Stabilization of Metal(loid)s Using Iron Phosphate-Coated Biochar and Its Impact on Lettuce (Lactuca sativa L.) Growth in Soil

Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated bio...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 42; no. 8; pp. 1705 - 1716
Main Authors Kim, Han Na, Cho, Dong-Wan, Yim, Gil-Jae, Park, Jin Hee
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.07.2025
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-025-00410-7

Cover

Loading…
Abstract Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental effect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic effect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid)s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse effects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil.
AbstractList Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental effect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic effect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid)s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse effects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil.
Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines aff ects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental eff ect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic eff ect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid) s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse eff ects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil. KCI Citation Count: 0
Author Park, Jin Hee
Kim, Han Na
Yim, Gil-Jae
Cho, Dong-Wan
Author_xml – sequence: 1
  givenname: Han Na
  surname: Kim
  fullname: Kim, Han Na
– sequence: 2
  givenname: Dong-Wan
  surname: Cho
  fullname: Cho, Dong-Wan
– sequence: 3
  givenname: Gil-Jae
  surname: Yim
  fullname: Yim, Gil-Jae
– sequence: 4
  givenname: Jin Hee
  orcidid: 0000-0002-9434-1361
  surname: Park
  fullname: Park, Jin Hee
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003227036$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNotkUFPGzEQha0KpAbaP9CTpV5CJVOPHdu7RxoVutJWICBny-v1JobNOrUdED3w23FJL_OkeZ-eRvNO0NEUJofQF6DnQKn6ngAqWBDKBKF0AZSoD2gGtRJEMUaP0Kw4kgCA-IhOUnqgVAjJ6Ay93mXT-dH_NdmHCYcB_3bZjPMx-P4s4VXy0xo3sVg3m5B2G5MdWYYye_zDB7sxEZupx01OuNnujM24oK3LeW8dnrdlsbcGp5L-ZHB7foavYnjOG-wnfBf8-AkdD2ZM7vN_PUWry5_3y1-kvb5qlhctsUxCJqYStbSys50YQCyqvgc5SOus7ZWlqq4EKNpxppzqOiO5kpxXpqNQC1t3lvJT9O2QO8VBP1qvg_Hvug76MeqL2_tGA1VcKVUX-OsB3sXwZ-9S1g9hH6dyn-aMcQnAFlWh2IGyMaQU3aB30W9NfClB-l8p-lCKLq_X76Voxd8AEel_sA
Cites_doi 10.1016/j.ecoenv.2005.11.007
10.1007/s11368-013-0814-z
10.1007/s12665-015-4116-1
10.1016/j.chemosphere.2017.12.133
10.1016/j.jhazmat.2020.122977
10.1016/j.scitotenv.2021.150084
10.1016/j.chemosphere.2020.126937
10.1016/j.chemosphere.2022.135196
10.1007/s11270-012-1378-z
10.1007/s11368-016-1540-0
10.3390/ijerph191710824
10.1016/j.scitotenv.2020.141672
10.1007/s11368-023-03520-z
10.1016/j.catena.2015.07.008
10.1016/j.scitotenv.2012.09.023
10.1016/j.jwpe.2023.104545
10.1007/s11356-013-1769-8
10.1007/s11104-011-0948-y
10.1016/0038-0717(90)90094-G
10.1016/j.apgeochem.2012.01.011
10.1016/j.chemosphere.2022.136536
10.3390/ijerph17030827
10.1016/j.envpol.2021.118587
10.1016/j.jece.2013.08.009
10.1016/j.envres.2020.110030
10.1007/s40726-015-0024-y
10.1016/j.carbon.2016.11.032
10.1016/j.chemosphere.2006.11.057
10.1016/j.chemosphere.2013.10.071
10.1016/j.cej.2023.144368
10.1002/9781444319477.ch16
10.1016/j.scitotenv.2021.152112
10.17221/318/2017-PSE
10.1007/s10661-019-7573-2
10.1007/s10653-023-01606-8
10.1080/01904167.2021.1921200
10.1007/s11356-020-08847-5
10.1016/j.scitotenv.2010.11.003
10.2478/fhort-2024-0033
10.1080/09593330.2015.1042071
10.1080/00380768.2017.1373599
10.1016/j.jhazmat.2013.12.018
10.1016/j.jhazmat.2005.04.005
10.1016/j.jhazmat.2022.130203
10.1016/j.scitotenv.2020.141607
10.1016/j.ecoenv.2020.111294
10.1016/j.geoderma.2016.07.019
10.1039/C6EM00098C
10.1016/j.clay.2014.12.031
10.1007/s11356-022-23800-4
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-025-00410-7
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1975-7220
EndPage 1716
ExternalDocumentID oai_kci_go_kr_ARTI_10737779
10_1007_s11814_025_00410_7
GroupedDBID -Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBRH
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
ZMTXR
ZZE
~A9
~EX
ABRTQ
ACYCR
ID FETCH-LOGICAL-c261t-a8596c6bcb5f1548dd16f6ceccd7c07985170b327e7bba6376338ab0195c9bc03
ISSN 0256-1115
IngestDate Thu Jul 24 03:28:11 EDT 2025
Fri Jul 25 09:14:39 EDT 2025
Thu Jul 03 08:17:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-a8596c6bcb5f1548dd16f6ceccd7c07985170b327e7bba6376338ab0195c9bc03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9434-1361
PQID 3223611248
PQPubID 2044390
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10737779
proquest_journals_3223611248
crossref_primary_10_1007_s11814_025_00410_7
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationYear 2025
Publisher Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer Nature B.V
– name: 한국화학공학회
References LD Burrell (410_CR24) 2016; 282
RK Xu (410_CR53) 2013; 20
M Arif (410_CR14) 2020
Y Sun (410_CR5) 2015; 105
JH Park (410_CR7) 2011; 348
M Rafique (410_CR23) 2017; 63
H Yang (410_CR16) 2023; 56
K Vaca-Escobar (410_CR34) 2012; 27
YM Wang (410_CR48) 2020; 17
V Zemanova (410_CR46) 2017; 63
B Sylvain (410_CR3) 2016; 136
S Ogawa (410_CR40) 2015; 36
CC Ng (410_CR26) 2019; 191
H Yang (410_CR17) 2023; 471
TH Anderson (410_CR19) 1990; 22
MH Kalaji (410_CR30) 2008; 29
E Jam (410_CR33) 2023
HN Kim (410_CR10) 2023; 30
MB McBride (410_CR35) 2013; 224
Y Arai (410_CR41) 2010
JH Park (410_CR9) 2011; 409
Y Wang (410_CR54) 2021; 207
M Ahmad (410_CR20) 2014; 99
T Wang (410_CR43) 2022; 803
J Liang (410_CR52) 2007; 67
JH Park (410_CR36) 2016; 18
C Colombo (410_CR25) 2014; 14
AG Caporale (410_CR6) 2016; 2
X Fu (410_CR42) 2022; 19
G Wang (410_CR49) 2022; 293
GD Vyavahare (410_CR29) 2024; 36
L Wang (410_CR44) 2021; 750
N Bolan (410_CR4) 2014; 266
F Teng (410_CR27) 2020; 398
X Ji (410_CR22) 2022; 811
TA Abd El-Mageed (410_CR31) 2020; 27
DH Alderton (410_CR39) 2014; 9
SH Hong (410_CR15) 2023; 23
HN Kim (410_CR12) 2024; 12
SW Kang (410_CR13) 2021; 44
HS Kim (410_CR18) 2015; 74
I Noor (410_CR32) 2022; 303
C Tiberg (410_CR11) 2020; 255
F Sadegh-Zadeh (410_CR47) 2013; 1
E Álvarez-Ayuso (410_CR1) 2012; 439
M Siedt (410_CR45) 2021; 751
RK Sharma (410_CR2) 2007; 66
Y Fan (410_CR50) 2020; 191
V Lenoble (410_CR37) 2005; 123
M Vithanage (410_CR51) 2017; 113
Y Yuan (410_CR28) 2017; 17
DW Cho (410_CR38) 2023; 319
X Yang (410_CR21) 2023; 443
YS Han (410_CR8) 2018; 195
References_xml – volume: 66
  start-page: 258
  issue: 2
  year: 2007
  ident: 410_CR2
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2005.11.007
– volume: 14
  start-page: 538
  year: 2014
  ident: 410_CR25
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-013-0814-z
– volume: 74
  start-page: 1249
  year: 2015
  ident: 410_CR18
  publication-title: Environ. Earth Sci.
  doi: 10.1007/s12665-015-4116-1
– volume: 195
  start-page: 762
  year: 2018
  ident: 410_CR8
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.12.133
– start-page: 151
  volume-title: Environment, climate, plant and vegetation growth
  year: 2020
  ident: 410_CR14
– volume: 398
  year: 2020
  ident: 410_CR27
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.122977
– volume: 803
  year: 2022
  ident: 410_CR43
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.150084
– volume: 255
  year: 2020
  ident: 410_CR11
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.126937
– volume: 303
  year: 2022
  ident: 410_CR32
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.135196
– volume: 224
  start-page: 1
  year: 2013
  ident: 410_CR35
  publication-title: Water Air Soil Pollut.
  doi: 10.1007/s11270-012-1378-z
– volume: 17
  start-page: 432
  year: 2017
  ident: 410_CR28
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-016-1540-0
– volume: 19
  start-page: 10824
  issue: 17
  year: 2022
  ident: 410_CR42
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph191710824
– volume: 750
  year: 2021
  ident: 410_CR44
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.141672
– volume: 23
  start-page: 2628
  issue: 6
  year: 2023
  ident: 410_CR15
  publication-title: J. Soils Sediments
  doi: 10.1007/s11368-023-03520-z
– volume: 136
  start-page: 44
  year: 2016
  ident: 410_CR3
  publication-title: CATENA
  doi: 10.1016/j.catena.2015.07.008
– volume: 439
  start-page: 35
  year: 2012
  ident: 410_CR1
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2012.09.023
– volume: 56
  year: 2023
  ident: 410_CR16
  publication-title: J. Water Process Eng.
  doi: 10.1016/j.jwpe.2023.104545
– volume: 20
  start-page: 8491
  year: 2013
  ident: 410_CR53
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-013-1769-8
– volume: 348
  start-page: 439
  year: 2011
  ident: 410_CR7
  publication-title: Plant Soil
  doi: 10.1007/s11104-011-0948-y
– volume: 22
  start-page: 251
  issue: 2
  year: 1990
  ident: 410_CR19
  publication-title: Soil Biol. Biochem.
  doi: 10.1016/0038-0717(90)90094-G
– volume: 27
  start-page: 2251
  issue: 11
  year: 2012
  ident: 410_CR34
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2012.01.011
– volume: 319
  year: 2023
  ident: 410_CR38
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2022.136536
– volume: 17
  start-page: 827
  issue: 3
  year: 2020
  ident: 410_CR48
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph17030827
– volume: 293
  year: 2022
  ident: 410_CR49
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2021.118587
– volume: 1
  start-page: 981
  issue: 4
  year: 2013
  ident: 410_CR47
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2013.08.009
– volume: 191
  year: 2020
  ident: 410_CR50
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2020.110030
– volume: 2
  start-page: 15
  year: 2016
  ident: 410_CR6
  publication-title: Curr. Pollut. Rep.
  doi: 10.1007/s40726-015-0024-y
– volume: 113
  start-page: 219
  year: 2017
  ident: 410_CR51
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.11.032
– volume: 67
  start-page: 1949
  issue: 10
  year: 2007
  ident: 410_CR52
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2006.11.057
– volume: 12
  start-page: 1358561
  year: 2024
  ident: 410_CR12
  publication-title: Environ. Sci.
– volume: 99
  start-page: 19
  year: 2014
  ident: 410_CR20
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2013.10.071
– volume: 471
  year: 2023
  ident: 410_CR17
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144368
– start-page: 381
  volume-title: Trace elements in soils
  year: 2010
  ident: 410_CR41
  doi: 10.1002/9781444319477.ch16
– volume: 811
  year: 2022
  ident: 410_CR22
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2021.152112
– volume: 63
  start-page: 322
  issue: 7
  year: 2017
  ident: 410_CR46
  publication-title: Plant Soil Environ.
  doi: 10.17221/318/2017-PSE
– volume: 191
  start-page: 1
  year: 2019
  ident: 410_CR26
  publication-title: Environ. Monit. Assess.
  doi: 10.1007/s10661-019-7573-2
– year: 2023
  ident: 410_CR33
  publication-title: Environ. Geochem. Health
  doi: 10.1007/s10653-023-01606-8
– volume: 44
  start-page: 2849
  issue: 19
  year: 2021
  ident: 410_CR13
  publication-title: J. Plant Nutr.
  doi: 10.1080/01904167.2021.1921200
– volume: 27
  start-page: 22956
  year: 2020
  ident: 410_CR31
  publication-title: Environ. Sci. Pollut. Res.. Pollut. Res.
  doi: 10.1007/s11356-020-08847-5
– volume: 409
  start-page: 853
  issue: 4
  year: 2011
  ident: 410_CR9
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2010.11.003
– volume: 36
  start-page: 13
  issue: 4
  year: 2024
  ident: 410_CR29
  publication-title: Folia Hortic.
  doi: 10.2478/fhort-2024-0033
– volume: 36
  start-page: 2647
  issue: 20
  year: 2015
  ident: 410_CR40
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2015.1042071
– volume: 63
  start-page: 460
  issue: 5
  year: 2017
  ident: 410_CR23
  publication-title: Soil Sci. Plant Nutr.
  doi: 10.1080/00380768.2017.1373599
– volume: 266
  start-page: 141
  year: 2014
  ident: 410_CR4
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2013.12.018
– volume: 29
  start-page: 439
  year: 2008
  ident: 410_CR30
  publication-title: Photochem. Res. Prog.
– volume: 123
  start-page: 262
  issue: 1–3
  year: 2005
  ident: 410_CR37
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2005.04.005
– volume: 443
  year: 2023
  ident: 410_CR21
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2022.130203
– volume: 751
  year: 2021
  ident: 410_CR45
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2020.141607
– volume: 207
  year: 2021
  ident: 410_CR54
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111294
– volume: 9
  start-page: 43
  issue: 1
  year: 2014
  ident: 410_CR39
  publication-title: Carpathian J. Earth Environ. Sci.
– volume: 282
  start-page: 96
  year: 2016
  ident: 410_CR24
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2016.07.019
– volume: 18
  start-page: 514
  issue: 4
  year: 2016
  ident: 410_CR36
  publication-title: Environ. Sci. Processes Impacts
  doi: 10.1039/C6EM00098C
– volume: 105
  start-page: 200
  year: 2015
  ident: 410_CR5
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2014.12.031
– volume: 30
  start-page: 22835
  issue: 9
  year: 2023
  ident: 410_CR10
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-022-23800-4
SSID ssj0055620
Score 2.3849604
Snippet Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects...
Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines aff ects...
SourceID nrf
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1705
SubjectTerms Antimony
Arsenic
Bioavailability
Crops
Heavy metals
Immobilization
Iron
Lead
Lettuce
Soil analysis
Soil chemistry
Soil contamination
Soil remediation
Soil stabilization
Stabilization
화학공학
Title Stabilization of Metal(loid)s Using Iron Phosphate-Coated Biochar and Its Impact on Lettuce (Lactuca sativa L.) Growth in Soil
URI https://www.proquest.com/docview/3223611248
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003227036
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2025, 42(8), 307, pp.1705-1716
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XNpD6ZNumxZBK0i6ePFb1nFfIW2TUGgCuRlLlpNtyjrsOi3k0N_eGVlee9NQ0sJizEgry5rPnm_EzJiQ94WUIgdT4mjNYydU8CgKL-KODGUe-F6gvRxzh4-O44PT8NNZdLax-aETtXRdyYG6uTOv5H-0CjLQK2bJ_oNmV4OCAM5Bv3AEDcPxXjoGpoixrTcr2nekKyzgn3wvcS5i2bcRAQto_nJRLq8ugFo64zJDnjmalZhzVUcEV0ssFGwSJucmxwdUbj73AaJrlfUx6OdH1j_EtCzcsPpZma2Sr6UN0fjWou5zuWi29y3VVU1VAt1WP2w0zaZDNhIYcDGdMBExMWbTEUt8JpK2y5gNPTZyTcs-EwIlcEzCbhcxBYEZLsFfLWlLS-KfYQi4BA7HTV-44qTpYrc-_GgVJluDtTMvGDpiw4mRCCbCpkmYpgBbWwmcDFky7rxpfSzG6NV5pQNdWwLB8Tu_vtt5u2PpoQ5TwEpDd1oh12ZlA3sKHTNvNwRzx1ub28QZ3DLFa0W_L9UsPS_Ty0UKrs3HFPz0gHMuNsm2Dy6Rv0W2h_uj0XHDOyJgsvWOor0ZmyJWJ4rensoaDducL4o_uIghWCePySPrGdFhDfMnZEPPn5KHnXqZz8ivNcDTsqAG8LsI970lNWCnCHZ6G-zUgp0C2CmAndZgp9DVgp3uWqjTGur0cLBHa6DT2Zwi0J-T0_3pyfjAsR8QcZQfe5WTJZGIVSyVjAp0zfPci4tYwVsr58rlArwN7srA55pLmcVoa4Mkk5hDq4RUbvCCbM3LuX5JqMyl5EGhYz9XYcbzTLhZoLSrC8nj0BU90m_WM72q68SkbUVwXP0UVj81q5_yHnkHS240_BdN98hOo5LUPrPLFAxwEIOTFCav7jXIa_KgfXR2yFa1uNZvgEdX8q0F0G8SaLAi
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilization+of+Metal%28loid%29s+Using+Iron+Phosphate-Coated+Biochar+and+Its+Impact+on+Lettuce+%28Lactuca+sativa+L.%29+Growth+in+Soil&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=%EA%B9%80%ED%95%9C%EB%82%98&rft.au=%EC%A1%B0%EB%8F%99%EC%99%84&rft.au=%EC%9E%84%EA%B8%B8%EC%9E%AC&rft.au=%EB%B0%95%EC%A7%84%ED%9D%AC&rft.date=2025-07-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=1705&rft.epage=1716&rft_id=info:doi/10.1007%2Fs11814-025-00410-7&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10737779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon