
Author | Choi, Hyehun Miller, Michael R Stark, Ryan J Lamb, Fred S |
Author_xml | – sequence: 1 givenname: Fred S orcidid: 0000-0003-2955-5133 surname: Lamb fullname: Lamb, Fred S organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN – sequence: 2 givenname: Hyehun orcidid: 0000-0002-9915-6632 surname: Choi fullname: Choi, Hyehun organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN – sequence: 3 givenname: Michael R orcidid: 0000-0002-7726-0519 surname: Miller fullname: Miller, Michael R organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN – sequence: 4 givenname: Ryan J orcidid: 0000-0001-6142-5502 surname: Stark fullname: Stark, Ryan J organization: Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38174563$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkF1PwjAUhhuDEUT_gql33gx71tEx78hEIUE0iEavlq47CzNbi-1m9N87EL3w6iTveT-S55h0tNFIyDmwAYCAy-nrw2S5miweZ_eL8XQ8AJ8PIAp4cEB6MPQDLxgK3iE91opeBPDSJcfOvTEGQRCER6TLRxBuPT3inqVTTSktnem8lFUl68JoKnVGHytj6jW9a5wqkcZG11aquiiL-uuKrtZIl6bVTU4X5hO8a7TFB7apZoPWfBYZ7krmy2U8omO9LY3XUmss3Qk5zGXp8HR_--TpZrKKp978_nYWj-ee8gXUXsZExBGFSIWQIlcgWOjzbMQwFZiylOdhJOUIVPtkMspFnoVKsjBFnzHMBO-Ti5_ejTXvDbo6qQqnsCylRtO4xI-gJRQGAK01-rEqa5yzmCcbW1TSfiXAki3z5B_zpGWe7Ji32bP9TJNWmP0lfyHzb-r3ggA |
Cites_doi | 10.1161/ATVBAHA.116.308929 10.1007/s00109-019-01845-2 10.1016/j.freeradbiomed.2016.11.003 10.1016/j.bbamem.2013.09.016 10.1161/JAHA.119.012748 10.1161/01.res.81.5.797 10.1016/j.lfs.2017.05.002 10.1038/nm1119 10.1152/ajpcell.00281.2019 10.1016/j.vph.2015.03.005 10.1016/j.str.2007.10.014 10.1002/jcb.21488 10.1016/j.cmet.2020.02.003 10.1093/ajh/hpaa089 10.1089/ars.2008.2390 10.1038/nature08206 10.1016/j.freeradbiomed.2017.02.049 10.1016/j.freeradbiomed.2020.11.020 10.1152/ajprenal.00236.2022 10.1093/cvr/cvm031 10.1113/JP283321 10.1161/HYPERTENSIONAHA.110.158071 10.1016/j.jash.2011.02.001 10.7554/eLife.61313 10.1093/cvr/cvy023 10.14814/phy2.14220 10.1007/s11906-022-01214-4 10.1161/CIRCRESAHA.115.306361 10.1161/CIRCRESAHA.107.151076 10.1161/HYPERTENSIONAHA.122.20588 10.1152/ajpheart.00741.2018 10.1016/j.cpcardiol.2023.102060 10.1016/j.molcel.2007.04.021 10.3164/jcbn.19-119 10.1007/s10753-017-0653-y 10.1097/01.mnh.0000203190.34643.d4 10.3389/fphys.2021.691045 10.1016/j.cub.2019.07.035 10.1016/j.freeradbiomed.2012.03.008 10.4161/chan.3.5.9568 10.1093/cvr/cvs295 10.1021/bi0610101 10.1152/ajpcell.00253.2008 10.1128/MCB.02038-07 10.1161/01.ATV.0000112024.13727.2c 10.1111/j.1469-7793.1999.067aa.x 10.1016/j.yjmcc.2013.10.013 10.1161/CIRCRESAHA.117.311401 10.1161/ATVBAHA.110.215004 10.3389/fchem.2015.00024 10.1371/journal.pone.0008045 10.1161/HYPERTENSIONAHA.107.102152 10.1080/19336950.2022.2033511 10.1016/j.freeradbiomed.2021.01.022 10.1161/HYPERTENSIONAHA.107.089706 10.1016/j.bcp.2022.115263 10.1124/mol.63.3.714 10.1093/emboj/18.3.578 10.1016/j.cardiores.2006.10.020 10.1074/jbc.M112.394551 10.1016/j.redox.2014.03.004 10.1097/MD.0000000000015773 10.1016/j.freeradbiomed.2020.11.021 10.1016/j.freeradbiomed.2017.06.022 10.1161/ATVBAHA.118.311038 10.2165/00129784-200101060-00001 10.1152/ajpheart.00231.2012 10.1089/ars.2021.0047 10.1016/j.cmet.2015.11.013 10.1152/physrev.00053.2021 10.1089/ars.2009.2857 10.1016/j.freeradbiomed.2019.09.029 10.1091/mbc.e06-09-0830 10.1097/00005344-200211000-00013 10.1161/01.res.0000033523.08033.16 10.1161/ATVBAHA.107.142117 10.3390/biology11050662 10.1161/01.hyp.18.5_suppl.iii69 10.1016/j.redox.2016.08.015 10.1016/s0891-5849(99)00051-9 10.1089/ars.2008.2378 10.3390/pathophysiology27010005 10.1161/CIRCRESAHA.112.267054 10.1111/micc.12756 10.33594/000000341 10.3390/biomedicines10051168 10.3390/antiox12020281 10.3109/08037051.2014.940710 10.1161/01.res.0000020404.01971.2f 10.1113/jphysiol.2005.094748 10.1179/174329210X12650506623401 10.1074/jbc.M410909200 10.1161/CIRCULATIONAHA.105.573709 10.1161/ATVBAHA.121.317239 10.1085/jgp.200409040 10.1038/s41580-020-0230-3 10.1152/ajpheart.00220.2020 10.3389/fphar.2022.896532 10.1161/HYP.0000000000000228 10.1007/s00018-010-0460-1 10.1016/j.bbamcr.2022.119276 10.1016/j.mcna.2016.08.015 10.1161/CIRCULATIONAHA.105.538934 10.1016/j.freeradbiomed.2015.05.015 10.1016/s0022-2143(97)90178-5 10.1080/21541248.2020.1822721 10.1096/fj.202300561R 10.1016/j.febslet.2005.12.049 10.1161/ATVBAHA.108.168021 10.3389/fncel.2022.962714 10.1371/journal.pone.0062461 10.1038/jcbfm.2012.144 10.14814/phy2.14303 10.1038/43459 10.1016/j.semcdb.2023.02.006 10.1042/EBC20190015 10.1161/ATVBAHA.118.311229 10.1016/j.freeradbiomed.2023.10.397 10.1016/j.ejcb.2022.151249 10.1016/j.phrs.2016.10.015 10.1007/s00232-022-00271-9 10.1093/ajh/hpaa195 10.2741/s506 10.1152/ajpheart.00026.2004 10.1113/JP281577 10.1016/j.freeradbiomed.2008.11.015 10.1073/pnas.2015666118 10.1161/ATVBAHA.114.304936 10.1161/hh0901.090299 10.1089/ars.2013.5500 10.1161/01.RES.0000059987.90200.44 10.1007/978-1-60761-500-2_23 10.1007/s11906-019-1003-2 10.1089/ars.2018.7583 10.1155/2020/1954398 10.1152/ajpheart.00168.2015 10.1111/imr.12437 10.1074/jbc.M109.099838 10.1113/JP274795 10.1038/nrcardio.2010.136 10.1182/blood-2010-08-299438 10.1038/ncomms14805 10.1074/jbc.M506863200 10.1074/jbc.m111.268284 10.1096/fj.00-0735fje 10.1016/j.chembiol.2014.02.020 10.1089/ars.2010.3648 10.1074/jbc.M509255200 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 |
DOI | 10.1161/HYPERTENSIONAHA.123.19434 |
DatabaseName | PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1524-4563 |
EndPage | 763 |
ExternalDocumentID | 10_1161_HYPERTENSIONAHA_123_19434 38174563 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL160975 – fundername: NIDDK NIH HHS grantid: R01 DK132948 – fundername: NIGMS NIH HHS grantid: R35 GM138191 |
GroupedDBID | --- .-D .3C .55 .GJ .XZ .Z2 01R 0R~ 18M 1J1 2WC 3O- 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 71W 77Y 7O~ AAAAV AAAXR AAFWJ AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AAXQO AAYEP ABASU ABBUW ABDIG ABJNI ABOCM ABQRW ABVCZ ABXVJ ABZAD ACCJW ACDDN ACEWG ACGFO ACGFS ACILI ACLDA ACWDW ACWRI ACXJB ACXNZ ADBBV ADFPA ADGGA ADHPY ADNKB AE3 AE6 AEBDS AEETU AENEX AFDTB AFEXH AFFNX AFUWQ AGINI AHMBA AHOMT AHQNM AHRYX AHVBC AIJEX AINUH AJIOK AJNWD AJNYG AJZMW AKULP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AWKKM BAWUL BCGUY BOYCO BQLVK BS7 C1A C45 CS3 DIK DIWNM DUNZO E.X E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG FL- FW0 GNXGY GQDEL GX1 H0~ H13 HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 JK8 K-A K-F K8S KD2 KMI KQ8 L-C L7B N4W N9A NPM N~7 N~B N~M O9- OAG OAH OB3 OCUKA ODA ODMTH OGROG OHYEH OK1 OL1 OLG OLH OLU OLV OLW OLY OLZ OPUJH ORVUJ OUVQU OVD OVDNE OVIDH OVLEI OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P-K P2P PQQKQ R58 RAH RHF RIG RLZ S4R S4S T8P TEORI TR2 TSPGW V2I VVN W3M W8F WH7 WOQ WOW X3V X3W X7M XXN XYM YFH YHZ YOC YYM YYP ZFV ZGI ZZMQN AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c261t-d0693ee66b66a6fc160723d80eb6eb0b3f79aa81ca6f0a9f6fd7ca07be200ed63 |
ISSN | 0194-911X |
IngestDate | Sat Oct 26 05:59:54 EDT 2024 Fri Dec 06 02:22:41 EST 2024 Sat Nov 02 12:32:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | blood pressure NADPH oxidases inflammation blood vessels rho-associated kinases hypertension superoxides |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c261t-d0693ee66b66a6fc160723d80eb6eb0b3f79aa81ca6f0a9f6fd7ca07be200ed63 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ORCID | 0000-0002-7726-0519 0000-0003-2955-5133 0000-0001-6142-5502 0000-0002-9915-6632 |
PMID | 38174563 |
PQID | 2910197411 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2910197411 crossref_primary_10_1161_HYPERTENSIONAHA_123_19434 pubmed_primary_38174563 |
PublicationCentury | 2000 |
PublicationDate | 2024-Apr 2024-04-00 20240401 |
PublicationDateYYYYMMDD | 2024-04-01 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-Apr |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Hypertension (Dallas, Tex. 1979) |
PublicationTitleAlternate | Hypertension |
PublicationYear | 2024 |
References | e_1_3_3_96_2 e_1_3_3_50_2 e_1_3_3_77_2 e_1_3_3_117_2 e_1_3_3_16_2 e_1_3_3_39_2 e_1_3_3_132_2 e_1_3_3_12_2 e_1_3_3_58_2 e_1_3_3_35_2 e_1_3_3_92_2 e_1_3_3_113_2 e_1_3_3_136_2 e_1_3_3_151_2 e_1_3_3_54_2 e_1_3_3_31_2 e_1_3_3_73_2 e_1_3_3_61_2 e_1_3_3_88_2 e_1_3_3_150_2 e_1_3_3_5_2 e_1_3_3_128_2 e_1_3_3_105_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_109_2 e_1_3_3_23_2 e_1_3_3_69_2 e_1_3_3_120_2 e_1_3_3_46_2 e_1_3_3_80_2 e_1_3_3_147_2 e_1_3_3_65_2 e_1_3_3_124_2 e_1_3_3_42_2 e_1_3_3_84_2 e_1_3_3_101_2 e_1_3_3_143_2 e_1_3_3_76_2 e_1_3_3_99_2 e_1_3_3_139_2 e_1_3_3_116_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_131_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_91_2 e_1_3_3_135_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_72_2 e_1_3_3_95_2 e_1_3_3_112_2 e_1_3_3_60_2 e_1_3_3_87_2 e_1_3_3_8_2 e_1_3_3_104_2 e_1_3_3_127_2 e_1_3_3_49_2 e_1_3_3_108_2 e_1_3_3_142_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_68_2 e_1_3_3_146_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 e_1_3_3_83_2 e_1_3_3_100_2 e_1_3_3_123_2 e_1_3_3_75_2 e_1_3_3_71_2 e_1_3_3_98_2 e_1_3_3_79_2 e_1_3_3_115_2 e_1_3_3_138_2 Afanas’ev IB (e_1_3_3_110_2) 1989 e_1_3_3_119_2 e_1_3_3_18_2 e_1_3_3_37_2 e_1_3_3_90_2 e_1_3_3_130_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_94_2 e_1_3_3_111_2 e_1_3_3_134_2 e_1_3_3_10_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_86_2 e_1_3_3_107_2 e_1_3_3_7_2 e_1_3_3_126_2 e_1_3_3_149_2 e_1_3_3_29_2 e_1_3_3_48_2 e_1_3_3_145_2 e_1_3_3_141_2 e_1_3_3_25_2 e_1_3_3_67_2 e_1_3_3_44_2 e_1_3_3_82_2 e_1_3_3_103_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_63_2 e_1_3_3_122_2 e_1_3_3_51_2 e_1_3_3_74_2 e_1_3_3_97_2 e_1_3_3_70_2 e_1_3_3_78_2 e_1_3_3_118_2 e_1_3_3_137_2 e_1_3_3_17_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_93_2 e_1_3_3_114_2 Kedzierski L (e_1_3_3_121_2) 2004; 52 e_1_3_3_133_2 e_1_3_3_62_2 e_1_3_3_85_2 e_1_3_3_89_2 e_1_3_3_6_2 e_1_3_3_106_2 e_1_3_3_129_2 e_1_3_3_28_2 e_1_3_3_148_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_144_2 e_1_3_3_140_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_66_2 e_1_3_3_81_2 e_1_3_3_102_2 e_1_3_3_125_2 |
References_xml | – ident: e_1_3_3_46_2 doi: 10.1161/ATVBAHA.116.308929 – ident: e_1_3_3_113_2 doi: 10.1007/s00109-019-01845-2 – ident: e_1_3_3_38_2 doi: 10.1016/j.freeradbiomed.2016.11.003 – ident: e_1_3_3_114_2 doi: 10.1016/j.bbamem.2013.09.016 – ident: e_1_3_3_151_2 doi: 10.1161/JAHA.119.012748 – ident: e_1_3_3_72_2 doi: 10.1161/01.res.81.5.797 – ident: e_1_3_3_48_2 doi: 10.1016/j.lfs.2017.05.002 – ident: e_1_3_3_109_2 doi: 10.1038/nm1119 – ident: e_1_3_3_148_2 doi: 10.1152/ajpcell.00281.2019 – ident: e_1_3_3_26_2 doi: 10.1016/j.vph.2015.03.005 – ident: e_1_3_3_89_2 doi: 10.1016/j.str.2007.10.014 – ident: e_1_3_3_123_2 doi: 10.1002/jcb.21488 – ident: e_1_3_3_124_2 doi: 10.1016/j.cmet.2020.02.003 – ident: e_1_3_3_104_2 doi: 10.1093/ajh/hpaa089 – ident: e_1_3_3_18_2 doi: 10.1089/ars.2008.2390 – ident: e_1_3_3_107_2 doi: 10.1038/nature08206 – ident: e_1_3_3_36_2 doi: 10.1016/j.freeradbiomed.2017.02.049 – ident: e_1_3_3_55_2 doi: 10.1016/j.freeradbiomed.2020.11.020 – ident: e_1_3_3_58_2 doi: 10.1152/ajprenal.00236.2022 – ident: e_1_3_3_139_2 doi: 10.1093/cvr/cvm031 – ident: e_1_3_3_143_2 doi: 10.1113/JP283321 – ident: e_1_3_3_68_2 doi: 10.1161/HYPERTENSIONAHA.110.158071 – ident: e_1_3_3_57_2 doi: 10.1016/j.jash.2011.02.001 – ident: e_1_3_3_150_2 doi: 10.7554/eLife.61313 – ident: e_1_3_3_3_2 doi: 10.1093/cvr/cvy023 – ident: e_1_3_3_131_2 doi: 10.14814/phy2.14220 – ident: e_1_3_3_7_2 doi: 10.1007/s11906-022-01214-4 – ident: e_1_3_3_17_2 doi: 10.1161/CIRCRESAHA.115.306361 – ident: e_1_3_3_44_2 doi: 10.1161/CIRCRESAHA.107.151076 – volume-title: Superoxide Ion: Chemistry and Biological Implications year: 1989 ident: e_1_3_3_110_2 contributor: fullname: Afanas’ev IB – ident: e_1_3_3_10_2 doi: 10.1161/HYPERTENSIONAHA.122.20588 – ident: e_1_3_3_102_2 doi: 10.1152/ajpheart.00741.2018 – ident: e_1_3_3_29_2 doi: 10.1016/j.cpcardiol.2023.102060 – ident: e_1_3_3_106_2 doi: 10.1016/j.molcel.2007.04.021 – ident: e_1_3_3_135_2 doi: 10.3164/jcbn.19-119 – ident: e_1_3_3_20_2 doi: 10.1007/s10753-017-0653-y – ident: e_1_3_3_14_2 doi: 10.1097/01.mnh.0000203190.34643.d4 – ident: e_1_3_3_149_2 doi: 10.3389/fphys.2021.691045 – ident: e_1_3_3_88_2 doi: 10.1016/j.cub.2019.07.035 – ident: e_1_3_3_111_2 doi: 10.1016/j.freeradbiomed.2012.03.008 – ident: e_1_3_3_146_2 doi: 10.4161/chan.3.5.9568 – ident: e_1_3_3_115_2 doi: 10.1093/cvr/cvs295 – ident: e_1_3_3_23_2 doi: 10.1021/bi0610101 – ident: e_1_3_3_100_2 doi: 10.1152/ajpcell.00253.2008 – ident: e_1_3_3_62_2 doi: 10.1128/MCB.02038-07 – ident: e_1_3_3_85_2 doi: 10.1161/01.ATV.0000112024.13727.2c – ident: e_1_3_3_137_2 doi: 10.1111/j.1469-7793.1999.067aa.x – ident: e_1_3_3_79_2 doi: 10.1016/j.yjmcc.2013.10.013 – ident: e_1_3_3_24_2 doi: 10.1161/CIRCRESAHA.117.311401 – ident: e_1_3_3_34_2 doi: 10.1161/ATVBAHA.110.215004 – ident: e_1_3_3_56_2 doi: 10.3389/fchem.2015.00024 – ident: e_1_3_3_92_2 doi: 10.1371/journal.pone.0008045 – ident: e_1_3_3_69_2 doi: 10.1161/HYPERTENSIONAHA.107.102152 – ident: e_1_3_3_145_2 doi: 10.1080/19336950.2022.2033511 – ident: e_1_3_3_108_2 doi: 10.1016/j.freeradbiomed.2021.01.022 – ident: e_1_3_3_80_2 doi: 10.1161/HYPERTENSIONAHA.107.089706 – ident: e_1_3_3_11_2 doi: 10.1016/j.bcp.2022.115263 – ident: e_1_3_3_91_2 doi: 10.1124/mol.63.3.714 – ident: e_1_3_3_82_2 doi: 10.1093/emboj/18.3.578 – ident: e_1_3_3_86_2 doi: 10.1016/j.cardiores.2006.10.020 – ident: e_1_3_3_15_2 doi: 10.1074/jbc.M112.394551 – ident: e_1_3_3_32_2 doi: 10.1016/j.redox.2014.03.004 – ident: e_1_3_3_12_2 doi: 10.1097/MD.0000000000015773 – ident: e_1_3_3_21_2 doi: 10.1016/j.freeradbiomed.2020.11.021 – ident: e_1_3_3_22_2 doi: 10.1016/j.freeradbiomed.2017.06.022 – ident: e_1_3_3_54_2 doi: 10.1161/ATVBAHA.118.311038 – ident: e_1_3_3_28_2 doi: 10.2165/00129784-200101060-00001 – ident: e_1_3_3_78_2 doi: 10.1152/ajpheart.00231.2012 – ident: e_1_3_3_51_2 doi: 10.1089/ars.2021.0047 – ident: e_1_3_3_67_2 doi: 10.1016/j.cmet.2015.11.013 – ident: e_1_3_3_19_2 doi: 10.1152/physrev.00053.2021 – ident: e_1_3_3_75_2 doi: 10.1089/ars.2009.2857 – ident: e_1_3_3_37_2 doi: 10.1016/j.freeradbiomed.2019.09.029 – ident: e_1_3_3_63_2 doi: 10.1091/mbc.e06-09-0830 – ident: e_1_3_3_97_2 doi: 10.1097/00005344-200211000-00013 – volume: 52 start-page: 104 year: 2004 ident: e_1_3_3_121_2 article-title: Leucine-rich repeats in host-pathogen interactions. publication-title: Arch Immunol Ther Exp (Warsz) contributor: fullname: Kedzierski L – ident: e_1_3_3_61_2 doi: 10.1161/01.res.0000033523.08033.16 – ident: e_1_3_3_74_2 doi: 10.1161/ATVBAHA.107.142117 – ident: e_1_3_3_127_2 doi: 10.3390/biology11050662 – ident: e_1_3_3_2_2 doi: 10.1161/01.hyp.18.5_suppl.iii69 – ident: e_1_3_3_116_2 doi: 10.1016/j.redox.2016.08.015 – ident: e_1_3_3_118_2 doi: 10.1016/s0891-5849(99)00051-9 – ident: e_1_3_3_64_2 doi: 10.1089/ars.2008.2378 – ident: e_1_3_3_66_2 doi: 10.3390/pathophysiology27010005 – ident: e_1_3_3_40_2 doi: 10.1161/CIRCRESAHA.112.267054 – ident: e_1_3_3_99_2 doi: 10.1111/micc.12756 – ident: e_1_3_3_141_2 doi: 10.33594/000000341 – ident: e_1_3_3_35_2 doi: 10.3390/biomedicines10051168 – ident: e_1_3_3_25_2 doi: 10.3390/antiox12020281 – ident: e_1_3_3_13_2 doi: 10.3109/08037051.2014.940710 – ident: e_1_3_3_42_2 doi: 10.1161/01.res.0000020404.01971.2f – ident: e_1_3_3_134_2 doi: 10.1113/jphysiol.2005.094748 – ident: e_1_3_3_120_2 doi: 10.1179/174329210X12650506623401 – ident: e_1_3_3_133_2 doi: 10.1074/jbc.M410909200 – ident: e_1_3_3_49_2 doi: 10.1161/CIRCULATIONAHA.105.573709 – ident: e_1_3_3_59_2 doi: 10.1161/ATVBAHA.121.317239 – ident: e_1_3_3_138_2 doi: 10.1085/jgp.200409040 – ident: e_1_3_3_27_2 doi: 10.1038/s41580-020-0230-3 – ident: e_1_3_3_33_2 doi: 10.1152/ajpheart.00220.2020 – ident: e_1_3_3_144_2 doi: 10.3389/fphar.2022.896532 – ident: e_1_3_3_5_2 doi: 10.1161/HYP.0000000000000228 – ident: e_1_3_3_83_2 doi: 10.1007/s00018-010-0460-1 – ident: e_1_3_3_132_2 doi: 10.1016/j.bbamcr.2022.119276 – ident: e_1_3_3_6_2 doi: 10.1016/j.mcna.2016.08.015 – ident: e_1_3_3_52_2 doi: 10.1161/CIRCULATIONAHA.105.538934 – ident: e_1_3_3_39_2 doi: 10.1016/j.freeradbiomed.2015.05.015 – ident: e_1_3_3_65_2 doi: 10.1016/s0022-2143(97)90178-5 – ident: e_1_3_3_84_2 doi: 10.1080/21541248.2020.1822721 – ident: e_1_3_3_119_2 doi: 10.1096/fj.202300561R – ident: e_1_3_3_50_2 doi: 10.1016/j.febslet.2005.12.049 – ident: e_1_3_3_93_2 doi: 10.1161/ATVBAHA.108.168021 – ident: e_1_3_3_136_2 doi: 10.3389/fncel.2022.962714 – ident: e_1_3_3_129_2 doi: 10.1371/journal.pone.0062461 – ident: e_1_3_3_98_2 doi: 10.1038/jcbfm.2012.144 – ident: e_1_3_3_147_2 doi: 10.14814/phy2.14303 – ident: e_1_3_3_43_2 doi: 10.1038/43459 – ident: e_1_3_3_9_2 doi: 10.1016/j.semcdb.2023.02.006 – ident: e_1_3_3_130_2 doi: 10.1042/EBC20190015 – ident: e_1_3_3_73_2 doi: 10.1161/ATVBAHA.118.311229 – ident: e_1_3_3_112_2 doi: 10.1016/j.freeradbiomed.2023.10.397 – ident: e_1_3_3_128_2 doi: 10.1016/j.ejcb.2022.151249 – ident: e_1_3_3_81_2 doi: 10.1016/j.phrs.2016.10.015 – ident: e_1_3_3_125_2 doi: 10.1007/s00232-022-00271-9 – ident: e_1_3_3_4_2 doi: 10.1093/ajh/hpaa195 – ident: e_1_3_3_30_2 doi: 10.2741/s506 – ident: e_1_3_3_31_2 doi: 10.1152/ajpheart.00026.2004 – ident: e_1_3_3_103_2 doi: 10.1113/JP281577 – ident: e_1_3_3_105_2 doi: 10.1016/j.freeradbiomed.2008.11.015 – ident: e_1_3_3_47_2 doi: 10.1073/pnas.2015666118 – ident: e_1_3_3_71_2 doi: 10.1161/ATVBAHA.114.304936 – ident: e_1_3_3_45_2 doi: 10.1161/hh0901.090299 – ident: e_1_3_3_77_2 doi: 10.1089/ars.2013.5500 – ident: e_1_3_3_95_2 doi: 10.1161/01.RES.0000059987.90200.44 – ident: e_1_3_3_94_2 doi: 10.1007/978-1-60761-500-2_23 – ident: e_1_3_3_16_2 doi: 10.1007/s11906-019-1003-2 – ident: e_1_3_3_41_2 doi: 10.1089/ars.2018.7583 – ident: e_1_3_3_8_2 doi: 10.1155/2020/1954398 – ident: e_1_3_3_101_2 doi: 10.1152/ajpheart.00168.2015 – ident: e_1_3_3_117_2 doi: 10.1111/imr.12437 – ident: e_1_3_3_140_2 doi: 10.1074/jbc.M109.099838 – ident: e_1_3_3_142_2 doi: 10.1113/JP274795 – ident: e_1_3_3_96_2 doi: 10.1038/nrcardio.2010.136 – ident: e_1_3_3_87_2 doi: 10.1182/blood-2010-08-299438 – ident: e_1_3_3_70_2 doi: 10.1038/ncomms14805 – ident: e_1_3_3_122_2 doi: 10.1074/jbc.M506863200 – ident: e_1_3_3_76_2 doi: 10.1074/jbc.m111.268284 – ident: e_1_3_3_90_2 doi: 10.1096/fj.00-0735fje – ident: e_1_3_3_126_2 doi: 10.1016/j.chembiol.2014.02.020 – ident: e_1_3_3_60_2 doi: 10.1089/ars.2010.3648 – ident: e_1_3_3_53_2 doi: 10.1074/jbc.M509255200 |
SSID | ssj0014447 |
Score | 2.5037215 |
SecondaryResourceType | review_article |
Snippet | Vascular inflammation underlies the development of hypertension, and the mechanisms by which it increases blood pressure remain the topic of intense... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 752 |
Title | Vascular Inflammation and Smooth Muscle Contractility: The Role of Nox1-Derived Superoxide and LRRC8 Anion Channels |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38174563 https://search.proquest.com/docview/2910197411 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6FIlVcEG_CS1uJW-Rgx856zS1qUwVIAkQJCidrn4JDbdTEKOXMD2fGa8cuUKlwsaKNPLZmPs_O7H4zS8hLJTRTikNaohPfizS3HmdSedFQJyocBopxrEaezdlkFb1dD9edzs8Wa6nYyr768de6kv-xKoyBXbFK9h8suxcKA_Ab7AtXsDBcr2XjTzWN9E1mwbKuCtGRMc9yMEFvVmzgFizr25bVUBhz1zyLRcUrnOe7wDuB1_2OsWeBjcN3X7XbVZguFse8N8pQLNYhZK758j6cnUAWe15y4EsQ8RNclnfEI7Pr94IkTlpLDVNxJl2wjE9qiAW5Ozn7wnwp9lBtahQrYn_DbIT42PG7FxdYe9Vetxi06S6m8rUwCPFb2HbG7vyWCnRRy7PGrtFtNUlXXvFP_8_Q_08-fxhDNjDH6Wg0wfXesB9gI7xm0qs3-ufv09PVdJoux-vlDXIT2yniCQzvPjZ7UVEUxYfkqBL_6krhlyObK9KVMmxZ3iG3q3yDjhx47pKOye6Rw1nFqLhPNjWGaBtDFIxPHYaowxC9hKHXFBBEEUE0t7SNINogqBRSIoiWCKI1gh6Q1el4eTzxqoM4PAUJ9tbTPktCYxiTjAlmFTYlHISa-0YyI30Z2jgRggcK_vRFYpnVsRJ-LA18rUaz8CE5yPLMPCZUCx4nksc2jHhkuRVykNghyGDWxFqwLhnUSky_uX4raZmnsiD9TfMpaD4tNd8lR7W6U_COuOUlMpMXm3QA0TBgPQqCLnnk7LAXi70pEX5PrnH3U3KrwfAzcrA9L8xziEa38kUJll_hJIrk |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+Inflammation+and+Smooth+Muscle+Contractility%3A+The+Role+of+Nox1-Derived+Superoxide+and+LRRC8+Anion+Channels&rft.jtitle=Hypertension+%28Dallas%2C+Tex.+1979%29&rft.au=Lamb%2C+Fred+S&rft.au=Choi%2C+Hyehun&rft.au=Miller%2C+Michael+R&rft.au=Stark%2C+Ryan+J&rft.date=2024-04-01&rft.eissn=1524-4563&rft.volume=81&rft.issue=4&rft.spage=752&rft.epage=763&rft_id=info:doi/10.1161%2FHYPERTENSIONAHA.123.19434&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0194-911X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0194-911X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0194-911X&client=summon |