Stabilization of Metal(loid)s Using Iron Phosphate-Coated Biochar and Its Impact on Lettuce (Lactuca sativa L.) Growth in Soil
Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated bio...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 42; no. 8; pp. 1705 - 1716 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.07.2025
한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-025-00410-7 |
Cover
Loading…
Abstract | Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental effect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic effect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid)s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse effects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil. |
---|---|
AbstractList | Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental effect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic effect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid)s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse effects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil. Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines aff ects growth of crops. Because As and Sb are stabilized by iron (Fe) hydroxide and heavy metals are stabilized by phosphate, iron phosphate-coated biochar (IPCB) simultaneously stabilizes metal(loid)s and prevents detrimental eff ect of metal(loid)s on crops. Therefore, the objective of the study was to evaluate lettuce growth followed by metal stabilization in soil by treating metal contaminated soil with IPCB. The lettuce grown in single and mixed metal(loid)-contaminated soil treated with IPCB showed higher dry biomass, chlorophyll content measured by soil plant analysis development (SPAD) meter, and Fv/Fm values than without IPCB indicating that IPCB mitigated toxic eff ect of metal(loid)s. The IPCB decreased bioavailable As, Sb, and Pb by 40.8 ± 3.0%, 23.5 ± 0.5%, and 99.0 ± 0.4% in single contaminated soil, which further decreased in mixed metal(loid)-contaminated soil. Arsenic, Sb, and Pb uptake of lettuce shoots decreased by 21.6 ± 9.4%, 19.1 ± 1.1%, and 74.5 ± 17.3% in single contaminated soil, respectively, compared to the control. Arsenic (78.8 ± 5.5% reduction compared to the control) and Pb (80.6 ± 13.4%) uptake as well as Sb (100.0 ± 0.0%) and Pb (12.2 ± 0.7%) uptake further reduced in mixed contaminated soil. In mixed contaminated soil, immobilization of metal(loid) s by IPCB was enhanced because of phosphate substitution by oxyanions reacted with Fe and subsequent immobilization of phosphate with Pb. In addition, increased soil pH by IPCB contributed to stabilization of metal(loid)s. The simultaneous stabilization of metal(loid)s and nutrient supply by IPCB mitigated adverse eff ects of metal(loid)s on plants and promoted plant growth, thereby remediating metal(loid)-contaminated soil. KCI Citation Count: 0 |
Author | Park, Jin Hee Kim, Han Na Yim, Gil-Jae Cho, Dong-Wan |
Author_xml | – sequence: 1 givenname: Han Na surname: Kim fullname: Kim, Han Na – sequence: 2 givenname: Dong-Wan surname: Cho fullname: Cho, Dong-Wan – sequence: 3 givenname: Gil-Jae surname: Yim fullname: Yim, Gil-Jae – sequence: 4 givenname: Jin Hee orcidid: 0000-0002-9434-1361 surname: Park fullname: Park, Jin Hee |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003227036$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNotkUFPGzEQha0KpAbaP9CTpV5CJVOPHdu7RxoVutJWICBny-v1JobNOrUdED3w23FJL_OkeZ-eRvNO0NEUJofQF6DnQKn6ngAqWBDKBKF0AZSoD2gGtRJEMUaP0Kw4kgCA-IhOUnqgVAjJ6Ay93mXT-dH_NdmHCYcB_3bZjPMx-P4s4VXy0xo3sVg3m5B2G5MdWYYye_zDB7sxEZupx01OuNnujM24oK3LeW8dnrdlsbcGp5L-ZHB7foavYnjOG-wnfBf8-AkdD2ZM7vN_PUWry5_3y1-kvb5qlhctsUxCJqYStbSys50YQCyqvgc5SOus7ZWlqq4EKNpxppzqOiO5kpxXpqNQC1t3lvJT9O2QO8VBP1qvg_Hvug76MeqL2_tGA1VcKVUX-OsB3sXwZ-9S1g9hH6dyn-aMcQnAFlWh2IGyMaQU3aB30W9NfClB-l8p-lCKLq_X76Voxd8AEel_sA |
Cites_doi | 10.1016/j.ecoenv.2005.11.007 10.1007/s11368-013-0814-z 10.1007/s12665-015-4116-1 10.1016/j.chemosphere.2017.12.133 10.1016/j.jhazmat.2020.122977 10.1016/j.scitotenv.2021.150084 10.1016/j.chemosphere.2020.126937 10.1016/j.chemosphere.2022.135196 10.1007/s11270-012-1378-z 10.1007/s11368-016-1540-0 10.3390/ijerph191710824 10.1016/j.scitotenv.2020.141672 10.1007/s11368-023-03520-z 10.1016/j.catena.2015.07.008 10.1016/j.scitotenv.2012.09.023 10.1016/j.jwpe.2023.104545 10.1007/s11356-013-1769-8 10.1007/s11104-011-0948-y 10.1016/0038-0717(90)90094-G 10.1016/j.apgeochem.2012.01.011 10.1016/j.chemosphere.2022.136536 10.3390/ijerph17030827 10.1016/j.envpol.2021.118587 10.1016/j.jece.2013.08.009 10.1016/j.envres.2020.110030 10.1007/s40726-015-0024-y 10.1016/j.carbon.2016.11.032 10.1016/j.chemosphere.2006.11.057 10.1016/j.chemosphere.2013.10.071 10.1016/j.cej.2023.144368 10.1002/9781444319477.ch16 10.1016/j.scitotenv.2021.152112 10.17221/318/2017-PSE 10.1007/s10661-019-7573-2 10.1007/s10653-023-01606-8 10.1080/01904167.2021.1921200 10.1007/s11356-020-08847-5 10.1016/j.scitotenv.2010.11.003 10.2478/fhort-2024-0033 10.1080/09593330.2015.1042071 10.1080/00380768.2017.1373599 10.1016/j.jhazmat.2013.12.018 10.1016/j.jhazmat.2005.04.005 10.1016/j.jhazmat.2022.130203 10.1016/j.scitotenv.2020.141607 10.1016/j.ecoenv.2020.111294 10.1016/j.geoderma.2016.07.019 10.1039/C6EM00098C 10.1016/j.clay.2014.12.031 10.1007/s11356-022-23800-4 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-025-00410-7 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1975-7220 |
EndPage | 1716 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10737779 10_1007_s11814_025_00410_7 |
GroupedDBID | -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG CITATION COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 ZMTXR ZZE ~A9 ~EX ABRTQ ACYCR |
ID | FETCH-LOGICAL-c261t-a8596c6bcb5f1548dd16f6ceccd7c07985170b327e7bba6376338ab0195c9bc03 |
ISSN | 0256-1115 |
IngestDate | Thu Jul 24 03:28:11 EDT 2025 Fri Jul 25 09:14:39 EDT 2025 Thu Jul 03 08:17:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c261t-a8596c6bcb5f1548dd16f6ceccd7c07985170b327e7bba6376338ab0195c9bc03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9434-1361 |
PQID | 3223611248 |
PQPubID | 2044390 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10737779 proquest_journals_3223611248 crossref_primary_10_1007_s11814_025_00410_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationYear | 2025 |
Publisher | Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer Nature B.V – name: 한국화학공학회 |
References | LD Burrell (410_CR24) 2016; 282 RK Xu (410_CR53) 2013; 20 M Arif (410_CR14) 2020 Y Sun (410_CR5) 2015; 105 JH Park (410_CR7) 2011; 348 M Rafique (410_CR23) 2017; 63 H Yang (410_CR16) 2023; 56 K Vaca-Escobar (410_CR34) 2012; 27 YM Wang (410_CR48) 2020; 17 V Zemanova (410_CR46) 2017; 63 B Sylvain (410_CR3) 2016; 136 S Ogawa (410_CR40) 2015; 36 CC Ng (410_CR26) 2019; 191 H Yang (410_CR17) 2023; 471 TH Anderson (410_CR19) 1990; 22 MH Kalaji (410_CR30) 2008; 29 E Jam (410_CR33) 2023 HN Kim (410_CR10) 2023; 30 MB McBride (410_CR35) 2013; 224 Y Arai (410_CR41) 2010 JH Park (410_CR9) 2011; 409 Y Wang (410_CR54) 2021; 207 M Ahmad (410_CR20) 2014; 99 T Wang (410_CR43) 2022; 803 J Liang (410_CR52) 2007; 67 JH Park (410_CR36) 2016; 18 C Colombo (410_CR25) 2014; 14 AG Caporale (410_CR6) 2016; 2 X Fu (410_CR42) 2022; 19 G Wang (410_CR49) 2022; 293 GD Vyavahare (410_CR29) 2024; 36 L Wang (410_CR44) 2021; 750 N Bolan (410_CR4) 2014; 266 F Teng (410_CR27) 2020; 398 X Ji (410_CR22) 2022; 811 TA Abd El-Mageed (410_CR31) 2020; 27 DH Alderton (410_CR39) 2014; 9 SH Hong (410_CR15) 2023; 23 HN Kim (410_CR12) 2024; 12 SW Kang (410_CR13) 2021; 44 HS Kim (410_CR18) 2015; 74 I Noor (410_CR32) 2022; 303 C Tiberg (410_CR11) 2020; 255 F Sadegh-Zadeh (410_CR47) 2013; 1 E Álvarez-Ayuso (410_CR1) 2012; 439 M Siedt (410_CR45) 2021; 751 RK Sharma (410_CR2) 2007; 66 Y Fan (410_CR50) 2020; 191 V Lenoble (410_CR37) 2005; 123 M Vithanage (410_CR51) 2017; 113 Y Yuan (410_CR28) 2017; 17 DW Cho (410_CR38) 2023; 319 X Yang (410_CR21) 2023; 443 YS Han (410_CR8) 2018; 195 |
References_xml | – volume: 66 start-page: 258 issue: 2 year: 2007 ident: 410_CR2 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2005.11.007 – volume: 14 start-page: 538 year: 2014 ident: 410_CR25 publication-title: J. Soils Sediments doi: 10.1007/s11368-013-0814-z – volume: 74 start-page: 1249 year: 2015 ident: 410_CR18 publication-title: Environ. Earth Sci. doi: 10.1007/s12665-015-4116-1 – volume: 195 start-page: 762 year: 2018 ident: 410_CR8 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.12.133 – start-page: 151 volume-title: Environment, climate, plant and vegetation growth year: 2020 ident: 410_CR14 – volume: 398 year: 2020 ident: 410_CR27 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.122977 – volume: 803 year: 2022 ident: 410_CR43 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.150084 – volume: 255 year: 2020 ident: 410_CR11 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126937 – volume: 303 year: 2022 ident: 410_CR32 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.135196 – volume: 224 start-page: 1 year: 2013 ident: 410_CR35 publication-title: Water Air Soil Pollut. doi: 10.1007/s11270-012-1378-z – volume: 17 start-page: 432 year: 2017 ident: 410_CR28 publication-title: J. Soils Sediments doi: 10.1007/s11368-016-1540-0 – volume: 19 start-page: 10824 issue: 17 year: 2022 ident: 410_CR42 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph191710824 – volume: 750 year: 2021 ident: 410_CR44 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.141672 – volume: 23 start-page: 2628 issue: 6 year: 2023 ident: 410_CR15 publication-title: J. Soils Sediments doi: 10.1007/s11368-023-03520-z – volume: 136 start-page: 44 year: 2016 ident: 410_CR3 publication-title: CATENA doi: 10.1016/j.catena.2015.07.008 – volume: 439 start-page: 35 year: 2012 ident: 410_CR1 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2012.09.023 – volume: 56 year: 2023 ident: 410_CR16 publication-title: J. Water Process Eng. doi: 10.1016/j.jwpe.2023.104545 – volume: 20 start-page: 8491 year: 2013 ident: 410_CR53 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-013-1769-8 – volume: 348 start-page: 439 year: 2011 ident: 410_CR7 publication-title: Plant Soil doi: 10.1007/s11104-011-0948-y – volume: 22 start-page: 251 issue: 2 year: 1990 ident: 410_CR19 publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(90)90094-G – volume: 27 start-page: 2251 issue: 11 year: 2012 ident: 410_CR34 publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2012.01.011 – volume: 319 year: 2023 ident: 410_CR38 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2022.136536 – volume: 17 start-page: 827 issue: 3 year: 2020 ident: 410_CR48 publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph17030827 – volume: 293 year: 2022 ident: 410_CR49 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2021.118587 – volume: 1 start-page: 981 issue: 4 year: 2013 ident: 410_CR47 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2013.08.009 – volume: 191 year: 2020 ident: 410_CR50 publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110030 – volume: 2 start-page: 15 year: 2016 ident: 410_CR6 publication-title: Curr. Pollut. Rep. doi: 10.1007/s40726-015-0024-y – volume: 113 start-page: 219 year: 2017 ident: 410_CR51 publication-title: Carbon doi: 10.1016/j.carbon.2016.11.032 – volume: 67 start-page: 1949 issue: 10 year: 2007 ident: 410_CR52 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2006.11.057 – volume: 12 start-page: 1358561 year: 2024 ident: 410_CR12 publication-title: Environ. Sci. – volume: 99 start-page: 19 year: 2014 ident: 410_CR20 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2013.10.071 – volume: 471 year: 2023 ident: 410_CR17 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144368 – start-page: 381 volume-title: Trace elements in soils year: 2010 ident: 410_CR41 doi: 10.1002/9781444319477.ch16 – volume: 811 year: 2022 ident: 410_CR22 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2021.152112 – volume: 63 start-page: 322 issue: 7 year: 2017 ident: 410_CR46 publication-title: Plant Soil Environ. doi: 10.17221/318/2017-PSE – volume: 191 start-page: 1 year: 2019 ident: 410_CR26 publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7573-2 – year: 2023 ident: 410_CR33 publication-title: Environ. Geochem. Health doi: 10.1007/s10653-023-01606-8 – volume: 44 start-page: 2849 issue: 19 year: 2021 ident: 410_CR13 publication-title: J. Plant Nutr. doi: 10.1080/01904167.2021.1921200 – volume: 27 start-page: 22956 year: 2020 ident: 410_CR31 publication-title: Environ. Sci. Pollut. Res.. Pollut. Res. doi: 10.1007/s11356-020-08847-5 – volume: 409 start-page: 853 issue: 4 year: 2011 ident: 410_CR9 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2010.11.003 – volume: 36 start-page: 13 issue: 4 year: 2024 ident: 410_CR29 publication-title: Folia Hortic. doi: 10.2478/fhort-2024-0033 – volume: 36 start-page: 2647 issue: 20 year: 2015 ident: 410_CR40 publication-title: Environ. Technol. doi: 10.1080/09593330.2015.1042071 – volume: 63 start-page: 460 issue: 5 year: 2017 ident: 410_CR23 publication-title: Soil Sci. Plant Nutr. doi: 10.1080/00380768.2017.1373599 – volume: 266 start-page: 141 year: 2014 ident: 410_CR4 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.12.018 – volume: 29 start-page: 439 year: 2008 ident: 410_CR30 publication-title: Photochem. Res. Prog. – volume: 123 start-page: 262 issue: 1–3 year: 2005 ident: 410_CR37 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2005.04.005 – volume: 443 year: 2023 ident: 410_CR21 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2022.130203 – volume: 751 year: 2021 ident: 410_CR45 publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2020.141607 – volume: 207 year: 2021 ident: 410_CR54 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111294 – volume: 9 start-page: 43 issue: 1 year: 2014 ident: 410_CR39 publication-title: Carpathian J. Earth Environ. Sci. – volume: 282 start-page: 96 year: 2016 ident: 410_CR24 publication-title: Geoderma doi: 10.1016/j.geoderma.2016.07.019 – volume: 18 start-page: 514 issue: 4 year: 2016 ident: 410_CR36 publication-title: Environ. Sci. Processes Impacts doi: 10.1039/C6EM00098C – volume: 105 start-page: 200 year: 2015 ident: 410_CR5 publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2014.12.031 – volume: 30 start-page: 22835 issue: 9 year: 2023 ident: 410_CR10 publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-022-23800-4 |
SSID | ssj0055620 |
Score | 2.3849604 |
Snippet | Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines affects... Soil contamination with metalloids such as arsenic (As) and antimony (Sb) and heavy metals such as lead (Pb) in agricultural area surrounding mines aff ects... |
SourceID | nrf proquest crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 1705 |
SubjectTerms | Antimony Arsenic Bioavailability Crops Heavy metals Immobilization Iron Lead Lettuce Soil analysis Soil chemistry Soil contamination Soil remediation Soil stabilization Stabilization 화학공학 |
Title | Stabilization of Metal(loid)s Using Iron Phosphate-Coated Biochar and Its Impact on Lettuce (Lactuca sativa L.) Growth in Soil |
URI | https://www.proquest.com/docview/3223611248 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003227036 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2025, 42(8), 307, pp.1705-1716 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZ5XNpD6ZNumxZBK0i6ePFb1nFfIW2TUGgCuRlLlpNtyjrsOi3k0N_eGVlee9NQ0sJizEgry5rPnm_EzJiQ94WUIgdT4mjNYydU8CgKL-KODGUe-F6gvRxzh4-O44PT8NNZdLax-aETtXRdyYG6uTOv5H-0CjLQK2bJ_oNmV4OCAM5Bv3AEDcPxXjoGpoixrTcr2nekKyzgn3wvcS5i2bcRAQto_nJRLq8ugFo64zJDnjmalZhzVUcEV0ssFGwSJucmxwdUbj73AaJrlfUx6OdH1j_EtCzcsPpZma2Sr6UN0fjWou5zuWi29y3VVU1VAt1WP2w0zaZDNhIYcDGdMBExMWbTEUt8JpK2y5gNPTZyTcs-EwIlcEzCbhcxBYEZLsFfLWlLS-KfYQi4BA7HTV-44qTpYrc-_GgVJluDtTMvGDpiw4mRCCbCpkmYpgBbWwmcDFky7rxpfSzG6NV5pQNdWwLB8Tu_vtt5u2PpoQ5TwEpDd1oh12ZlA3sKHTNvNwRzx1ub28QZ3DLFa0W_L9UsPS_Ty0UKrs3HFPz0gHMuNsm2Dy6Rv0W2h_uj0XHDOyJgsvWOor0ZmyJWJ4rensoaDducL4o_uIghWCePySPrGdFhDfMnZEPPn5KHnXqZz8ivNcDTsqAG8LsI970lNWCnCHZ6G-zUgp0C2CmAndZgp9DVgp3uWqjTGur0cLBHa6DT2Zwi0J-T0_3pyfjAsR8QcZQfe5WTJZGIVSyVjAp0zfPci4tYwVsr58rlArwN7srA55pLmcVoa4Mkk5hDq4RUbvCCbM3LuX5JqMyl5EGhYz9XYcbzTLhZoLSrC8nj0BU90m_WM72q68SkbUVwXP0UVj81q5_yHnkHS240_BdN98hOo5LUPrPLFAxwEIOTFCav7jXIa_KgfXR2yFa1uNZvgEdX8q0F0G8SaLAi |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stabilization+of+Metal%28loid%29s+Using+Iron+Phosphate-Coated+Biochar+and+Its+Impact+on+Lettuce+%28Lactuca+sativa+L.%29+Growth+in+Soil&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=%EA%B9%80%ED%95%9C%EB%82%98&rft.au=%EC%A1%B0%EB%8F%99%EC%99%84&rft.au=%EC%9E%84%EA%B8%B8%EC%9E%AC&rft.au=%EB%B0%95%EC%A7%84%ED%9D%AC&rft.date=2025-07-01&rft.pub=%ED%95%9C%EA%B5%AD%ED%99%94%ED%95%99%EA%B3%B5%ED%95%99%ED%9A%8C&rft.issn=0256-1115&rft.eissn=1975-7220&rft.spage=1705&rft.epage=1716&rft_id=info:doi/10.1007%2Fs11814-025-00410-7&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10737779 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |