The instability of periodic solutions for a population model with cross-diffusion
This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 12; pp. 29910 - 29924 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic solutions for the ordinary differential equation model, and derived the first derivative formula of periodic functions for the perturbed model. Second, applying the Floquet theory, we gave the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions. Additionally, we determined the range of cross-diffusion coefficients for the diffusive population model to form Turing patterns at the stable periodic solutions. Finally, our research was summarized and the relevant conclusions were simulated numerically. |
---|---|
AbstractList | This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and cross-diffusion, and its Turing pattern formation problem of Hopf bifurcating periodic solutions was studied. First, we discussed the stability of periodic solutions for the ordinary differential equation model, and derived the first derivative formula of periodic functions for the perturbed model. Second, applying the Floquet theory, we gave the conditions of Turing patterns occurring at Hopf bifurcating periodic solutions. Additionally, we determined the range of cross-diffusion coefficients for the diffusive population model to form Turing patterns at the stable periodic solutions. Finally, our research was summarized and the relevant conclusions were simulated numerically. |
Author | Li, Weiyu Wang, Hongyan |
Author_xml | – sequence: 1 givenname: Weiyu surname: Li fullname: Li, Weiyu – sequence: 2 givenname: Hongyan surname: Wang fullname: Wang, Hongyan |
BookMark | eNpNkMtKAzEUhoNUsNYu3ecFpuY6mSyleCkURKjrkKtNmU6GZIr07Z22Kq7O4f_h45zvFky61HkA7jFaUEnZw14P2wVBhGJO5BWYEiZoVcummfzbb8C8lB1CiGDCiGBT8L7Zehi7MmgT2zgcYQqw9zkmFy0sqT0MMXUFhpShhn3qD60-JXCfnG_hVxy20OZUSuViCIcyVnfgOui2-PnPnIGP56fN8rVav72slo_rypIaD5XQmHEhay1pYznXlDJvGsMpkrjhXmJkg8NWS04xFpIaJKRlyIy3I8eIpTOwunBd0jvV57jX-aiSjuocpPypdB6ibb2qLcWCCYlDQCwwY6hlxoVANHeNR3xkVRfW-Zfswx8PI3XSq0561a9e-g1LS2-z |
Cites_doi | 10.1016/j.physa.2018.06.072 10.1016/j.jde.2022.11.044 10.1007/s11071-022-07625-x 10.1016/0092-8240(94)00024-7 10.1016/j.chaos.2023.113890 10.1016/j.jde.2022.05.009 10.12941/jksiam.2013.13.129 10.1016/j.jde.2021.08.010 10.1016/j.jde.2008.10.024 10.1086/284153 10.3390/math10010017 10.1016/j.chaos.2016.07.003 10.1155/2013/147232 10.1016/0022-0396(79)90156-6 10.1016/j.apm.2017.11.005 10.1016/0040-5809(87)90019-0 10.1016/j.cam.2005.01.035 10.1016/j.matcom.2014.10.002 10.1016/j.na.2010.09.035 10.1016/j.cnsns.2003.08.006 10.3390/math10030469 10.1002/mma.8349 10.1007/BFb0089647 10.1007/s11071-014-1691-8 10.1016/j.apm.2014.04.015 10.1006/tpbi.1995.1001 10.1016/S0304-3800(03)00131-5 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.20231529 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 29924 |
ExternalDocumentID | oai_doaj_org_article_6c3174791ff04f4bb3c4bdff2a5d8e05 10_3934_math_20231529 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c261t-7a145796a938c55a334eb8b5309185e910cfd1ca95311793b079c40b0020d42c3 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:28:10 EDT 2025 Tue Jul 01 03:57:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-7a145796a938c55a334eb8b5309185e910cfd1ca95311793b079c40b0020d42c3 |
OpenAccessLink | https://doaj.org/article/6c3174791ff04f4bb3c4bdff2a5d8e05 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6c3174791ff04f4bb3c4bdff2a5d8e05 crossref_primary_10_3934_math_20231529 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.20231529-10 key-10.3934/math.20231529-11 key-10.3934/math.20231529-12 key-10.3934/math.20231529-13 key-10.3934/math.20231529-14 key-10.3934/math.20231529-15 key-10.3934/math.20231529-16 key-10.3934/math.20231529-17 key-10.3934/math.20231529-18 key-10.3934/math.20231529-19 key-10.3934/math.20231529-20 key-10.3934/math.20231529-21 key-10.3934/math.20231529-3 key-10.3934/math.20231529-22 key-10.3934/math.20231529-2 key-10.3934/math.20231529-23 key-10.3934/math.20231529-1 key-10.3934/math.20231529-24 key-10.3934/math.20231529-25 key-10.3934/math.20231529-26 key-10.3934/math.20231529-27 key-10.3934/math.20231529-28 key-10.3934/math.20231529-7 key-10.3934/math.20231529-6 key-10.3934/math.20231529-5 key-10.3934/math.20231529-4 key-10.3934/math.20231529-9 key-10.3934/math.20231529-8 |
References_xml | – ident: key-10.3934/math.20231529-24 doi: 10.1016/j.physa.2018.06.072 – ident: key-10.3934/math.20231529-15 doi: 10.1016/j.jde.2022.11.044 – ident: key-10.3934/math.20231529-11 doi: 10.1007/s11071-022-07625-x – ident: key-10.3934/math.20231529-5 doi: 10.1016/0092-8240(94)00024-7 – ident: key-10.3934/math.20231529-1 – ident: key-10.3934/math.20231529-10 doi: 10.1016/j.chaos.2023.113890 – ident: key-10.3934/math.20231529-16 doi: 10.1016/j.jde.2022.05.009 – ident: key-10.3934/math.20231529-19 doi: 10.12941/jksiam.2013.13.129 – ident: key-10.3934/math.20231529-17 doi: 10.1016/j.jde.2021.08.010 – ident: key-10.3934/math.20231529-26 doi: 10.1016/j.jde.2008.10.024 – ident: key-10.3934/math.20231529-2 doi: 10.1086/284153 – ident: key-10.3934/math.20231529-14 doi: 10.3390/math10010017 – ident: key-10.3934/math.20231529-22 doi: 10.1016/j.chaos.2016.07.003 – ident: key-10.3934/math.20231529-25 doi: 10.1155/2013/147232 – ident: key-10.3934/math.20231529-27 doi: 10.1016/0022-0396(79)90156-6 – ident: key-10.3934/math.20231529-23 doi: 10.1016/j.apm.2017.11.005 – ident: key-10.3934/math.20231529-3 doi: 10.1016/0040-5809(87)90019-0 – ident: key-10.3934/math.20231529-8 doi: 10.1016/j.cam.2005.01.035 – ident: key-10.3934/math.20231529-21 doi: 10.1016/j.matcom.2014.10.002 – ident: key-10.3934/math.20231529-18 doi: 10.1016/j.na.2010.09.035 – ident: key-10.3934/math.20231529-6 doi: 10.1016/j.cnsns.2003.08.006 – ident: key-10.3934/math.20231529-13 doi: 10.3390/math10030469 – ident: key-10.3934/math.20231529-12 doi: 10.1002/mma.8349 – ident: key-10.3934/math.20231529-28 doi: 10.1007/BFb0089647 – ident: key-10.3934/math.20231529-9 doi: 10.1007/s11071-014-1691-8 – ident: key-10.3934/math.20231529-20 doi: 10.1016/j.apm.2014.04.015 – ident: key-10.3934/math.20231529-4 doi: 10.1006/tpbi.1995.1001 – ident: key-10.3934/math.20231529-7 doi: 10.1016/S0304-3800(03)00131-5 |
SSID | ssj0002124274 |
Score | 2.2069063 |
Snippet | This paper is concerned with a population model with prey refuge and a Holling type Ⅲ functional response in the presence of self-diffusion and... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 29910 |
SubjectTerms | cross-diffusion periodic solutions population model refuge turing pattern |
Title | The instability of periodic solutions for a population model with cross-diffusion |
URI | https://doaj.org/article/6c3174791ff04f4bb3c4bdff2a5d8e05 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ_iE-uLHMRbaLJJurtHFUsRKggWeluSyQZ6aYu2B_-9M0m79ubF67IsszPJzDczyTeM3YfCBglBCdUOamEiWOFNVIJ6dsGVroRE4jp-G4wm5nVqpzujvuhMWKYHzorrDwAjnClrFaM00XivwfgQY-FsqNrMXooxbyeZIh-MDtlgvpVJNXWtTR_xH_UeEM7YBCd_g9AOV38KKsNjdrRBg_wxS3HC9tr5KTscd1SqX2fsHQ3JZwTi0jHWb76InNiJF2EGvFs4HLEnd3zZjePiacQNpzIrT0IIGoWyptrYOZsMXz6eR2IzB0EA5jcrUTpl6Mqoq3UF1jqtTesrbzX-d2VbDPgQgwJX436i_eZlWYORFH9lMAXoC7Y_X8zbS8ZBg8VEVOropQGQDn2M8kVqqNnoih572CqmWWa6iwbTBNJgQxpsthrssSdSW_cSsVSnB2i7ZmO75i_bXf3HR67ZAQmVyyI3bH_1uW5vESis_F1aEz8E77yC |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+instability+of+periodic+solutions+for+a+population+model+with+cross-diffusion&rft.jtitle=AIMS+mathematics&rft.au=Li%2C+Weiyu&rft.au=Wang%2C+Hongyan&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=12&rft.spage=29910&rft.epage=29924&rft_id=info:doi/10.3934%2Fmath.20231529&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_20231529 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |