The instability of periodic solutions for a population model with cross-diffusion

This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 12; pp. 29910 - 29924
Main Authors Li, Weiyu, Wang, Hongyan
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic solutions for the ordinary differential equation model, and derived the first derivative formula of periodic functions for the perturbed model. Second, applying the Floquet theory, we gave the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions. Additionally, we determined the range of cross-diffusion coefficients for the diffusive population model to form Turing patterns at the stable periodic solutions. Finally, our research was summarized and the relevant conclusions were simulated numerically.
AbstractList This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic solutions for the ordinary differential equation model, and derived the first derivative formula of periodic functions for the perturbed model. Second, applying the Floquet theory, we gave the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions. Additionally, we determined the range of cross-diffusion coefficients for the diffusive population model to form Turing patterns at the stable periodic solutions. Finally, our research was summarized and the relevant conclusions were simulated numerically.
Author Li, Weiyu
Wang, Hongyan
Author_xml – sequence: 1
  givenname: Weiyu
  surname: Li
  fullname: Li, Weiyu
– sequence: 2
  givenname: Hongyan
  surname: Wang
  fullname: Wang, Hongyan
BookMark eNpNkMtKAzEUhoNUsNYu3ecFpuY6mSyleCkURKjrkKtNmU6GZIr07Z22Kq7O4f_h45zvFky61HkA7jFaUEnZw14P2wVBhGJO5BWYEiZoVcummfzbb8C8lB1CiGDCiGBT8L7Zehi7MmgT2zgcYQqw9zkmFy0sqT0MMXUFhpShhn3qD60-JXCfnG_hVxy20OZUSuViCIcyVnfgOui2-PnPnIGP56fN8rVav72slo_rypIaD5XQmHEhay1pYznXlDJvGsMpkrjhXmJkg8NWS04xFpIaJKRlyIy3I8eIpTOwunBd0jvV57jX-aiSjuocpPypdB6ibb2qLcWCCYlDQCwwY6hlxoVANHeNR3xkVRfW-Zfswx8PI3XSq0561a9e-g1LS2-z
Cites_doi 10.1016/j.physa.2018.06.072
10.1016/j.jde.2022.11.044
10.1007/s11071-022-07625-x
10.1016/0092-8240(94)00024-7
10.1016/j.chaos.2023.113890
10.1016/j.jde.2022.05.009
10.12941/jksiam.2013.13.129
10.1016/j.jde.2021.08.010
10.1016/j.jde.2008.10.024
10.1086/284153
10.3390/math10010017
10.1016/j.chaos.2016.07.003
10.1155/2013/147232
10.1016/0022-0396(79)90156-6
10.1016/j.apm.2017.11.005
10.1016/0040-5809(87)90019-0
10.1016/j.cam.2005.01.035
10.1016/j.matcom.2014.10.002
10.1016/j.na.2010.09.035
10.1016/j.cnsns.2003.08.006
10.3390/math10030469
10.1002/mma.8349
10.1007/BFb0089647
10.1007/s11071-014-1691-8
10.1016/j.apm.2014.04.015
10.1006/tpbi.1995.1001
10.1016/S0304-3800(03)00131-5
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.20231529
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 29924
ExternalDocumentID oai_doaj_org_article_6c3174791ff04f4bb3c4bdff2a5d8e05
10_3934_math_20231529
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c261t-7a145796a938c55a334eb8b5309185e910cfd1ca95311793b079c40b0020d42c3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:28:10 EDT 2025
Tue Jul 01 03:57:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-7a145796a938c55a334eb8b5309185e910cfd1ca95311793b079c40b0020d42c3
OpenAccessLink https://doaj.org/article/6c3174791ff04f4bb3c4bdff2a5d8e05
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_6c3174791ff04f4bb3c4bdff2a5d8e05
crossref_primary_10_3934_math_20231529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.20231529-10
key-10.3934/math.20231529-11
key-10.3934/math.20231529-12
key-10.3934/math.20231529-13
key-10.3934/math.20231529-14
key-10.3934/math.20231529-15
key-10.3934/math.20231529-16
key-10.3934/math.20231529-17
key-10.3934/math.20231529-18
key-10.3934/math.20231529-19
key-10.3934/math.20231529-20
key-10.3934/math.20231529-21
key-10.3934/math.20231529-3
key-10.3934/math.20231529-22
key-10.3934/math.20231529-2
key-10.3934/math.20231529-23
key-10.3934/math.20231529-1
key-10.3934/math.20231529-24
key-10.3934/math.20231529-25
key-10.3934/math.20231529-26
key-10.3934/math.20231529-27
key-10.3934/math.20231529-28
key-10.3934/math.20231529-7
key-10.3934/math.20231529-6
key-10.3934/math.20231529-5
key-10.3934/math.20231529-4
key-10.3934/math.20231529-9
key-10.3934/math.20231529-8
References_xml – ident: key-10.3934/math.20231529-24
  doi: 10.1016/j.physa.2018.06.072
– ident: key-10.3934/math.20231529-15
  doi: 10.1016/j.jde.2022.11.044
– ident: key-10.3934/math.20231529-11
  doi: 10.1007/s11071-022-07625-x
– ident: key-10.3934/math.20231529-5
  doi: 10.1016/0092-8240(94)00024-7
– ident: key-10.3934/math.20231529-1
– ident: key-10.3934/math.20231529-10
  doi: 10.1016/j.chaos.2023.113890
– ident: key-10.3934/math.20231529-16
  doi: 10.1016/j.jde.2022.05.009
– ident: key-10.3934/math.20231529-19
  doi: 10.12941/jksiam.2013.13.129
– ident: key-10.3934/math.20231529-17
  doi: 10.1016/j.jde.2021.08.010
– ident: key-10.3934/math.20231529-26
  doi: 10.1016/j.jde.2008.10.024
– ident: key-10.3934/math.20231529-2
  doi: 10.1086/284153
– ident: key-10.3934/math.20231529-14
  doi: 10.3390/math10010017
– ident: key-10.3934/math.20231529-22
  doi: 10.1016/j.chaos.2016.07.003
– ident: key-10.3934/math.20231529-25
  doi: 10.1155/2013/147232
– ident: key-10.3934/math.20231529-27
  doi: 10.1016/0022-0396(79)90156-6
– ident: key-10.3934/math.20231529-23
  doi: 10.1016/j.apm.2017.11.005
– ident: key-10.3934/math.20231529-3
  doi: 10.1016/0040-5809(87)90019-0
– ident: key-10.3934/math.20231529-8
  doi: 10.1016/j.cam.2005.01.035
– ident: key-10.3934/math.20231529-21
  doi: 10.1016/j.matcom.2014.10.002
– ident: key-10.3934/math.20231529-18
  doi: 10.1016/j.na.2010.09.035
– ident: key-10.3934/math.20231529-6
  doi: 10.1016/j.cnsns.2003.08.006
– ident: key-10.3934/math.20231529-13
  doi: 10.3390/math10030469
– ident: key-10.3934/math.20231529-12
  doi: 10.1002/mma.8349
– ident: key-10.3934/math.20231529-28
  doi: 10.1007/BFb0089647
– ident: key-10.3934/math.20231529-9
  doi: 10.1007/s11071-014-1691-8
– ident: key-10.3934/math.20231529-20
  doi: 10.1016/j.apm.2014.04.015
– ident: key-10.3934/math.20231529-4
  doi: 10.1006/tpbi.1995.1001
– ident: key-10.3934/math.20231529-7
  doi: 10.1016/S0304-3800(03)00131-5
SSID ssj0002124274
Score 2.2069063
Snippet This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 29910
SubjectTerms cross-diffusion
periodic solutions
population model
refuge
turing pattern
Title The instability of periodic solutions for a population model with cross-diffusion
URI https://doaj.org/article/6c3174791ff04f4bb3c4bdff2a5d8e05
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHMRbaLJJurtHFUsRKggWeluSyQZ6aYu2B_-9M0m79ubF67IsszPJzDczyTeM3YfCBglBCdUOamEiWOFNVIJ6dsGVroRE4jp-G4wm5nVqpzujvuhMWKYHzorrDwAjnClrFaM00XivwfgQY-FsqNrMXooxbyeZIh-MDtlgvpVJNXWtTR_xH_UeEM7YBCd_g9AOV38KKsNjdrRBg_wxS3HC9tr5KTscd1SqX2fsHQ3JZwTi0jHWb76InNiJF2EGvFs4HLEnd3zZjePiacQNpzIrT0IIGoWyptrYOZsMXz6eR2IzB0EA5jcrUTpl6Mqoq3UF1jqtTesrbzX-d2VbDPgQgwJX436i_eZlWYORFH9lMAXoC7Y_X8zbS8ZBg8VEVOropQGQDn2M8kVqqNnoih572CqmWWa6iwbTBNJgQxpsthrssSdSW_cSsVSnB2i7ZmO75i_bXf3HR67ZAQmVyyI3bH_1uW5vESis_F1aEz8E77yC
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+instability+of+periodic+solutions+for+a+population+model+with+cross-diffusion&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Weiyu&rft.au=Wang%2C+Hongyan&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=29910&rft.epage=29924&rft_id=info:doi/10.3934%2Fmath.20231529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231529
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon