Pallet Pose Estimation Based on Front Face Shot
Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose...
Saved in:
Published in | IEEE access Vol. 13; pp. 37624 - 37631 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose estimation methods have been developed, and the latest ones utilize deep learning with a large number of pallet images for training. However, conventional methods have a problem in that estimation accuracy significantly decreases when the pallets in the captured images have appearances different from those used in training. To address this problem, the authors propose Front Face Shot (FFS), a novel 6D pose estimation method based on only the front face shot of the pallet. FFS robustly and highly accurately estimates 6D pose even in cases of unlearned pallet appearances by analyzing the 3D structure of the pallet from the front face shot by utilizing a convolutional neural network and kernel ridge regression. Experiments showed that FFS achieved the same level of estimation accuracy from untrained images as from trained ones, whereas the accuracy of conventional methods halved. |
---|---|
AbstractList | Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose estimation methods have been developed, and the latest ones utilize deep learning with a large number of pallet images for training. However, conventional methods have a problem in that estimation accuracy significantly decreases when the pallets in the captured images have appearances different from those used in training. To address this problem, the authors propose Front Face Shot (FFS), a novel 6D pose estimation method based on only the front face shot of the pallet. FFS robustly and highly accurately estimates 6D pose even in cases of unlearned pallet appearances by analyzing the 3D structure of the pallet from the front face shot by utilizing a convolutional neural network and kernel ridge regression. Experiments showed that FFS achieved the same level of estimation accuracy from untrained images as from trained ones, whereas the accuracy of conventional methods halved. |
Author | Kai, Natsuki Shibata, Takashi Yoshida, Hiroshi |
Author_xml | – sequence: 1 givenname: Natsuki orcidid: 0000-0002-5756-948X surname: Kai fullname: Kai, Natsuki email: n-kai@nec.com organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan – sequence: 2 givenname: Hiroshi orcidid: 0000-0001-6777-5263 surname: Yoshida fullname: Yoshida, Hiroshi organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan – sequence: 3 givenname: Takashi surname: Shibata fullname: Shibata, Takashi organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan |
BookMark | eNpNkFFLwzAUhYNMcM79An3oH-i8SZo0eZxj08HAwfQ5pMmtdtRGmr74783skN2Xe-6B83E5t2TShQ4JuaewoBT043K1Wh8OCwZMLLjgCgpxRaaMSp2nU04u9A2Zx3iENCpZopySx71tWxyyfYiYrePQfNmhCV32ZCP6LIlNH7oh21iH2eEzDHfkurZtxPl5z8j7Zv22esl3r8_b1XKXOybpkGtdeFmAdUowZB48Q6iY1VjV3mpWKazQC5AUKu2cpKKsUCqqsS4KrR3nM7IduT7Yo_nu01_9jwm2MX9G6D-M7YfGtWiAlcAkAGclK5jnqqAlOOlAJDgqSCw-slwfYuyx_udRMKcKzVihOVVozhWm1MOYahDxIqFKoFTwX9iEbAM |
CODEN | IAECCG |
Cites_doi | 10.1109/IROS51168.2021.9636270 10.1109/ICRA.2017.7989233 10.1109/TPAMI.2011.206 10.3390/app10020698 10.1109/MAJICC53071.2021.9526266 10.1145/3065386 10.1109/WACV.2017.103 10.1109/TRO.2021.3075644 10.1145/3205289.3205290 10.3390/s23031217 10.20965/jrm.2020.p1071 10.1109/ICEngTechnol.2017.8308186 10.1109/CVPR.2017.690 10.1109/ICRA.2016.7487258 10.1177/1729881417737799 10.1109/CVPR.2008.4587456 10.1109/CVPR.2007.383105 10.1007/s11263-008-0152-6 10.1109/TVCG.2015.2513408 10.1109/TNNLS.2024.3393072 10.1186/s41074-017-0027-2 10.1109/JSEN.2010.2101060 10.1109/ICCV.2017.413 10.1109/CVPR.2016.90 10.1080/00207543.2020.1859636 10.1109/CVPR.2017.491 10.1038/s41565-021-00895-3 10.1109/CVPRW.2017.167 10.1109/JBHI.2023.3239780 10.1109/IECON48115.2021.9589689 10.1109/CVPR.2018.00038 10.1109/CVPR.2016.91 10.48550/arXiv.2004.10934 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/ACCESS.2025.3538045 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 37631 |
ExternalDocumentID | oai_doaj_org_article_02702600327242d384170c6c050b9e80 10_1109_ACCESS_2025_3538045 10870115 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c261t-994d640ac852e2d0d2e0b2a9ebfda92b8ebed50610b9cc6157be6819ef4499c33 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:22:12 EDT 2025 Tue Jul 01 05:21:51 EDT 2025 Wed Aug 27 01:48:45 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-994d640ac852e2d0d2e0b2a9ebfda92b8ebed50610b9cc6157be6819ef4499c33 |
ORCID | 0000-0002-5756-948X 0000-0001-6777-5263 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10870115 |
PageCount | 8 |
ParticipantIDs | ieee_primary_10870115 crossref_primary_10_1109_ACCESS_2025_3538045 doaj_primary_oai_doaj_org_article_02702600327242d384170c6c050b9e80 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250000 2025-00-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 20250000 |
PublicationDecade | 2020 |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref14 ref36 Tremblay (ref28) 2018 ref11 ref10 ref32 ref2 ref17 ref39 ref16 ref38 ref19 ref18 Welsh (ref31) 2023 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref27 ref29 ref8 (ref1) 2022 ref9 Simonyan (ref33) 2015 ref4 ref3 ref6 ref5 ref40 Knitt (ref30) 2022 Teed (ref37); 34 Mohamed (ref7) 2017 |
References_xml | – ident: ref29 doi: 10.1109/IROS51168.2021.9636270 – ident: ref2 doi: 10.1109/ICRA.2017.7989233 – ident: ref25 doi: 10.1109/TPAMI.2011.206 – volume-title: arXiv:2210.06001 year: 2022 ident: ref30 article-title: Estimating the pose of a euro pallet with an RGB camera based on synthetic training data – ident: ref39 doi: 10.3390/app10020698 – ident: ref4 doi: 10.1109/MAJICC53071.2021.9526266 – ident: ref34 doi: 10.1145/3065386 – ident: ref26 doi: 10.1109/WACV.2017.103 – ident: ref36 doi: 10.1109/TRO.2021.3075644 – ident: ref15 doi: 10.1145/3205289.3205290 – volume-title: arXiv:1809.10790 year: 2018 ident: ref28 article-title: Deep object pose estimation for semantic robotic grasping of household objects – volume-title: Developing a Pallet Detection Model Using OpenUSD and Synthetic Data year: 2023 ident: ref31 – volume-title: arXiv:1409.1556 year: 2015 ident: ref33 article-title: Very deep convolutional networks for large-scale image recognition – ident: ref20 doi: 10.3390/s23031217 – ident: ref6 doi: 10.20965/jrm.2020.p1071 – ident: ref11 doi: 10.1109/ICEngTechnol.2017.8308186 – ident: ref40 doi: 10.1109/CVPR.2017.690 – ident: ref5 doi: 10.1109/ICRA.2016.7487258 – ident: ref21 doi: 10.1177/1729881417737799 – ident: ref22 doi: 10.1109/CVPR.2008.4587456 – ident: ref14 doi: 10.1109/CVPR.2007.383105 – ident: ref17 doi: 10.1007/s11263-008-0152-6 – ident: ref8 doi: 10.1109/TVCG.2015.2513408 – ident: ref13 doi: 10.1109/TNNLS.2024.3393072 – ident: ref38 doi: 10.1186/s41074-017-0027-2 – ident: ref23 doi: 10.1109/JSEN.2010.2101060 – ident: ref24 doi: 10.1109/ICCV.2017.413 – ident: ref35 doi: 10.1109/CVPR.2016.90 – ident: ref9 doi: 10.1080/00207543.2020.1859636 – ident: ref18 doi: 10.1109/CVPR.2017.491 – ident: ref3 doi: 10.1038/s41565-021-00895-3 – ident: ref19 doi: 10.1109/CVPRW.2017.167 – ident: ref12 doi: 10.1109/JBHI.2023.3239780 – ident: ref16 doi: 10.1109/IECON48115.2021.9589689 – ident: ref27 doi: 10.1109/CVPR.2018.00038 – ident: ref10 doi: 10.1109/CVPR.2016.91 – volume-title: Detection and tracking of pallets using a laser rangefinder and machine learning techniques year: 2017 ident: ref7 – ident: ref32 doi: 10.48550/arXiv.2004.10934 – volume: 34 start-page: 16558 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref37 article-title: DROID-SLAM: Deep visual SLAM for monocular, stereo, and RGB-D cameras – volume-title: Analysis of the Labour Economy 2022 year: 2022 ident: ref1 |
SSID | ssj0000816957 |
Score | 2.3344336 |
Snippet | Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 37624 |
SubjectTerms | 6D pose autonomous forklift Cameras CNN Convolutional neural networks Faces KRR (kernel ridge regression) Logistics Pallet pose estimation Pallets Pose estimation Three-dimensional displays Training Vectors YOLO |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCXFs5-GxrRpVSKBKUKmb5dhnMbUIwv_n7AQUJha2KIoc33exvzsr9x0ht8ypzKrGJzwHmYR-SIkx3Cc5a7gpQzv4WAvz-FQs1_Jhk28Grb7CP2GdPHAHXMpCwRSysuAlsokTlcxKZgvLcDQFVczWkfMGyVTcg6usUHnZywxlTKXT-RwtwoSQ5_cCVzkLBUwDKoqK_b9arESGqY_IYR8a0mk3pWOyB9sTcjAQDDwl6Sq0PmnpavcBdIGrsys8pDPkIkfxog56BLQ2Fujz664dk3W9eJkvk77lQWIxlWkTpaQrJDO2yjlwxxyHAJqCxjujeFMh5i5HDkbjrcVopGygQFIHLzF1sUKckdF2t4VzQg3nlS-YAyQg6UuonG-ktFxI64VQ2YTcfVuv3zplCx0zAqZ0B5YOYOkerAmZBYR-Hg2y1PEGOkv3ztJ_OWtCxgHfwftwu8CY9OI_Br8k-2HC3fnIFRm1759wjRFD29zEj-ML-b61MA priority: 102 providerName: Directory of Open Access Journals |
Title | Pallet Pose Estimation Based on Front Face Shot |
URI | https://ieeexplore.ieee.org/document/10870115 https://doaj.org/article/02702600327242d384170c6c050b9e80 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akx58VqyPkoNHd5vNZh851tKlCJaCFnpbNskEQWhFtxd_vZPstlRB8BbCwma_zDAz2XzfEHLHjIy0VDbgCYjA9UMKqorbIGGKV5lrB--5ME_TdDIXj4tk0ZLVPRcGAPzlMwjd0P_LNyu9dkdl6OFoXZGjlO9j5daQtbYHKq6DhEyyVlkoYnIwHI3wI7AG5EkYo2Mzx1naiT5epP9HVxUfVIpjMt0sp7lL8hauaxXqr19Kjf9e7wk5atNLOmzs4ZTswfKMHO6IDp6Twcy1T6npbPUJdIwe3pAX6QPGM0NxUDhNA1pUGujz66ruknkxfhlNgrZtQqCxHKoDKYVJBat0nnDghhkODngJyppKcpXjvpkE4zhTUmvMaDIFKSYGYAWWPzqOL0hnuVrCJaEV57lNmQEMYsJmkBurhNA8FtrGsYx65H4DZ_neqGOUvqpgsmzQLx36ZYt-jzw4yLePOmlrP4Gola2nlMwx5DANi3mG6YOJcxFlTKeaoflIyFmPdB3SO-9rQL76Y_6aHLg1NMcmN6RTf6zhFhOJWvV9Ad73ZvQNOxTC1g |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD-rBz4nzswePdkvT9CPHbaxM3cbADXYrTfKKIKyi3cW_3pe0G1MQvIVQaPrLe7z30vx-j5B7qoWnhMxdFgB3TT8kN8tY7gZUsiwy7eAtF2Y8CYdz_rQIFjVZ3XJhAMBePoO2Gdp_-bpQK3NUhh6O1uUZSvkuBv6AVXStzZGK6SEhgqjWFvKo6HT7ffwMrAJZ0PbRtalhLW3FHyvT_6Ovig0ryRGZrBdU3SZ5a69K2VZfv7Qa_73iY3JYJ5hOt7KIE7IDy1NysCU7eEY6U9NApXSmxSc4A_Txir7o9DCiaQcHiVE1cJJMgfPyWpRNMk8Gs_7QrRsnuAoLotIVguuQ00zFAQOmqWZgoBcgc50JJmPcOR1gJKdSKIU5TSQhxNQAco4FkPL9c9JYFku4IE7GWJyHVAOGMZ5HEOtccq6Yz1Xu-8JrkYc1nOl7pY-R2rqCirRCPzXopzX6LdIzkG8eNeLWdgJRS2tfSanhyGEi5rMIEwjtx9yLqAoVRQMSENMWaRqkt95XgXz5x_wd2RvOxqN09Dh5viL7Zj3VIco1aZQfK7jBtKKUt9aYvgH9-8Ur |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pallet+Pose+Estimation+Based+on+Front+Face+Shot&rft.jtitle=IEEE+access&rft.au=Kai%2C+Natsuki&rft.au=Yoshida%2C+Hiroshi&rft.au=Shibata%2C+Takashi&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=37624&rft.epage=37631&rft_id=info:doi/10.1109%2FACCESS.2025.3538045&rft.externalDocID=10870115 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |