Machine learning - assisted prediction of yield strength in irradiated type 316 stainless steels

•A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understandin...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 208; p. 114691
Main Authors Wang, Ziqiang, Yang, Chen, Gao, Ning, Wu, Xuebang, Yao, Zhongwen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Subjects
Online AccessGet full text
ISSN0920-3796
DOI10.1016/j.fusengdes.2024.114691

Cover

Loading…
Abstract •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understanding. The investigation into irradiation hardening and embrittlement is of critical importance in nuclear material subject. This work explores the applications of machine learning (ML) to predict the yield strength of irradiated type 316 stainless steels. A dataset comprising 354 samples is compiled through an extensive review of prior experimental studies. Each sample has 23 potentially influential features. Five distinct machine learning models are trained and evaluated. Among these models, the Gradient Boosting (GB) model demonstrates superior prediction performance and robust stability. The prominent factors identified by the GB model are in reasonable agreement with established knowledge regarding the determinants of yield strength in irradiated type 316 stainless steels. These findings provide critical insights into the mechanical properties of irradiated type 316 stainless steels.
AbstractList •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understanding. The investigation into irradiation hardening and embrittlement is of critical importance in nuclear material subject. This work explores the applications of machine learning (ML) to predict the yield strength of irradiated type 316 stainless steels. A dataset comprising 354 samples is compiled through an extensive review of prior experimental studies. Each sample has 23 potentially influential features. Five distinct machine learning models are trained and evaluated. Among these models, the Gradient Boosting (GB) model demonstrates superior prediction performance and robust stability. The prominent factors identified by the GB model are in reasonable agreement with established knowledge regarding the determinants of yield strength in irradiated type 316 stainless steels. These findings provide critical insights into the mechanical properties of irradiated type 316 stainless steels.
ArticleNumber 114691
Author Gao, Ning
Yang, Chen
Wang, Ziqiang
Wu, Xuebang
Yao, Zhongwen
Author_xml – sequence: 1
  givenname: Ziqiang
  surname: Wang
  fullname: Wang, Ziqiang
  organization: Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy Sciences, Hefei 230000, PR China
– sequence: 2
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  organization: Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130022, PR China
– sequence: 3
  givenname: Ning
  surname: Gao
  fullname: Gao, Ning
  organization: Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University 266237 Qingdao, PR China
– sequence: 4
  givenname: Xuebang
  orcidid: 0000-0002-8343-7894
  surname: Wu
  fullname: Wu, Xuebang
  email: xbwu@issp.ac.cn
  organization: Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy Sciences, Hefei 230000, PR China
– sequence: 5
  givenname: Zhongwen
  surname: Yao
  fullname: Yao, Zhongwen
  email: zwyao@jlu.edu.cn
  organization: Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L3N6, Canada
BookMark eNqFkM1OwzAMx3MYEtvgGcgLtCRtmjbHaeJLGuIC55AmzpappFNckPb2ZBraFcmSLX_8bf8WZBbHCITccVZyxuX9vvTfCHHrAMuKVaLkXEjFZ2TOVMWKulXymiwQ94zxNtucfL4auwsR6AAmxRC3tKAGMeAEjh4SuGCnMEY6enoMMDiKU8oLph0NkYaUjAvm1DodD0BrLnPdhDgAYo4ABrwhV94MCLd_fkk-Hh_e18_F5u3pZb3aFLaSfCoay0XTy1qwhleNaWzXcwZ1Jb1spWfge1FbaYSQzriuV8YprtqcVI1nne_qJWnPujaNiAm8PqTwZdJRc6ZPcPReX-DoExx9hpMnV-fJfC38BEgabYBo8-8J7KTdGP7V-AUNQnae
Cites_doi 10.1016/j.msea.2014.01.066
10.2172/4617810
10.1016/j.jmrt.2023.03.032
10.1179/026708399773002782
10.1016/j.jnucmat.2006.04.014
10.1016/j.jmst.2020.12.010
10.1016/j.matlet.2011.09.065
10.1016/j.scriptamat.2021.114150
10.1016/j.jnucmat.2021.152871
10.1016/0022-3115(79)90372-6
10.1023/A:1025625330442
10.1016/j.scriptamat.2008.02.031
10.1016/j.jnucmat.2023.154794
10.1016/j.commatsci.2021.110960
10.1520/STP38181S
10.1016/j.jnucmat.2024.155288
10.1016/j.scriptamat.2016.09.032
10.1016/0022-3115(82)90698-5
10.3390/met10101356
10.1016/B978-0-08-096672-4.00003-7
10.1016/0022-3115(82)90702-4
10.1016/0022-3115(73)90129-3
10.1007/s11661-013-2155-3
10.1103/PhysRevB.92.104102
10.1016/0022-3115(84)90620-2
10.1016/j.jnucmat.2024.154992
10.1016/j.commatsci.2008.03.046
10.1016/j.actamat.2023.119098
10.1016/j.net.2021.06.014
10.1016/S0022-3115(00)00029-5
10.1520/STP38042S
10.1016/B978-0-08-022138-0.50084-8
10.3390/met12050761
10.1016/j.jnucmat.2010.10.039
10.1088/0965-0393/22/6/065010
10.1016/0022-3115(67)90109-2
10.1103/PhysRevB.100.144105
10.1016/j.jnucmat.2021.153412
10.2172/6849206
10.1016/j.jnucmat.2023.154614
10.1016/0022-3115(82)90701-2
10.1038/s41524-022-00760-4
10.1016/j.jnucmat.2019.05.054
10.1016/j.msea.2010.08.062
10.1016/j.jnucmat.2018.02.027
10.1016/j.jnucmat.2022.153886
10.1016/j.msea.2022.144524
10.1016/S0921-5093(00)01723-8
10.1016/S1572-4859(09)01501-0
10.1142/S0219633608004416
10.1016/j.jnucmat.2020.152564
10.1016/j.actamat.2022.118051
10.1016/j.scriptamat.2015.06.012
10.1016/j.actamat.2022.118651
10.1038/nature17439
10.1016/j.jmrt.2022.02.056
10.1016/j.rinp.2022.105226
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.fusengdes.2024.114691
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fusengdes_2024_114691
S0920379624005416
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXKI
AAXUO
ABFNM
ABMAC
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c261t-5c145b63405125a5c8b10e326f676f0efb43c6a446dad8b9ad9197b4395f08f83
IEDL.DBID .~1
ISSN 0920-3796
IngestDate Tue Jul 01 02:08:16 EDT 2025
Sat Nov 09 15:59:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Yield strength
Type 316 stainless steels
Irradiation hardening
Machine learning
Prediction
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-5c145b63405125a5c8b10e326f676f0efb43c6a446dad8b9ad9197b4395f08f83
ORCID 0000-0002-8343-7894
ParticipantIDs crossref_primary_10_1016_j_fusengdes_2024_114691
elsevier_sciencedirect_doi_10_1016_j_fusengdes_2024_114691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Fusion engineering and design
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Varin, Kurzydlowski (bib0049) 1988; 101
Liu, Biner (bib0011) 2008; 59
Kirk, Hashimoto, Nomoto (bib0025) 2022; 568
Calcagnotto, Ponge, Raabe (bib0071) 2010; 527
Castin, Malerba, Chaouadi (bib0023) 2011; 408
Gaganidze, Schneider, Dafferner, Aktaa (bib0003) 2006; 355
Grossbeck, Maziasz (bib0050) 1979; 85-86
Xu, Jin, Lu (bib0029) 2024; 39
F.A. Garner, G.L. Guthrie, Evaluation of 20% cold-worked 316 swelling correlation, United States, 1975.
G.S. Was, Fundamentals of radiation materials science metals and alloys, 2007.
H.R. Brager, L.D. Blackburn, D.L. Greenslade, Dependence on displacement rate of radiation-induced changes in microstructure and tensile properties of AISI 304 and 316, United States, 1983.
R.L. Fish, Postirradiation tensile properties of reference 20 percent cold-worked type 316 stainless steel, United States, 1975.
Waseda, Veiga, Morthomas, Chantrenne, Becquart, Ribeiro, Jelea, Goldenstein, Perez (bib0061) 2017; 129
Yang, Wang, Yu, Ma, Wang, Wei, Gao, Yao (bib0028) 2024; 600
D.J.B.D. Hull, Introduction to dislocations, Fifth ed.2011.
Yu, Wang, Wang, Setyawan, Long, Liu, Dong, Gao, Gao, Wang (bib0009) 2023; 245
Juan, Dai, Yang, Zhang (bib0021) 2021; 79
Messina, Luo, Xu, Lu, Deng, Tschopp, Gao (bib0030) 2021; 204
Gladman (bib0068) 1999; 15
Barouh, Schuler, Fu, Jourdan (bib0014) 2015; 92
Jin, Khafizov, Jiang, Zhou, Marianetti, Bryan, Manley, Hurley (bib0015) 2021; 33
Fish, Holmes (bib0048) 1973; 46
Wang, Yang, Yu, Ma, Guo, Wei, Gao, Yao, Wang (bib0008) 2024; 39
George, Shaikh (bib0052) 2002
Ke, Hu, Zhong, Wan, Wu (bib0069) 2022; 17
Wang, Liu, Li, Mei, Li, Lai, Xue (bib0034) 2022; 202
Veiga, Goldenstein, Perez, Becquart (bib0060) 2015; 108
Yang, Ma, Zhao (bib0059) 2023; 863
Rodney, Martin, Bréchet (bib0001) 2001; 309-310
Shigesato, Fujishiro, Hara (bib0062) 2014; 45
Cinkilic, Yan, Luo (bib0067) 2020; 10
R.L. Klueh, M.L. Grossbeck, Comparison of the irradiated tensile properties of a high-manganese austenitic steel and type 16 stainless steel, United States, 1983.
Mathew, Parfitt, Wilford, Riddle, Alamaniotis, Chroneos, Fitzpatrick (bib0026) 2018; 502
Shuai, Yinlei, Dongdong, Ziyue, Yunli, Fucheng (bib0070) 2023; 24
R.L. Klueh, M.L. Grossbeck, Tensile properties and swelling of 20%-cold-worked Type 316 stainless steel irradiated in HFIR, United States, 1984.
D. Fahr, E.E. Bloom, J.O. Stiegler, Postirradiation tensile properties of annealed and cold-worked type 316 stainless steel, United States, 1972, p. Medium: ED; Size: Pages: 24.
Faney, Wirth (bib0013) 2014; 22
Mei, Chen, Wang, Liu, Hu, Lin, Shen, Li, Kong (bib0036) 2024; 588
Maheswari, Chowdhury, Kumar, Sankaran (bib0057) 2014; 600
V.K. Sikka, Elevated temperature ductility of types 304 and 316 stainless steel, United States, 1978.
Liu, Wu, Mayeshiba, Afflerbach, Jacobs, Perry, George, Cordell, Xia, Yuan, Lorenson, Wu, Parker, Doshi, Politowicz, Xiao, Morgan, Wells, Almirall, Yamamoto, Odette (bib0002) 2022; 8
Raccuglia, Elbert, Adler, Falk, Wenny, Mollo, Zeller, Friedler, Schrier, Norquist (bib0019) 2016; 533
Yu, Yi, Wang (bib0017) 2008; 07
Wang, Yu, Long, Yang, Gao, Yao, Wang (bib0007) 2022; 34
Terentyev (bib0004) 2006
Hata, Takamizawa, Hojo, Ebihara, Nishiyama, Nagai (bib0064) 2021; 543
Da Rosa, Maugis, Portavoce, Lartigue-Korinek, Valle, Lentzen, Drillet, Hoummada (bib0063) 2023; 255
Murugesan, Kuppusami, Mohandas, Vijayalakshmi (bib0038) 2012; 67
Lee, Kim, Lee (bib0024) 2021; 53
Wang, Yu, Yang, Long, Gao, Yao, Dong, Wang (bib0006) 2022; 12
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0051) 2011; 12
Nam, Kim, Ahn (bib0056) 2003; 38
Kamboj, Bachhav, Dubey, Almirall, Yamamoto, Marquis, Odette (bib0058) 2023; 585
Wang, Yang, Yu, Ma, Guo, Wei, Gao, Yao, Wang (bib0010) 2024; 39
Jin (bib0005) 2019
Wang, Li, Li, Zhang, Zhang, Xu, Lei, Liu, Wu (bib0031) 2022; 559
Wiffen, Maziasz (bib0042) 1981; 104
R.L. Fish, N.S. Cannon, G.L. Wire, Tensile property correlations for highly irradiated 20% C. W. type 316 stainless steel., United States, 1978.
Becquart, Domain, Legris, Van Duysen (bib0016) 2000; 280
Jin, Cao, Short (bib0027) 2019; 523
Han, Sun, Feng, Lin, Lu (bib0020) 2021; 14
M.L. Grossbeck, P.J. Maziasz, Tensile properties of 20% cold-worked titanium-modified type 316 stainless steel irradiated in HFIR, United States, 1981.
Xu, Zhang, Ma, Xiong, Huang, Kai, Zhao (bib0033) 2022; 234
Byggmästar, Hamedani, Nordlund, Djurabekova (bib0035) 2019; 100
Li, Hu, Li, Zhang, Xu, Wu, Liu (bib0032) 2024; 593
Hu, Lach, Terrani (bib0037) 2021; 548
F.A. Garner, M.L. Hamilton, N.F. Panayotou, G.D. Johnson, Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation, United States, 1980.
Mohn, Kob (bib0022) 2009; 45
Pyzer-Knapp, Pitera, Staar, Takeda, Laino, Sanders, Sexton, Smith, Curioni (bib0018) 2022; 8
Bloom, Martin, Stiegler, Weir (bib0040) 1967; 22
Bacon, Osetsky, Rodney (bib0012) 2009
Wiffen (10.1016/j.fusengdes.2024.114691_bib0042) 1981; 104
Nam (10.1016/j.fusengdes.2024.114691_bib0056) 2003; 38
Xu (10.1016/j.fusengdes.2024.114691_bib0033) 2022; 234
10.1016/j.fusengdes.2024.114691_bib0065
Jin (10.1016/j.fusengdes.2024.114691_bib0015) 2021; 33
Xu (10.1016/j.fusengdes.2024.114691_bib0029) 2024; 39
10.1016/j.fusengdes.2024.114691_bib0066
Jin (10.1016/j.fusengdes.2024.114691_bib0005) 2019
Rodney (10.1016/j.fusengdes.2024.114691_bib0001) 2001; 309-310
Hu (10.1016/j.fusengdes.2024.114691_bib0037) 2021; 548
Faney (10.1016/j.fusengdes.2024.114691_bib0013) 2014; 22
Castin (10.1016/j.fusengdes.2024.114691_bib0023) 2011; 408
Varin (10.1016/j.fusengdes.2024.114691_bib0049) 1988; 101
Han (10.1016/j.fusengdes.2024.114691_bib0020) 2021; 14
Murugesan (10.1016/j.fusengdes.2024.114691_bib0038) 2012; 67
Waseda (10.1016/j.fusengdes.2024.114691_bib0061) 2017; 129
Wang (10.1016/j.fusengdes.2024.114691_bib0007) 2022; 34
Mohn (10.1016/j.fusengdes.2024.114691_bib0022) 2009; 45
Hata (10.1016/j.fusengdes.2024.114691_bib0064) 2021; 543
Wang (10.1016/j.fusengdes.2024.114691_bib0031) 2022; 559
Jin (10.1016/j.fusengdes.2024.114691_bib0027) 2019; 523
Gladman (10.1016/j.fusengdes.2024.114691_bib0068) 1999; 15
Gaganidze (10.1016/j.fusengdes.2024.114691_bib0003) 2006; 355
Yang (10.1016/j.fusengdes.2024.114691_bib0059) 2023; 863
Byggmästar (10.1016/j.fusengdes.2024.114691_bib0035) 2019; 100
Wang (10.1016/j.fusengdes.2024.114691_bib0006) 2022; 12
Pyzer-Knapp (10.1016/j.fusengdes.2024.114691_bib0018) 2022; 8
Calcagnotto (10.1016/j.fusengdes.2024.114691_bib0071) 2010; 527
Juan (10.1016/j.fusengdes.2024.114691_bib0021) 2021; 79
Mei (10.1016/j.fusengdes.2024.114691_bib0036) 2024; 588
Shigesato (10.1016/j.fusengdes.2024.114691_bib0062) 2014; 45
Shuai (10.1016/j.fusengdes.2024.114691_bib0070) 2023; 24
Yu (10.1016/j.fusengdes.2024.114691_bib0017) 2008; 07
Wang (10.1016/j.fusengdes.2024.114691_bib0010) 2024; 39
10.1016/j.fusengdes.2024.114691_bib0039
Kirk (10.1016/j.fusengdes.2024.114691_bib0025) 2022; 568
Yang (10.1016/j.fusengdes.2024.114691_bib0028) 2024; 600
Fish (10.1016/j.fusengdes.2024.114691_bib0048) 1973; 46
Wang (10.1016/j.fusengdes.2024.114691_bib0034) 2022; 202
Pedregosa (10.1016/j.fusengdes.2024.114691_bib0051) 2011; 12
10.1016/j.fusengdes.2024.114691_bib0041
Becquart (10.1016/j.fusengdes.2024.114691_bib0016) 2000; 280
10.1016/j.fusengdes.2024.114691_bib0043
Kamboj (10.1016/j.fusengdes.2024.114691_bib0058) 2023; 585
10.1016/j.fusengdes.2024.114691_bib0045
10.1016/j.fusengdes.2024.114691_bib0044
Bacon (10.1016/j.fusengdes.2024.114691_bib0012) 2009
Barouh (10.1016/j.fusengdes.2024.114691_bib0014) 2015; 92
Grossbeck (10.1016/j.fusengdes.2024.114691_bib0050) 1979; 85-86
Mathew (10.1016/j.fusengdes.2024.114691_bib0026) 2018; 502
10.1016/j.fusengdes.2024.114691_bib0047
Da Rosa (10.1016/j.fusengdes.2024.114691_bib0063) 2023; 255
Messina (10.1016/j.fusengdes.2024.114691_bib0030) 2021; 204
10.1016/j.fusengdes.2024.114691_bib0046
George (10.1016/j.fusengdes.2024.114691_bib0052) 2002
Wang (10.1016/j.fusengdes.2024.114691_bib0008) 2024; 39
Lee (10.1016/j.fusengdes.2024.114691_bib0024) 2021; 53
Raccuglia (10.1016/j.fusengdes.2024.114691_bib0019) 2016; 533
Liu (10.1016/j.fusengdes.2024.114691_bib0002) 2022; 8
Bloom (10.1016/j.fusengdes.2024.114691_bib0040) 1967; 22
Yu (10.1016/j.fusengdes.2024.114691_bib0009) 2023; 245
10.1016/j.fusengdes.2024.114691_bib0054
10.1016/j.fusengdes.2024.114691_bib0053
Cinkilic (10.1016/j.fusengdes.2024.114691_bib0067) 2020; 10
10.1016/j.fusengdes.2024.114691_bib0055
Veiga (10.1016/j.fusengdes.2024.114691_bib0060) 2015; 108
Li (10.1016/j.fusengdes.2024.114691_bib0032) 2024; 593
Maheswari (10.1016/j.fusengdes.2024.114691_bib0057) 2014; 600
Liu (10.1016/j.fusengdes.2024.114691_bib0011) 2008; 59
Ke (10.1016/j.fusengdes.2024.114691_bib0069) 2022; 17
Terentyev (10.1016/j.fusengdes.2024.114691_bib0004) 2006
References_xml – reference: F.A. Garner, M.L. Hamilton, N.F. Panayotou, G.D. Johnson, Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation, United States, 1980.
– volume: 45
  start-page: 111
  year: 2009
  end-page: 117
  ident: bib0022
  article-title: A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials
  publication-title: Comput. Mater. Sci.
– volume: 548
  year: 2021
  ident: bib0037
  article-title: Deuterium permeation and retention in 316l stainless steel manufactured by laser powder bed fusion
  publication-title: J. Nuclear Mater.
– volume: 92
  year: 2015
  ident: bib0014
  article-title: Predicting vacancy-mediated diffusion of interstitial solutes in α-Fe
  publication-title: Phys. Rev. B
– volume: 255
  year: 2023
  ident: bib0063
  article-title: Boron segregation at austenite grain boundaries: an equilibrium phenomenon
  publication-title: Acta Mater.
– volume: 527
  start-page: 7832
  year: 2010
  end-page: 7840
  ident: bib0071
  article-title: Effect of grain refinement to 1μm on strength and toughness of dual-phase steels
  publication-title: Mater. Sci. Eng.
– volume: 204
  year: 2021
  ident: bib0030
  article-title: Machine learning to predict aluminum segregation to magnesium grain boundaries
  publication-title: Scr. Mater.
– reference: D.J.B.D. Hull, Introduction to dislocations, Fifth ed.2011.
– reference: F.A. Garner, G.L. Guthrie, Evaluation of 20% cold-worked 316 swelling correlation, United States, 1975.
– year: 2019
  ident: bib0005
  article-title: Computational characterization of radiationinduced defect dynamics and material response
– reference: D. Fahr, E.E. Bloom, J.O. Stiegler, Postirradiation tensile properties of annealed and cold-worked type 316 stainless steel, United States, 1972, p. Medium: ED; Size: Pages: 24.
– start-page: 1
  year: 2009
  end-page: 90
  ident: bib0012
  article-title: Chapter 88 dislocation–obstacle interactions at the atomic level
  publication-title: Dislocations in Solids
– volume: 533
  start-page: 73
  year: 2016
  end-page: 76
  ident: bib0019
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
– volume: 22
  start-page: 68
  year: 1967
  end-page: 76
  ident: bib0040
  article-title: The effect of irradiation temperature on strength and microstructure of stainless steel
  publication-title: J. Nuclear Mater.
– volume: 22
  year: 2014
  ident: bib0013
  article-title: Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten
  publication-title: Model. Simul. Mat. Sci. Eng.
– volume: 600
  start-page: 12
  year: 2014
  end-page: 20
  ident: bib0057
  article-title: Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels
  publication-title: Mater. Sci. Eng.
– year: 2006
  ident: bib0004
  article-title: Study of radiation effects in FeCr alloys for fusion applications using computer simulations
– volume: 245
  year: 2023
  ident: bib0009
  article-title: Coupled effect of Cr and Al on interactions between a prismatic interstitial dislocation loop and an edge dislocation line in Fe-Cr-Al alloy
  publication-title: Acta Mater.
– reference: M.L. Grossbeck, P.J. Maziasz, Tensile properties of 20% cold-worked titanium-modified type 316 stainless steel irradiated in HFIR, United States, 1981.
– volume: 07
  start-page: 953
  year: 2008
  end-page: 963
  ident: bib0017
  article-title: Prediction of the glass transition temperatures for polymers with artifical neural network
  publication-title: J. Theoret. Computat. Chem.
– volume: 33
  year: 2021
  ident: bib0015
  article-title: Assessment of empirical interatomic potential to predict thermal conductivity in ThO2 and UO2
  publication-title: J. Phys.
– volume: 46
  start-page: 113
  year: 1973
  end-page: 120
  ident: bib0048
  article-title: Tensile properties of annealed type 316 stainless steel after EBR-II irradiation
  publication-title: J. Nucl. Mater.
– volume: 355
  start-page: 83
  year: 2006
  end-page: 88
  ident: bib0003
  article-title: High-dose neutron irradiation embrittlement of RAFM steels
  publication-title: J. Nuclear Mater.
– volume: 108
  start-page: 19
  year: 2015
  end-page: 22
  ident: bib0060
  article-title: Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys
  publication-title: Scr. Mater.
– volume: 202
  year: 2022
  ident: bib0034
  article-title: Machine-learning interatomic potential for radiation damage effects in bcc-iron
  publication-title: Comput. Mater. Sci.
– volume: 588
  year: 2024
  ident: bib0036
  article-title: Development of machine learning and empirical interatomic potentials for the binary Zr-Sn system
  publication-title: J. Nuclear Mater.
– start-page: 1
  year: 2002
  end-page: 36
  ident: bib0052
  article-title: 1 - Introduction to Austenitic Stainless Steels
  publication-title: Corrosion of austenitic stainless steels
– volume: 34
  year: 2022
  ident: bib0007
  article-title: New mechanisms of dislocation line-loop interactions in BCC-Fe explored by molecular dynamics method
  publication-title: Results. Phys.
– volume: 53
  start-page: 4022
  year: 2021
  end-page: 4032
  ident: bib0024
  article-title: Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants
  publication-title: Nuclear Eng. Techn.
– volume: 85-86
  start-page: 883
  year: 1979
  end-page: 887
  ident: bib0050
  article-title: Tensile properties of type 316 stainless steel irradiated in a simulated fusion reactor environment
  publication-title: J. Nucl. Mate.
– volume: 24
  start-page: 586
  year: 2023
  end-page: 594
  ident: bib0070
  article-title: Unusual grain-size effects on tensile deformation behavior of twinning-induced plasticity steel with low Mn content
  publication-title: J. Mater. Res. Technol.
– volume: 863
  year: 2023
  ident: bib0059
  article-title: Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys
  publication-title: Mater. Sci. Eng.
– volume: 502
  start-page: 311
  year: 2018
  end-page: 322
  ident: bib0026
  article-title: Reactor pressure vessel embrittlement: insights from neural network modelling
  publication-title: J. Nuclear Mater.
– volume: 79
  start-page: 178
  year: 2021
  end-page: 190
  ident: bib0021
  article-title: Accelerating materials discovery using machine learning
  publication-title: J. Mater. Sci. Technol.
– reference: R.L. Klueh, M.L. Grossbeck, Tensile properties and swelling of 20%-cold-worked Type 316 stainless steel irradiated in HFIR, United States, 1984.
– volume: 8
  start-page: 85
  year: 2022
  ident: bib0002
  article-title: Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels
  publication-title: NPJ. Comput. Mater.
– volume: 309-310
  start-page: 198
  year: 2001
  end-page: 202
  ident: bib0001
  article-title: Irradiation hardening by interstitial loops: atomistic study and micromechanical model
  publication-title: Mater. Sci. Eng.
– volume: 408
  start-page: 30
  year: 2011
  end-page: 39
  ident: bib0023
  article-title: Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks
  publication-title: J. Nuclear Mater.
– volume: 67
  start-page: 173
  year: 2012
  end-page: 176
  ident: bib0038
  article-title: X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel
  publication-title: Mater. Lett.
– reference: G.S. Was, Fundamentals of radiation materials science metals and alloys, 2007.
– reference: R.L. Fish, Postirradiation tensile properties of reference 20 percent cold-worked type 316 stainless steel, United States, 1975.
– volume: 12
  start-page: 761
  year: 2022
  ident: bib0006
  article-title: Effect of radiation defects on thermo–mechanical properties of UO2 investigated by molecular dynamics method
  publication-title: Metals.
– volume: 600
  year: 2024
  ident: bib0028
  article-title: Prediction of the swelling rate of irradiated type 316 stainless steels via machine learning methods
  publication-title: J. Nuclear Mater.
– reference: V.K. Sikka, Elevated temperature ductility of types 304 and 316 stainless steel, United States, 1978.
– volume: 593
  year: 2024
  ident: bib0032
  article-title: Prediction of the energetics of stable self-interstitial atoms at tungsten grain boundaries via machine learning
  publication-title: J. Nuclear Mater.
– volume: 39
  year: 2024
  ident: bib0010
  article-title: Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study
  publication-title: Nucl. Mater. Energy
– volume: 38
  start-page: 3611
  year: 2003
  end-page: 3617
  ident: bib0056
  article-title: Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels
  publication-title: J. Mater. Sci.
– volume: 15
  start-page: 30
  year: 1999
  end-page: 36
  ident: bib0068
  article-title: Precipitation hardening in metals
  publication-title: Mater. Sci. Techn.
– reference: R.L. Klueh, M.L. Grossbeck, Comparison of the irradiated tensile properties of a high-manganese austenitic steel and type 16 stainless steel, United States, 1983.
– volume: 523
  start-page: 189
  year: 2019
  end-page: 197
  ident: bib0027
  article-title: Predicting the onset of void swelling in irradiated metals with machine learning
  publication-title: J. Nuclear Mater.
– volume: 100
  year: 2019
  ident: bib0035
  article-title: Machine-learning interatomic potential for radiation damage and defects in tungsten
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 1356
  year: 2020
  ident: bib0067
  article-title: Modeling precipitation hardening and yield strength in cast Al-Si-Mg-Mn Alloys
  publication-title: Metals.
– volume: 104
  start-page: 821
  year: 1981
  end-page: 826
  ident: bib0042
  article-title: The influence of neutron irradiation at 55 °C on the properties of austenitic stainless steels
  publication-title: J. Nuclear Mater.
– volume: 45
  start-page: 1876
  year: 2014
  end-page: 1882
  ident: bib0062
  article-title: Grain boundary segregation behavior of boron in low-alloy steel
  publication-title: Metallurg. Mater. Transact.
– volume: 17
  start-page: 2999
  year: 2022
  end-page: 3012
  ident: bib0069
  article-title: Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary
  publication-title: J. Mater. Res. Technol.
– volume: 39
  year: 2024
  ident: bib0029
  article-title: Predicting hydrogen segregation energy distributions in strained regions of tungsten using artificial neural network
  publication-title: Nuclear Mater. Energy
– volume: 568
  year: 2022
  ident: bib0025
  article-title: Application of a machine learning approach based on nearest neighbors to extract embrittlement trends from RPV surveillance data
  publication-title: J. Nuclear Mater.
– volume: 101
  start-page: 221
  year: 1988
  end-page: 226
  ident: bib0049
  article-title: The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel
  publication-title: Mater. Sci. Eng.
– volume: 59
  start-page: 51
  year: 2008
  end-page: 54
  ident: bib0011
  article-title: Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe
  publication-title: Scr. Mater.
– volume: 39
  year: 2024
  ident: bib0008
  article-title: Dependence of thermal conductivity on radiation defects in ThO2 investigated by molecular dynamics method
  publication-title: Nuclear Mater. Energy
– volume: 234
  year: 2022
  ident: bib0033
  article-title: Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo
  publication-title: Acta Mater.
– reference: H.R. Brager, L.D. Blackburn, D.L. Greenslade, Dependence on displacement rate of radiation-induced changes in microstructure and tensile properties of AISI 304 and 316, United States, 1983.
– volume: 14
  start-page: 20
  year: 2021
  end-page: 35
  ident: bib0020
  article-title: Machine learning regression guided thermoelectric materials discovery - a review
  publication-title: ES Mater. Manufact.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib0051
  publication-title: Scikit-learn
– reference: R.L. Fish, N.S. Cannon, G.L. Wire, Tensile property correlations for highly irradiated 20% C. W. type 316 stainless steel., United States, 1978.
– volume: 543
  year: 2021
  ident: bib0064
  article-title: Grain-boundary phosphorus segregation in highly neutron-irradiated reactor pressure vessel steels and its effect on irradiation embrittlement
  publication-title: J. Nuclear Materi.
– volume: 559
  year: 2022
  ident: bib0031
  article-title: Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method
  publication-title: J. Nuclear Mater.
– volume: 8
  start-page: 84
  year: 2022
  ident: bib0018
  article-title: Accelerating materials discovery using artificial intelligence, high performance computing and robotics, npj
  publication-title: Computat. Mater.
– volume: 280
  start-page: 73
  year: 2000
  end-page: 85
  ident: bib0016
  article-title: Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades
  publication-title: J. Nuclear Mater.
– volume: 129
  start-page: 16
  year: 2017
  end-page: 19
  ident: bib0061
  article-title: Formation of carbon Cottrell atmospheres and their effect on the stress field around an edge dislocation
  publication-title: Scr. Mater.
– volume: 585
  year: 2023
  ident: bib0058
  article-title: The effect of phosphorus on precipitation in irradiated reactor pressure vessel (RPV) steels
  publication-title: J. Nuclear Mater.
– volume: 600
  start-page: 12
  year: 2014
  ident: 10.1016/j.fusengdes.2024.114691_bib0057
  article-title: Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2014.01.066
– ident: 10.1016/j.fusengdes.2024.114691_bib0041
  doi: 10.2172/4617810
– volume: 24
  start-page: 586
  year: 2023
  ident: 10.1016/j.fusengdes.2024.114691_bib0070
  article-title: Unusual grain-size effects on tensile deformation behavior of twinning-induced plasticity steel with low Mn content
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2023.03.032
– volume: 15
  start-page: 30
  issue: 1
  year: 1999
  ident: 10.1016/j.fusengdes.2024.114691_bib0068
  article-title: Precipitation hardening in metals
  publication-title: Mater. Sci. Techn.
  doi: 10.1179/026708399773002782
– volume: 355
  start-page: 83
  issue: 1
  year: 2006
  ident: 10.1016/j.fusengdes.2024.114691_bib0003
  article-title: High-dose neutron irradiation embrittlement of RAFM steels
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2006.04.014
– volume: 79
  start-page: 178
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0021
  article-title: Accelerating materials discovery using machine learning
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.12.010
– volume: 67
  start-page: 173
  issue: 1
  year: 2012
  ident: 10.1016/j.fusengdes.2024.114691_bib0038
  article-title: X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2011.09.065
– volume: 204
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0030
  article-title: Machine learning to predict aluminum segregation to magnesium grain boundaries
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2021.114150
– volume: 39
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0029
  article-title: Predicting hydrogen segregation energy distributions in strained regions of tungsten using artificial neural network
  publication-title: Nuclear Mater. Energy
– volume: 39
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0010
  article-title: Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study
  publication-title: Nucl. Mater. Energy
– volume: 548
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0037
  article-title: Deuterium permeation and retention in 316l stainless steel manufactured by laser powder bed fusion
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2021.152871
– ident: 10.1016/j.fusengdes.2024.114691_bib0039
– volume: 85-86
  start-page: 883
  year: 1979
  ident: 10.1016/j.fusengdes.2024.114691_bib0050
  article-title: Tensile properties of type 316 stainless steel irradiated in a simulated fusion reactor environment
  publication-title: J. Nucl. Mate.
  doi: 10.1016/0022-3115(79)90372-6
– volume: 39
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0008
  article-title: Dependence of thermal conductivity on radiation defects in ThO2 investigated by molecular dynamics method
  publication-title: Nuclear Mater. Energy
– volume: 38
  start-page: 3611
  issue: 17
  year: 2003
  ident: 10.1016/j.fusengdes.2024.114691_bib0056
  article-title: Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1025625330442
– volume: 59
  start-page: 51
  issue: 1
  year: 2008
  ident: 10.1016/j.fusengdes.2024.114691_bib0011
  article-title: Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2008.02.031
– volume: 588
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0036
  article-title: Development of machine learning and empirical interatomic potentials for the binary Zr-Sn system
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2023.154794
– volume: 202
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0034
  article-title: Machine-learning interatomic potential for radiation damage effects in bcc-iron
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110960
– ident: 10.1016/j.fusengdes.2024.114691_bib0055
  doi: 10.1520/STP38181S
– volume: 14
  start-page: 20
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0020
  article-title: Machine learning regression guided thermoelectric materials discovery - a review
  publication-title: ES Mater. Manufact.
– volume: 600
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0028
  article-title: Prediction of the swelling rate of irradiated type 316 stainless steels via machine learning methods
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2024.155288
– volume: 129
  start-page: 16
  year: 2017
  ident: 10.1016/j.fusengdes.2024.114691_bib0061
  article-title: Formation of carbon Cottrell atmospheres and their effect on the stress field around an edge dislocation
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2016.09.032
– ident: 10.1016/j.fusengdes.2024.114691_bib0054
  doi: 10.1016/0022-3115(82)90698-5
– volume: 10
  start-page: 1356
  issue: 10
  year: 2020
  ident: 10.1016/j.fusengdes.2024.114691_bib0067
  article-title: Modeling precipitation hardening and yield strength in cast Al-Si-Mg-Mn Alloys
  publication-title: Metals.
  doi: 10.3390/met10101356
– ident: 10.1016/j.fusengdes.2024.114691_bib0066
  doi: 10.1016/B978-0-08-096672-4.00003-7
– ident: 10.1016/j.fusengdes.2024.114691_bib0044
  doi: 10.1016/0022-3115(82)90702-4
– volume: 46
  start-page: 113
  issue: 2
  year: 1973
  ident: 10.1016/j.fusengdes.2024.114691_bib0048
  article-title: Tensile properties of annealed type 316 stainless steel after EBR-II irradiation
  publication-title: J. Nucl. Mater.
  doi: 10.1016/0022-3115(73)90129-3
– volume: 8
  start-page: 84
  issue: 1
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0018
  article-title: Accelerating materials discovery using artificial intelligence, high performance computing and robotics, npj
  publication-title: Computat. Mater.
– volume: 45
  start-page: 1876
  issue: 4
  year: 2014
  ident: 10.1016/j.fusengdes.2024.114691_bib0062
  article-title: Grain boundary segregation behavior of boron in low-alloy steel
  publication-title: Metallurg. Mater. Transact.
  doi: 10.1007/s11661-013-2155-3
– year: 2006
  ident: 10.1016/j.fusengdes.2024.114691_bib0004
– volume: 92
  issue: 10
  year: 2015
  ident: 10.1016/j.fusengdes.2024.114691_bib0014
  article-title: Predicting vacancy-mediated diffusion of interstitial solutes in α-Fe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.104102
– start-page: 1
  year: 2002
  ident: 10.1016/j.fusengdes.2024.114691_bib0052
  article-title: 1 - Introduction to Austenitic Stainless Steels
– ident: 10.1016/j.fusengdes.2024.114691_bib0053
  doi: 10.1016/0022-3115(84)90620-2
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.fusengdes.2024.114691_bib0051
  publication-title: Scikit-learn
– volume: 593
  year: 2024
  ident: 10.1016/j.fusengdes.2024.114691_bib0032
  article-title: Prediction of the energetics of stable self-interstitial atoms at tungsten grain boundaries via machine learning
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2024.154992
– year: 2019
  ident: 10.1016/j.fusengdes.2024.114691_bib0005
– volume: 45
  start-page: 111
  issue: 1
  year: 2009
  ident: 10.1016/j.fusengdes.2024.114691_bib0022
  article-title: A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2008.03.046
– volume: 255
  year: 2023
  ident: 10.1016/j.fusengdes.2024.114691_bib0063
  article-title: Boron segregation at austenite grain boundaries: an equilibrium phenomenon
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2023.119098
– volume: 53
  start-page: 4022
  issue: 12
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0024
  article-title: Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants
  publication-title: Nuclear Eng. Techn.
  doi: 10.1016/j.net.2021.06.014
– volume: 280
  start-page: 73
  issue: 1
  year: 2000
  ident: 10.1016/j.fusengdes.2024.114691_bib0016
  article-title: Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades
  publication-title: J. Nuclear Mater.
  doi: 10.1016/S0022-3115(00)00029-5
– ident: 10.1016/j.fusengdes.2024.114691_bib0065
– ident: 10.1016/j.fusengdes.2024.114691_bib0046
  doi: 10.1520/STP38042S
– volume: 33
  issue: 27
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0015
  article-title: Assessment of empirical interatomic potential to predict thermal conductivity in ThO2 and UO2
  publication-title: J. Phys.
– ident: 10.1016/j.fusengdes.2024.114691_bib0047
  doi: 10.1016/B978-0-08-022138-0.50084-8
– volume: 12
  start-page: 761
  issue: 5
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0006
  article-title: Effect of radiation defects on thermo–mechanical properties of UO2 investigated by molecular dynamics method
  publication-title: Metals.
  doi: 10.3390/met12050761
– volume: 408
  start-page: 30
  issue: 1
  year: 2011
  ident: 10.1016/j.fusengdes.2024.114691_bib0023
  article-title: Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2010.10.039
– volume: 22
  issue: 6
  year: 2014
  ident: 10.1016/j.fusengdes.2024.114691_bib0013
  article-title: Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten
  publication-title: Model. Simul. Mat. Sci. Eng.
  doi: 10.1088/0965-0393/22/6/065010
– volume: 22
  start-page: 68
  issue: 1
  year: 1967
  ident: 10.1016/j.fusengdes.2024.114691_bib0040
  article-title: The effect of irradiation temperature on strength and microstructure of stainless steel
  publication-title: J. Nuclear Mater.
  doi: 10.1016/0022-3115(67)90109-2
– volume: 100
  issue: 14
  year: 2019
  ident: 10.1016/j.fusengdes.2024.114691_bib0035
  article-title: Machine-learning interatomic potential for radiation damage and defects in tungsten
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.144105
– volume: 559
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0031
  article-title: Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2021.153412
– ident: 10.1016/j.fusengdes.2024.114691_bib0043
– ident: 10.1016/j.fusengdes.2024.114691_bib0045
  doi: 10.2172/6849206
– volume: 585
  year: 2023
  ident: 10.1016/j.fusengdes.2024.114691_bib0058
  article-title: The effect of phosphorus on precipitation in irradiated reactor pressure vessel (RPV) steels
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2023.154614
– volume: 104
  start-page: 821
  year: 1981
  ident: 10.1016/j.fusengdes.2024.114691_bib0042
  article-title: The influence of neutron irradiation at 55 °C on the properties of austenitic stainless steels
  publication-title: J. Nuclear Mater.
  doi: 10.1016/0022-3115(82)90701-2
– volume: 101
  start-page: 221
  year: 1988
  ident: 10.1016/j.fusengdes.2024.114691_bib0049
  article-title: The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel
  publication-title: Mater. Sci. Eng.
– volume: 8
  start-page: 85
  issue: 1
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0002
  article-title: Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels
  publication-title: NPJ. Comput. Mater.
  doi: 10.1038/s41524-022-00760-4
– volume: 523
  start-page: 189
  year: 2019
  ident: 10.1016/j.fusengdes.2024.114691_bib0027
  article-title: Predicting the onset of void swelling in irradiated metals with machine learning
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2019.05.054
– volume: 527
  start-page: 7832
  issue: 29
  year: 2010
  ident: 10.1016/j.fusengdes.2024.114691_bib0071
  article-title: Effect of grain refinement to 1μm on strength and toughness of dual-phase steels
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2010.08.062
– volume: 502
  start-page: 311
  year: 2018
  ident: 10.1016/j.fusengdes.2024.114691_bib0026
  article-title: Reactor pressure vessel embrittlement: insights from neural network modelling
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2018.02.027
– volume: 568
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0025
  article-title: Application of a machine learning approach based on nearest neighbors to extract embrittlement trends from RPV surveillance data
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2022.153886
– volume: 863
  year: 2023
  ident: 10.1016/j.fusengdes.2024.114691_bib0059
  article-title: Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/j.msea.2022.144524
– volume: 309-310
  start-page: 198
  year: 2001
  ident: 10.1016/j.fusengdes.2024.114691_bib0001
  article-title: Irradiation hardening by interstitial loops: atomistic study and micromechanical model
  publication-title: Mater. Sci. Eng.
  doi: 10.1016/S0921-5093(00)01723-8
– start-page: 1
  year: 2009
  ident: 10.1016/j.fusengdes.2024.114691_bib0012
  article-title: Chapter 88 dislocation–obstacle interactions at the atomic level
  doi: 10.1016/S1572-4859(09)01501-0
– volume: 07
  start-page: 953
  issue: 05
  year: 2008
  ident: 10.1016/j.fusengdes.2024.114691_bib0017
  article-title: Prediction of the glass transition temperatures for polymers with artifical neural network
  publication-title: J. Theoret. Computat. Chem.
  doi: 10.1142/S0219633608004416
– volume: 543
  year: 2021
  ident: 10.1016/j.fusengdes.2024.114691_bib0064
  article-title: Grain-boundary phosphorus segregation in highly neutron-irradiated reactor pressure vessel steels and its effect on irradiation embrittlement
  publication-title: J. Nuclear Materi.
  doi: 10.1016/j.jnucmat.2020.152564
– volume: 234
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0033
  article-title: Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118051
– volume: 108
  start-page: 19
  year: 2015
  ident: 10.1016/j.fusengdes.2024.114691_bib0060
  article-title: Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.06.012
– volume: 245
  year: 2023
  ident: 10.1016/j.fusengdes.2024.114691_bib0009
  article-title: Coupled effect of Cr and Al on interactions between a prismatic interstitial dislocation loop and an edge dislocation line in Fe-Cr-Al alloy
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118651
– volume: 533
  start-page: 73
  issue: 7601
  year: 2016
  ident: 10.1016/j.fusengdes.2024.114691_bib0019
  article-title: Machine-learning-assisted materials discovery using failed experiments
  publication-title: Nature
  doi: 10.1038/nature17439
– volume: 17
  start-page: 2999
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0069
  article-title: Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2022.02.056
– volume: 34
  year: 2022
  ident: 10.1016/j.fusengdes.2024.114691_bib0007
  article-title: New mechanisms of dislocation line-loop interactions in BCC-Fe explored by molecular dynamics method
  publication-title: Results. Phys.
  doi: 10.1016/j.rinp.2022.105226
SSID ssj0017017
Score 2.3885906
Snippet •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114691
SubjectTerms Irradiation hardening
Machine learning
Prediction
Type 316 stainless steels
Yield strength
Title Machine learning - assisted prediction of yield strength in irradiated type 316 stainless steels
URI https://dx.doi.org/10.1016/j.fusengdes.2024.114691
Volume 208
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jXvQgfuL8GDl4jUvXpG28jeGYynbRwW41TZNZkW6MevDib_d9-yEbCB68tSGB8CS8eZI8zxtCrpVO8XKIs8hKnwlpE6a18piSSWDCyAhbZuCbTIPxTDzM5bxFho0XBmWVdeyvYnoZreuSXo1mb5VlvSeu-twPVYAqSAm8Ah3sIkRZ383Xj8wD042XlmmFTmGovaXxcnjMsUgt5u3uizJvrvJ-X6E2Vp3RAdmv6SIdVD06JC2bH5G9jSSCx-RlUuohLa0fgFhQRoER4_CldLXGixgEny4d_US5GkV7SL4oXmmW02y9xuQEWBUPY6nvBbR0VL1DBIQvCx07IbPR3fNwzOp3E5iB_VDBpPEEQO0DFwP6oqWJEo9b4GkuCAPHrUuEbwING8FUp1ECw6U8FUKhko5HLvJPSTtf5vaMUOFrF9rIc9Y44RxXiZTGmT7XwlnLeYfwBqt4VaXHiBvd2Fv8A2-M8MYVvB1y22Aab410DEH8r8bn_2l8QXbxr3ISXpJ2sf6wV0ApiqRbzpku2RncP46n39YXzS0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFOUpwdWq05jJzFbVVG19LHQSt1C4tilCKVVVAb-Pb48UCshMbBFji1Zn63zZ9_ddwAPMkrQOcRooIVLudAxjSLpUCliT_mB4jpX4BtPvP6MP8_FvAbdKhcGwypL21_Y9Nxaly2tEs3WerlsvTDZZq4vPYyCFJZX7EED1al4HRqdwbA_-XEm-CwvvIv9KQ7YCfMy-NKxSDRKd7d5Lp0rnd8Pqa2Dp3cMRyVjJJ1iUidQ0-kpHG7pCJ7B6zgPidSkrAGxIJRYUowrmJB1hr4YxJ-sDPnCiDWCGSLpYvNGlilZZhnqE2BXfI8lruORPKnqwxpB-6XtxM5h1nuadvu0LJ1Alb0SbahQDrdou5aOWQYTCRXEDtOWqhnP9wzTJuau8iJ7F0yiJIjtiklH-rZRCsMCE7gXUE9Xqb4Ewt3I-DpwjFaGG8NkLIQyqs0ibrRmrAmswipcFwoZYRU69h7-wBsivGEBbxMeK0zDncUOrR3_a_DVfwbfw35_Oh6Fo8FkeA0H-KdILLyB-ib71LeWYWziu3IHfQPrZ8_e
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+-+assisted+prediction+of+yield+strength+in+irradiated+type+316+stainless+steels&rft.jtitle=Fusion+engineering+and+design&rft.au=Wang%2C+Ziqiang&rft.au=Yang%2C+Chen&rft.au=Gao%2C+Ning&rft.au=Wu%2C+Xuebang&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0920-3796&rft.volume=208&rft_id=info:doi/10.1016%2Fj.fusengdes.2024.114691&rft.externalDocID=S0920379624005416
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon