Pallet Pose Estimation Based on Front Face Shot

Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 13; pp. 37624 - 37631
Main Authors Kai, Natsuki, Yoshida, Hiroshi, Shibata, Takashi
Format Journal Article
LanguageEnglish
Published IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose estimation methods have been developed, and the latest ones utilize deep learning with a large number of pallet images for training. However, conventional methods have a problem in that estimation accuracy significantly decreases when the pallets in the captured images have appearances different from those used in training. To address this problem, the authors propose Front Face Shot (FFS), a novel 6D pose estimation method based on only the front face shot of the pallet. FFS robustly and highly accurately estimates 6D pose even in cases of unlearned pallet appearances by analyzing the 3D structure of the pallet from the front face shot by utilizing a convolutional neural network and kernel ridge regression. Experiments showed that FFS achieved the same level of estimation accuracy from untrained images as from trained ones, whereas the accuracy of conventional methods halved.
AbstractList Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to load pallets, they need to accurately estimate the 3D position and 3D orientation, i.e., the 6D pose, of the pallet. Therefore, many 6D pose estimation methods have been developed, and the latest ones utilize deep learning with a large number of pallet images for training. However, conventional methods have a problem in that estimation accuracy significantly decreases when the pallets in the captured images have appearances different from those used in training. To address this problem, the authors propose Front Face Shot (FFS), a novel 6D pose estimation method based on only the front face shot of the pallet. FFS robustly and highly accurately estimates 6D pose even in cases of unlearned pallet appearances by analyzing the 3D structure of the pallet from the front face shot by utilizing a convolutional neural network and kernel ridge regression. Experiments showed that FFS achieved the same level of estimation accuracy from untrained images as from trained ones, whereas the accuracy of conventional methods halved.
Author Kai, Natsuki
Shibata, Takashi
Yoshida, Hiroshi
Author_xml – sequence: 1
  givenname: Natsuki
  orcidid: 0000-0002-5756-948X
  surname: Kai
  fullname: Kai, Natsuki
  email: n-kai@nec.com
  organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan
– sequence: 2
  givenname: Hiroshi
  orcidid: 0000-0001-6777-5263
  surname: Yoshida
  fullname: Yoshida, Hiroshi
  organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan
– sequence: 3
  givenname: Takashi
  surname: Shibata
  fullname: Shibata, Takashi
  organization: Visual Intelligence Research Laboratories, NEC Corporation, Kawasaki, Japan
BookMark eNpNkFFLwzAUhYNMcM79An3oH-i8SZo0eZxj08HAwfQ5pMmtdtRGmr74783skN2Xe-6B83E5t2TShQ4JuaewoBT043K1Wh8OCwZMLLjgCgpxRaaMSp2nU04u9A2Zx3iENCpZopySx71tWxyyfYiYrePQfNmhCV32ZCP6LIlNH7oh21iH2eEzDHfkurZtxPl5z8j7Zv22esl3r8_b1XKXOybpkGtdeFmAdUowZB48Q6iY1VjV3mpWKazQC5AUKu2cpKKsUCqqsS4KrR3nM7IduT7Yo_nu01_9jwm2MX9G6D-M7YfGtWiAlcAkAGclK5jnqqAlOOlAJDgqSCw-slwfYuyx_udRMKcKzVihOVVozhWm1MOYahDxIqFKoFTwX9iEbAM
CODEN IAECCG
Cites_doi 10.1109/IROS51168.2021.9636270
10.1109/ICRA.2017.7989233
10.1109/TPAMI.2011.206
10.3390/app10020698
10.1109/MAJICC53071.2021.9526266
10.1145/3065386
10.1109/WACV.2017.103
10.1109/TRO.2021.3075644
10.1145/3205289.3205290
10.3390/s23031217
10.20965/jrm.2020.p1071
10.1109/ICEngTechnol.2017.8308186
10.1109/CVPR.2017.690
10.1109/ICRA.2016.7487258
10.1177/1729881417737799
10.1109/CVPR.2008.4587456
10.1109/CVPR.2007.383105
10.1007/s11263-008-0152-6
10.1109/TVCG.2015.2513408
10.1109/TNNLS.2024.3393072
10.1186/s41074-017-0027-2
10.1109/JSEN.2010.2101060
10.1109/ICCV.2017.413
10.1109/CVPR.2016.90
10.1080/00207543.2020.1859636
10.1109/CVPR.2017.491
10.1038/s41565-021-00895-3
10.1109/CVPRW.2017.167
10.1109/JBHI.2023.3239780
10.1109/IECON48115.2021.9589689
10.1109/CVPR.2018.00038
10.1109/CVPR.2016.91
10.48550/arXiv.2004.10934
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/ACCESS.2025.3538045
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 37631
ExternalDocumentID oai_doaj_org_article_02702600327242d384170c6c050b9e80
10_1109_ACCESS_2025_3538045
10870115
Genre orig-research
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c261t-994d640ac852e2d0d2e0b2a9ebfda92b8ebed50610b9cc6157be6819ef4499c33
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:22:12 EDT 2025
Tue Jul 01 05:21:51 EDT 2025
Wed Aug 27 01:48:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-994d640ac852e2d0d2e0b2a9ebfda92b8ebed50610b9cc6157be6819ef4499c33
ORCID 0000-0002-5756-948X
0000-0001-6777-5263
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10870115
PageCount 8
ParticipantIDs ieee_primary_10870115
crossref_primary_10_1109_ACCESS_2025_3538045
doaj_primary_oai_doaj_org_article_02702600327242d384170c6c050b9e80
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250000
2025-00-00
2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 20250000
PublicationDecade 2020
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref14
ref36
Tremblay (ref28) 2018
ref11
ref10
ref32
ref2
ref17
ref39
ref16
ref38
ref19
ref18
Welsh (ref31) 2023
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref27
ref29
ref8
(ref1) 2022
ref9
Simonyan (ref33) 2015
ref4
ref3
ref6
ref5
ref40
Knitt (ref30) 2022
Teed (ref37); 34
Mohamed (ref7) 2017
References_xml – ident: ref29
  doi: 10.1109/IROS51168.2021.9636270
– ident: ref2
  doi: 10.1109/ICRA.2017.7989233
– ident: ref25
  doi: 10.1109/TPAMI.2011.206
– volume-title: arXiv:2210.06001
  year: 2022
  ident: ref30
  article-title: Estimating the pose of a euro pallet with an RGB camera based on synthetic training data
– ident: ref39
  doi: 10.3390/app10020698
– ident: ref4
  doi: 10.1109/MAJICC53071.2021.9526266
– ident: ref34
  doi: 10.1145/3065386
– ident: ref26
  doi: 10.1109/WACV.2017.103
– ident: ref36
  doi: 10.1109/TRO.2021.3075644
– ident: ref15
  doi: 10.1145/3205289.3205290
– volume-title: arXiv:1809.10790
  year: 2018
  ident: ref28
  article-title: Deep object pose estimation for semantic robotic grasping of household objects
– volume-title: Developing a Pallet Detection Model Using OpenUSD and Synthetic Data
  year: 2023
  ident: ref31
– volume-title: arXiv:1409.1556
  year: 2015
  ident: ref33
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: ref20
  doi: 10.3390/s23031217
– ident: ref6
  doi: 10.20965/jrm.2020.p1071
– ident: ref11
  doi: 10.1109/ICEngTechnol.2017.8308186
– ident: ref40
  doi: 10.1109/CVPR.2017.690
– ident: ref5
  doi: 10.1109/ICRA.2016.7487258
– ident: ref21
  doi: 10.1177/1729881417737799
– ident: ref22
  doi: 10.1109/CVPR.2008.4587456
– ident: ref14
  doi: 10.1109/CVPR.2007.383105
– ident: ref17
  doi: 10.1007/s11263-008-0152-6
– ident: ref8
  doi: 10.1109/TVCG.2015.2513408
– ident: ref13
  doi: 10.1109/TNNLS.2024.3393072
– ident: ref38
  doi: 10.1186/s41074-017-0027-2
– ident: ref23
  doi: 10.1109/JSEN.2010.2101060
– ident: ref24
  doi: 10.1109/ICCV.2017.413
– ident: ref35
  doi: 10.1109/CVPR.2016.90
– ident: ref9
  doi: 10.1080/00207543.2020.1859636
– ident: ref18
  doi: 10.1109/CVPR.2017.491
– ident: ref3
  doi: 10.1038/s41565-021-00895-3
– ident: ref19
  doi: 10.1109/CVPRW.2017.167
– ident: ref12
  doi: 10.1109/JBHI.2023.3239780
– ident: ref16
  doi: 10.1109/IECON48115.2021.9589689
– ident: ref27
  doi: 10.1109/CVPR.2018.00038
– ident: ref10
  doi: 10.1109/CVPR.2016.91
– volume-title: Detection and tracking of pallets using a laser rangefinder and machine learning techniques
  year: 2017
  ident: ref7
– ident: ref32
  doi: 10.48550/arXiv.2004.10934
– volume: 34
  start-page: 16558
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref37
  article-title: DROID-SLAM: Deep visual SLAM for monocular, stereo, and RGB-D cameras
– volume-title: Analysis of the Labour Economy 2022
  year: 2022
  ident: ref1
SSID ssj0000816957
Score 2.3344336
Snippet Autonomous forklifts are attracting much attention to address the serious shortage of forklift operators in the logistics industry. For autonomous forklifts to...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 37624
SubjectTerms 6D pose
autonomous forklift
Cameras
CNN
Convolutional neural networks
Faces
KRR (kernel ridge regression)
Logistics
Pallet pose estimation
Pallets
Pose estimation
Three-dimensional displays
Training
Vectors
YOLO
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQjyLKSx4YCXFs5-GxrRpVSKBKUKmb5dhnMbUIwv_n7AQUJha2KIoc33exvzsr9x0ht8ypzKrGJzwHmYR-SIkx3Cc5a7gpQzv4WAvz-FQs1_Jhk28Grb7CP2GdPHAHXMpCwRSysuAlsokTlcxKZgvLcDQFVczWkfMGyVTcg6usUHnZywxlTKXT-RwtwoSQ5_cCVzkLBUwDKoqK_b9arESGqY_IYR8a0mk3pWOyB9sTcjAQDDwl6Sq0PmnpavcBdIGrsys8pDPkIkfxog56BLQ2Fujz664dk3W9eJkvk77lQWIxlWkTpaQrJDO2yjlwxxyHAJqCxjujeFMh5i5HDkbjrcVopGygQFIHLzF1sUKckdF2t4VzQg3nlS-YAyQg6UuonG-ktFxI64VQ2YTcfVuv3zplCx0zAqZ0B5YOYOkerAmZBYR-Hg2y1PEGOkv3ztJ_OWtCxgHfwftwu8CY9OI_Br8k-2HC3fnIFRm1759wjRFD29zEj-ML-b61MA
  priority: 102
  providerName: Directory of Open Access Journals
Title Pallet Pose Estimation Based on Front Face Shot
URI https://ieeexplore.ieee.org/document/10870115
https://doaj.org/article/02702600327242d384170c6c050b9e80
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEA7akx58VqyPkoNHd5vNZh851tKlCJaCFnpbNskEQWhFtxd_vZPstlRB8BbCwma_zDAz2XzfEHLHjIy0VDbgCYjA9UMKqorbIGGKV5lrB--5ME_TdDIXj4tk0ZLVPRcGAPzlMwjd0P_LNyu9dkdl6OFoXZGjlO9j5daQtbYHKq6DhEyyVlkoYnIwHI3wI7AG5EkYo2Mzx1naiT5epP9HVxUfVIpjMt0sp7lL8hauaxXqr19Kjf9e7wk5atNLOmzs4ZTswfKMHO6IDp6Twcy1T6npbPUJdIwe3pAX6QPGM0NxUDhNA1pUGujz66ruknkxfhlNgrZtQqCxHKoDKYVJBat0nnDghhkODngJyppKcpXjvpkE4zhTUmvMaDIFKSYGYAWWPzqOL0hnuVrCJaEV57lNmQEMYsJmkBurhNA8FtrGsYx65H4DZ_neqGOUvqpgsmzQLx36ZYt-jzw4yLePOmlrP4Gola2nlMwx5DANi3mG6YOJcxFlTKeaoflIyFmPdB3SO-9rQL76Y_6aHLg1NMcmN6RTf6zhFhOJWvV9Ad73ZvQNOxTC1g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA8yD-rBz4nzswePdkvT9CPHbaxM3cbADXYrTfKKIKyi3cW_3pe0G1MQvIVQaPrLe7z30vx-j5B7qoWnhMxdFgB3TT8kN8tY7gZUsiwy7eAtF2Y8CYdz_rQIFjVZ3XJhAMBePoO2Gdp_-bpQK3NUhh6O1uUZSvkuBv6AVXStzZGK6SEhgqjWFvKo6HT7ffwMrAJZ0PbRtalhLW3FHyvT_6Ovig0ryRGZrBdU3SZ5a69K2VZfv7Qa_73iY3JYJ5hOt7KIE7IDy1NysCU7eEY6U9NApXSmxSc4A_Txir7o9DCiaQcHiVE1cJJMgfPyWpRNMk8Gs_7QrRsnuAoLotIVguuQ00zFAQOmqWZgoBcgc50JJmPcOR1gJKdSKIU5TSQhxNQAco4FkPL9c9JYFku4IE7GWJyHVAOGMZ5HEOtccq6Yz1Xu-8JrkYc1nOl7pY-R2rqCirRCPzXopzX6LdIzkG8eNeLWdgJRS2tfSanhyGEi5rMIEwjtx9yLqAoVRQMSENMWaRqkt95XgXz5x_wd2RvOxqN09Dh5viL7Zj3VIco1aZQfK7jBtKKUt9aYvgH9-8Ur
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pallet+Pose+Estimation+Based+on+Front+Face+Shot&rft.jtitle=IEEE+access&rft.au=Kai%2C+Natsuki&rft.au=Yoshida%2C+Hiroshi&rft.au=Shibata%2C+Takashi&rft.date=2025&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=13&rft.spage=37624&rft.epage=37631&rft_id=info:doi/10.1109%2FACCESS.2025.3538045&rft.externalDocID=10870115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon