Machine learning - assisted prediction of yield strength in irradiated type 316 stainless steels
•A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understandin...
Saved in:
Published in | Fusion engineering and design Vol. 208; p. 114691 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0920-3796 |
DOI | 10.1016/j.fusengdes.2024.114691 |
Cover
Loading…
Abstract | •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understanding.
The investigation into irradiation hardening and embrittlement is of critical importance in nuclear material subject. This work explores the applications of machine learning (ML) to predict the yield strength of irradiated type 316 stainless steels. A dataset comprising 354 samples is compiled through an extensive review of prior experimental studies. Each sample has 23 potentially influential features. Five distinct machine learning models are trained and evaluated. Among these models, the Gradient Boosting (GB) model demonstrates superior prediction performance and robust stability. The prominent factors identified by the GB model are in reasonable agreement with established knowledge regarding the determinants of yield strength in irradiated type 316 stainless steels. These findings provide critical insights into the mechanical properties of irradiated type 316 stainless steels. |
---|---|
AbstractList | •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior prediction performance and stability.•The results from the machine learning model are in reasonable agreement with the conventional understanding.
The investigation into irradiation hardening and embrittlement is of critical importance in nuclear material subject. This work explores the applications of machine learning (ML) to predict the yield strength of irradiated type 316 stainless steels. A dataset comprising 354 samples is compiled through an extensive review of prior experimental studies. Each sample has 23 potentially influential features. Five distinct machine learning models are trained and evaluated. Among these models, the Gradient Boosting (GB) model demonstrates superior prediction performance and robust stability. The prominent factors identified by the GB model are in reasonable agreement with established knowledge regarding the determinants of yield strength in irradiated type 316 stainless steels. These findings provide critical insights into the mechanical properties of irradiated type 316 stainless steels. |
ArticleNumber | 114691 |
Author | Gao, Ning Yang, Chen Wang, Ziqiang Wu, Xuebang Yao, Zhongwen |
Author_xml | – sequence: 1 givenname: Ziqiang surname: Wang fullname: Wang, Ziqiang organization: Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy Sciences, Hefei 230000, PR China – sequence: 2 givenname: Chen surname: Yang fullname: Yang, Chen organization: Key Laboratory of Bionic Engineering Ministry of Education, Jilin University, Changchun 130022, PR China – sequence: 3 givenname: Ning surname: Gao fullname: Gao, Ning organization: Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University 266237 Qingdao, PR China – sequence: 4 givenname: Xuebang orcidid: 0000-0002-8343-7894 surname: Wu fullname: Wu, Xuebang email: xbwu@issp.ac.cn organization: Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy Sciences, Hefei 230000, PR China – sequence: 5 givenname: Zhongwen surname: Yao fullname: Yao, Zhongwen email: zwyao@jlu.edu.cn organization: Department of Mechanical and Materials Engineering, Queen's University, Kingston K7L3N6, Canada |
BookMark | eNqFkM1OwzAMx3MYEtvgGcgLtCRtmjbHaeJLGuIC55AmzpappFNckPb2ZBraFcmSLX_8bf8WZBbHCITccVZyxuX9vvTfCHHrAMuKVaLkXEjFZ2TOVMWKulXymiwQ94zxNtucfL4auwsR6AAmxRC3tKAGMeAEjh4SuGCnMEY6enoMMDiKU8oLph0NkYaUjAvm1DodD0BrLnPdhDgAYo4ABrwhV94MCLd_fkk-Hh_e18_F5u3pZb3aFLaSfCoay0XTy1qwhleNaWzXcwZ1Jb1spWfge1FbaYSQzriuV8YprtqcVI1nne_qJWnPujaNiAm8PqTwZdJRc6ZPcPReX-DoExx9hpMnV-fJfC38BEgabYBo8-8J7KTdGP7V-AUNQnae |
Cites_doi | 10.1016/j.msea.2014.01.066 10.2172/4617810 10.1016/j.jmrt.2023.03.032 10.1179/026708399773002782 10.1016/j.jnucmat.2006.04.014 10.1016/j.jmst.2020.12.010 10.1016/j.matlet.2011.09.065 10.1016/j.scriptamat.2021.114150 10.1016/j.jnucmat.2021.152871 10.1016/0022-3115(79)90372-6 10.1023/A:1025625330442 10.1016/j.scriptamat.2008.02.031 10.1016/j.jnucmat.2023.154794 10.1016/j.commatsci.2021.110960 10.1520/STP38181S 10.1016/j.jnucmat.2024.155288 10.1016/j.scriptamat.2016.09.032 10.1016/0022-3115(82)90698-5 10.3390/met10101356 10.1016/B978-0-08-096672-4.00003-7 10.1016/0022-3115(82)90702-4 10.1016/0022-3115(73)90129-3 10.1007/s11661-013-2155-3 10.1103/PhysRevB.92.104102 10.1016/0022-3115(84)90620-2 10.1016/j.jnucmat.2024.154992 10.1016/j.commatsci.2008.03.046 10.1016/j.actamat.2023.119098 10.1016/j.net.2021.06.014 10.1016/S0022-3115(00)00029-5 10.1520/STP38042S 10.1016/B978-0-08-022138-0.50084-8 10.3390/met12050761 10.1016/j.jnucmat.2010.10.039 10.1088/0965-0393/22/6/065010 10.1016/0022-3115(67)90109-2 10.1103/PhysRevB.100.144105 10.1016/j.jnucmat.2021.153412 10.2172/6849206 10.1016/j.jnucmat.2023.154614 10.1016/0022-3115(82)90701-2 10.1038/s41524-022-00760-4 10.1016/j.jnucmat.2019.05.054 10.1016/j.msea.2010.08.062 10.1016/j.jnucmat.2018.02.027 10.1016/j.jnucmat.2022.153886 10.1016/j.msea.2022.144524 10.1016/S0921-5093(00)01723-8 10.1016/S1572-4859(09)01501-0 10.1142/S0219633608004416 10.1016/j.jnucmat.2020.152564 10.1016/j.actamat.2022.118051 10.1016/j.scriptamat.2015.06.012 10.1016/j.actamat.2022.118651 10.1038/nature17439 10.1016/j.jmrt.2022.02.056 10.1016/j.rinp.2022.105226 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.fusengdes.2024.114691 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_fusengdes_2024_114691 S0920379624005416 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXKI AAXUO ABFNM ABMAC ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HME HVGLF HZ~ IHE J1W JARJE JJJVA KOM LY6 LY7 LZ3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SES SET SEW SHN SPC SPCBC SSR SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c261t-5c145b63405125a5c8b10e326f676f0efb43c6a446dad8b9ad9197b4395f08f83 |
IEDL.DBID | .~1 |
ISSN | 0920-3796 |
IngestDate | Tue Jul 01 02:08:16 EDT 2025 Sat Nov 09 15:59:24 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Yield strength Type 316 stainless steels Irradiation hardening Machine learning Prediction |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-5c145b63405125a5c8b10e326f676f0efb43c6a446dad8b9ad9197b4395f08f83 |
ORCID | 0000-0002-8343-7894 |
ParticipantIDs | crossref_primary_10_1016_j_fusengdes_2024_114691 elsevier_sciencedirect_doi_10_1016_j_fusengdes_2024_114691 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Fusion engineering and design |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Varin, Kurzydlowski (bib0049) 1988; 101 Liu, Biner (bib0011) 2008; 59 Kirk, Hashimoto, Nomoto (bib0025) 2022; 568 Calcagnotto, Ponge, Raabe (bib0071) 2010; 527 Castin, Malerba, Chaouadi (bib0023) 2011; 408 Gaganidze, Schneider, Dafferner, Aktaa (bib0003) 2006; 355 Grossbeck, Maziasz (bib0050) 1979; 85-86 Xu, Jin, Lu (bib0029) 2024; 39 F.A. Garner, G.L. Guthrie, Evaluation of 20% cold-worked 316 swelling correlation, United States, 1975. G.S. Was, Fundamentals of radiation materials science metals and alloys, 2007. H.R. Brager, L.D. Blackburn, D.L. Greenslade, Dependence on displacement rate of radiation-induced changes in microstructure and tensile properties of AISI 304 and 316, United States, 1983. R.L. Fish, Postirradiation tensile properties of reference 20 percent cold-worked type 316 stainless steel, United States, 1975. Waseda, Veiga, Morthomas, Chantrenne, Becquart, Ribeiro, Jelea, Goldenstein, Perez (bib0061) 2017; 129 Yang, Wang, Yu, Ma, Wang, Wei, Gao, Yao (bib0028) 2024; 600 D.J.B.D. Hull, Introduction to dislocations, Fifth ed.2011. Yu, Wang, Wang, Setyawan, Long, Liu, Dong, Gao, Gao, Wang (bib0009) 2023; 245 Juan, Dai, Yang, Zhang (bib0021) 2021; 79 Messina, Luo, Xu, Lu, Deng, Tschopp, Gao (bib0030) 2021; 204 Gladman (bib0068) 1999; 15 Barouh, Schuler, Fu, Jourdan (bib0014) 2015; 92 Jin, Khafizov, Jiang, Zhou, Marianetti, Bryan, Manley, Hurley (bib0015) 2021; 33 Fish, Holmes (bib0048) 1973; 46 Wang, Yang, Yu, Ma, Guo, Wei, Gao, Yao, Wang (bib0008) 2024; 39 George, Shaikh (bib0052) 2002 Ke, Hu, Zhong, Wan, Wu (bib0069) 2022; 17 Wang, Liu, Li, Mei, Li, Lai, Xue (bib0034) 2022; 202 Veiga, Goldenstein, Perez, Becquart (bib0060) 2015; 108 Yang, Ma, Zhao (bib0059) 2023; 863 Rodney, Martin, Bréchet (bib0001) 2001; 309-310 Shigesato, Fujishiro, Hara (bib0062) 2014; 45 Cinkilic, Yan, Luo (bib0067) 2020; 10 R.L. Klueh, M.L. Grossbeck, Comparison of the irradiated tensile properties of a high-manganese austenitic steel and type 16 stainless steel, United States, 1983. Mathew, Parfitt, Wilford, Riddle, Alamaniotis, Chroneos, Fitzpatrick (bib0026) 2018; 502 Shuai, Yinlei, Dongdong, Ziyue, Yunli, Fucheng (bib0070) 2023; 24 R.L. Klueh, M.L. Grossbeck, Tensile properties and swelling of 20%-cold-worked Type 316 stainless steel irradiated in HFIR, United States, 1984. D. Fahr, E.E. Bloom, J.O. Stiegler, Postirradiation tensile properties of annealed and cold-worked type 316 stainless steel, United States, 1972, p. Medium: ED; Size: Pages: 24. Faney, Wirth (bib0013) 2014; 22 Mei, Chen, Wang, Liu, Hu, Lin, Shen, Li, Kong (bib0036) 2024; 588 Maheswari, Chowdhury, Kumar, Sankaran (bib0057) 2014; 600 V.K. Sikka, Elevated temperature ductility of types 304 and 316 stainless steel, United States, 1978. Liu, Wu, Mayeshiba, Afflerbach, Jacobs, Perry, George, Cordell, Xia, Yuan, Lorenson, Wu, Parker, Doshi, Politowicz, Xiao, Morgan, Wells, Almirall, Yamamoto, Odette (bib0002) 2022; 8 Raccuglia, Elbert, Adler, Falk, Wenny, Mollo, Zeller, Friedler, Schrier, Norquist (bib0019) 2016; 533 Yu, Yi, Wang (bib0017) 2008; 07 Wang, Yu, Long, Yang, Gao, Yao, Wang (bib0007) 2022; 34 Terentyev (bib0004) 2006 Hata, Takamizawa, Hojo, Ebihara, Nishiyama, Nagai (bib0064) 2021; 543 Da Rosa, Maugis, Portavoce, Lartigue-Korinek, Valle, Lentzen, Drillet, Hoummada (bib0063) 2023; 255 Murugesan, Kuppusami, Mohandas, Vijayalakshmi (bib0038) 2012; 67 Lee, Kim, Lee (bib0024) 2021; 53 Wang, Yu, Yang, Long, Gao, Yao, Dong, Wang (bib0006) 2022; 12 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg (bib0051) 2011; 12 Nam, Kim, Ahn (bib0056) 2003; 38 Kamboj, Bachhav, Dubey, Almirall, Yamamoto, Marquis, Odette (bib0058) 2023; 585 Wang, Yang, Yu, Ma, Guo, Wei, Gao, Yao, Wang (bib0010) 2024; 39 Jin (bib0005) 2019 Wang, Li, Li, Zhang, Zhang, Xu, Lei, Liu, Wu (bib0031) 2022; 559 Wiffen, Maziasz (bib0042) 1981; 104 R.L. Fish, N.S. Cannon, G.L. Wire, Tensile property correlations for highly irradiated 20% C. W. type 316 stainless steel., United States, 1978. Becquart, Domain, Legris, Van Duysen (bib0016) 2000; 280 Jin, Cao, Short (bib0027) 2019; 523 Han, Sun, Feng, Lin, Lu (bib0020) 2021; 14 M.L. Grossbeck, P.J. Maziasz, Tensile properties of 20% cold-worked titanium-modified type 316 stainless steel irradiated in HFIR, United States, 1981. Xu, Zhang, Ma, Xiong, Huang, Kai, Zhao (bib0033) 2022; 234 Byggmästar, Hamedani, Nordlund, Djurabekova (bib0035) 2019; 100 Li, Hu, Li, Zhang, Xu, Wu, Liu (bib0032) 2024; 593 Hu, Lach, Terrani (bib0037) 2021; 548 F.A. Garner, M.L. Hamilton, N.F. Panayotou, G.D. Johnson, Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation, United States, 1980. Mohn, Kob (bib0022) 2009; 45 Pyzer-Knapp, Pitera, Staar, Takeda, Laino, Sanders, Sexton, Smith, Curioni (bib0018) 2022; 8 Bloom, Martin, Stiegler, Weir (bib0040) 1967; 22 Bacon, Osetsky, Rodney (bib0012) 2009 Wiffen (10.1016/j.fusengdes.2024.114691_bib0042) 1981; 104 Nam (10.1016/j.fusengdes.2024.114691_bib0056) 2003; 38 Xu (10.1016/j.fusengdes.2024.114691_bib0033) 2022; 234 10.1016/j.fusengdes.2024.114691_bib0065 Jin (10.1016/j.fusengdes.2024.114691_bib0015) 2021; 33 Xu (10.1016/j.fusengdes.2024.114691_bib0029) 2024; 39 10.1016/j.fusengdes.2024.114691_bib0066 Jin (10.1016/j.fusengdes.2024.114691_bib0005) 2019 Rodney (10.1016/j.fusengdes.2024.114691_bib0001) 2001; 309-310 Hu (10.1016/j.fusengdes.2024.114691_bib0037) 2021; 548 Faney (10.1016/j.fusengdes.2024.114691_bib0013) 2014; 22 Castin (10.1016/j.fusengdes.2024.114691_bib0023) 2011; 408 Varin (10.1016/j.fusengdes.2024.114691_bib0049) 1988; 101 Han (10.1016/j.fusengdes.2024.114691_bib0020) 2021; 14 Murugesan (10.1016/j.fusengdes.2024.114691_bib0038) 2012; 67 Waseda (10.1016/j.fusengdes.2024.114691_bib0061) 2017; 129 Wang (10.1016/j.fusengdes.2024.114691_bib0007) 2022; 34 Mohn (10.1016/j.fusengdes.2024.114691_bib0022) 2009; 45 Hata (10.1016/j.fusengdes.2024.114691_bib0064) 2021; 543 Wang (10.1016/j.fusengdes.2024.114691_bib0031) 2022; 559 Jin (10.1016/j.fusengdes.2024.114691_bib0027) 2019; 523 Gladman (10.1016/j.fusengdes.2024.114691_bib0068) 1999; 15 Gaganidze (10.1016/j.fusengdes.2024.114691_bib0003) 2006; 355 Yang (10.1016/j.fusengdes.2024.114691_bib0059) 2023; 863 Byggmästar (10.1016/j.fusengdes.2024.114691_bib0035) 2019; 100 Wang (10.1016/j.fusengdes.2024.114691_bib0006) 2022; 12 Pyzer-Knapp (10.1016/j.fusengdes.2024.114691_bib0018) 2022; 8 Calcagnotto (10.1016/j.fusengdes.2024.114691_bib0071) 2010; 527 Juan (10.1016/j.fusengdes.2024.114691_bib0021) 2021; 79 Mei (10.1016/j.fusengdes.2024.114691_bib0036) 2024; 588 Shigesato (10.1016/j.fusengdes.2024.114691_bib0062) 2014; 45 Shuai (10.1016/j.fusengdes.2024.114691_bib0070) 2023; 24 Yu (10.1016/j.fusengdes.2024.114691_bib0017) 2008; 07 Wang (10.1016/j.fusengdes.2024.114691_bib0010) 2024; 39 10.1016/j.fusengdes.2024.114691_bib0039 Kirk (10.1016/j.fusengdes.2024.114691_bib0025) 2022; 568 Yang (10.1016/j.fusengdes.2024.114691_bib0028) 2024; 600 Fish (10.1016/j.fusengdes.2024.114691_bib0048) 1973; 46 Wang (10.1016/j.fusengdes.2024.114691_bib0034) 2022; 202 Pedregosa (10.1016/j.fusengdes.2024.114691_bib0051) 2011; 12 10.1016/j.fusengdes.2024.114691_bib0041 Becquart (10.1016/j.fusengdes.2024.114691_bib0016) 2000; 280 10.1016/j.fusengdes.2024.114691_bib0043 Kamboj (10.1016/j.fusengdes.2024.114691_bib0058) 2023; 585 10.1016/j.fusengdes.2024.114691_bib0045 10.1016/j.fusengdes.2024.114691_bib0044 Bacon (10.1016/j.fusengdes.2024.114691_bib0012) 2009 Barouh (10.1016/j.fusengdes.2024.114691_bib0014) 2015; 92 Grossbeck (10.1016/j.fusengdes.2024.114691_bib0050) 1979; 85-86 Mathew (10.1016/j.fusengdes.2024.114691_bib0026) 2018; 502 10.1016/j.fusengdes.2024.114691_bib0047 Da Rosa (10.1016/j.fusengdes.2024.114691_bib0063) 2023; 255 Messina (10.1016/j.fusengdes.2024.114691_bib0030) 2021; 204 10.1016/j.fusengdes.2024.114691_bib0046 George (10.1016/j.fusengdes.2024.114691_bib0052) 2002 Wang (10.1016/j.fusengdes.2024.114691_bib0008) 2024; 39 Lee (10.1016/j.fusengdes.2024.114691_bib0024) 2021; 53 Raccuglia (10.1016/j.fusengdes.2024.114691_bib0019) 2016; 533 Liu (10.1016/j.fusengdes.2024.114691_bib0002) 2022; 8 Bloom (10.1016/j.fusengdes.2024.114691_bib0040) 1967; 22 Yu (10.1016/j.fusengdes.2024.114691_bib0009) 2023; 245 10.1016/j.fusengdes.2024.114691_bib0054 10.1016/j.fusengdes.2024.114691_bib0053 Cinkilic (10.1016/j.fusengdes.2024.114691_bib0067) 2020; 10 10.1016/j.fusengdes.2024.114691_bib0055 Veiga (10.1016/j.fusengdes.2024.114691_bib0060) 2015; 108 Li (10.1016/j.fusengdes.2024.114691_bib0032) 2024; 593 Maheswari (10.1016/j.fusengdes.2024.114691_bib0057) 2014; 600 Liu (10.1016/j.fusengdes.2024.114691_bib0011) 2008; 59 Ke (10.1016/j.fusengdes.2024.114691_bib0069) 2022; 17 Terentyev (10.1016/j.fusengdes.2024.114691_bib0004) 2006 |
References_xml | – reference: F.A. Garner, M.L. Hamilton, N.F. Panayotou, G.D. Johnson, Microstructural origins of yield strength changes in AISI 316 during fission or fusion irradiation, United States, 1980. – volume: 45 start-page: 111 year: 2009 end-page: 117 ident: bib0022 article-title: A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials publication-title: Comput. Mater. Sci. – volume: 548 year: 2021 ident: bib0037 article-title: Deuterium permeation and retention in 316l stainless steel manufactured by laser powder bed fusion publication-title: J. Nuclear Mater. – volume: 92 year: 2015 ident: bib0014 article-title: Predicting vacancy-mediated diffusion of interstitial solutes in α-Fe publication-title: Phys. Rev. B – volume: 255 year: 2023 ident: bib0063 article-title: Boron segregation at austenite grain boundaries: an equilibrium phenomenon publication-title: Acta Mater. – volume: 527 start-page: 7832 year: 2010 end-page: 7840 ident: bib0071 article-title: Effect of grain refinement to 1μm on strength and toughness of dual-phase steels publication-title: Mater. Sci. Eng. – volume: 204 year: 2021 ident: bib0030 article-title: Machine learning to predict aluminum segregation to magnesium grain boundaries publication-title: Scr. Mater. – reference: D.J.B.D. Hull, Introduction to dislocations, Fifth ed.2011. – reference: F.A. Garner, G.L. Guthrie, Evaluation of 20% cold-worked 316 swelling correlation, United States, 1975. – year: 2019 ident: bib0005 article-title: Computational characterization of radiationinduced defect dynamics and material response – reference: D. Fahr, E.E. Bloom, J.O. Stiegler, Postirradiation tensile properties of annealed and cold-worked type 316 stainless steel, United States, 1972, p. Medium: ED; Size: Pages: 24. – start-page: 1 year: 2009 end-page: 90 ident: bib0012 article-title: Chapter 88 dislocation–obstacle interactions at the atomic level publication-title: Dislocations in Solids – volume: 533 start-page: 73 year: 2016 end-page: 76 ident: bib0019 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature – volume: 22 start-page: 68 year: 1967 end-page: 76 ident: bib0040 article-title: The effect of irradiation temperature on strength and microstructure of stainless steel publication-title: J. Nuclear Mater. – volume: 22 year: 2014 ident: bib0013 article-title: Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten publication-title: Model. Simul. Mat. Sci. Eng. – volume: 600 start-page: 12 year: 2014 end-page: 20 ident: bib0057 article-title: Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels publication-title: Mater. Sci. Eng. – year: 2006 ident: bib0004 article-title: Study of radiation effects in FeCr alloys for fusion applications using computer simulations – volume: 245 year: 2023 ident: bib0009 article-title: Coupled effect of Cr and Al on interactions between a prismatic interstitial dislocation loop and an edge dislocation line in Fe-Cr-Al alloy publication-title: Acta Mater. – reference: M.L. Grossbeck, P.J. Maziasz, Tensile properties of 20% cold-worked titanium-modified type 316 stainless steel irradiated in HFIR, United States, 1981. – volume: 07 start-page: 953 year: 2008 end-page: 963 ident: bib0017 article-title: Prediction of the glass transition temperatures for polymers with artifical neural network publication-title: J. Theoret. Computat. Chem. – volume: 33 year: 2021 ident: bib0015 article-title: Assessment of empirical interatomic potential to predict thermal conductivity in ThO2 and UO2 publication-title: J. Phys. – volume: 46 start-page: 113 year: 1973 end-page: 120 ident: bib0048 article-title: Tensile properties of annealed type 316 stainless steel after EBR-II irradiation publication-title: J. Nucl. Mater. – volume: 355 start-page: 83 year: 2006 end-page: 88 ident: bib0003 article-title: High-dose neutron irradiation embrittlement of RAFM steels publication-title: J. Nuclear Mater. – volume: 108 start-page: 19 year: 2015 end-page: 22 ident: bib0060 article-title: Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys publication-title: Scr. Mater. – volume: 202 year: 2022 ident: bib0034 article-title: Machine-learning interatomic potential for radiation damage effects in bcc-iron publication-title: Comput. Mater. Sci. – volume: 588 year: 2024 ident: bib0036 article-title: Development of machine learning and empirical interatomic potentials for the binary Zr-Sn system publication-title: J. Nuclear Mater. – start-page: 1 year: 2002 end-page: 36 ident: bib0052 article-title: 1 - Introduction to Austenitic Stainless Steels publication-title: Corrosion of austenitic stainless steels – volume: 34 year: 2022 ident: bib0007 article-title: New mechanisms of dislocation line-loop interactions in BCC-Fe explored by molecular dynamics method publication-title: Results. Phys. – volume: 53 start-page: 4022 year: 2021 end-page: 4032 ident: bib0024 article-title: Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants publication-title: Nuclear Eng. Techn. – volume: 85-86 start-page: 883 year: 1979 end-page: 887 ident: bib0050 article-title: Tensile properties of type 316 stainless steel irradiated in a simulated fusion reactor environment publication-title: J. Nucl. Mate. – volume: 24 start-page: 586 year: 2023 end-page: 594 ident: bib0070 article-title: Unusual grain-size effects on tensile deformation behavior of twinning-induced plasticity steel with low Mn content publication-title: J. Mater. Res. Technol. – volume: 863 year: 2023 ident: bib0059 article-title: Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys publication-title: Mater. Sci. Eng. – volume: 502 start-page: 311 year: 2018 end-page: 322 ident: bib0026 article-title: Reactor pressure vessel embrittlement: insights from neural network modelling publication-title: J. Nuclear Mater. – volume: 79 start-page: 178 year: 2021 end-page: 190 ident: bib0021 article-title: Accelerating materials discovery using machine learning publication-title: J. Mater. Sci. Technol. – reference: R.L. Klueh, M.L. Grossbeck, Tensile properties and swelling of 20%-cold-worked Type 316 stainless steel irradiated in HFIR, United States, 1984. – volume: 8 start-page: 85 year: 2022 ident: bib0002 article-title: Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels publication-title: NPJ. Comput. Mater. – volume: 309-310 start-page: 198 year: 2001 end-page: 202 ident: bib0001 article-title: Irradiation hardening by interstitial loops: atomistic study and micromechanical model publication-title: Mater. Sci. Eng. – volume: 408 start-page: 30 year: 2011 end-page: 39 ident: bib0023 article-title: Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks publication-title: J. Nuclear Mater. – volume: 67 start-page: 173 year: 2012 end-page: 176 ident: bib0038 article-title: X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel publication-title: Mater. Lett. – reference: G.S. Was, Fundamentals of radiation materials science metals and alloys, 2007. – reference: R.L. Fish, Postirradiation tensile properties of reference 20 percent cold-worked type 316 stainless steel, United States, 1975. – volume: 12 start-page: 761 year: 2022 ident: bib0006 article-title: Effect of radiation defects on thermo–mechanical properties of UO2 investigated by molecular dynamics method publication-title: Metals. – volume: 600 year: 2024 ident: bib0028 article-title: Prediction of the swelling rate of irradiated type 316 stainless steels via machine learning methods publication-title: J. Nuclear Mater. – reference: V.K. Sikka, Elevated temperature ductility of types 304 and 316 stainless steel, United States, 1978. – volume: 593 year: 2024 ident: bib0032 article-title: Prediction of the energetics of stable self-interstitial atoms at tungsten grain boundaries via machine learning publication-title: J. Nuclear Mater. – volume: 39 year: 2024 ident: bib0010 article-title: Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study publication-title: Nucl. Mater. Energy – volume: 38 start-page: 3611 year: 2003 end-page: 3617 ident: bib0056 article-title: Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels publication-title: J. Mater. Sci. – volume: 15 start-page: 30 year: 1999 end-page: 36 ident: bib0068 article-title: Precipitation hardening in metals publication-title: Mater. Sci. Techn. – reference: R.L. Klueh, M.L. Grossbeck, Comparison of the irradiated tensile properties of a high-manganese austenitic steel and type 16 stainless steel, United States, 1983. – volume: 523 start-page: 189 year: 2019 end-page: 197 ident: bib0027 article-title: Predicting the onset of void swelling in irradiated metals with machine learning publication-title: J. Nuclear Mater. – volume: 100 year: 2019 ident: bib0035 article-title: Machine-learning interatomic potential for radiation damage and defects in tungsten publication-title: Phys. Rev. B – volume: 10 start-page: 1356 year: 2020 ident: bib0067 article-title: Modeling precipitation hardening and yield strength in cast Al-Si-Mg-Mn Alloys publication-title: Metals. – volume: 104 start-page: 821 year: 1981 end-page: 826 ident: bib0042 article-title: The influence of neutron irradiation at 55 °C on the properties of austenitic stainless steels publication-title: J. Nuclear Mater. – volume: 45 start-page: 1876 year: 2014 end-page: 1882 ident: bib0062 article-title: Grain boundary segregation behavior of boron in low-alloy steel publication-title: Metallurg. Mater. Transact. – volume: 17 start-page: 2999 year: 2022 end-page: 3012 ident: bib0069 article-title: Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary publication-title: J. Mater. Res. Technol. – volume: 39 year: 2024 ident: bib0029 article-title: Predicting hydrogen segregation energy distributions in strained regions of tungsten using artificial neural network publication-title: Nuclear Mater. Energy – volume: 568 year: 2022 ident: bib0025 article-title: Application of a machine learning approach based on nearest neighbors to extract embrittlement trends from RPV surveillance data publication-title: J. Nuclear Mater. – volume: 101 start-page: 221 year: 1988 end-page: 226 ident: bib0049 article-title: The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel publication-title: Mater. Sci. Eng. – volume: 59 start-page: 51 year: 2008 end-page: 54 ident: bib0011 article-title: Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe publication-title: Scr. Mater. – volume: 39 year: 2024 ident: bib0008 article-title: Dependence of thermal conductivity on radiation defects in ThO2 investigated by molecular dynamics method publication-title: Nuclear Mater. Energy – volume: 234 year: 2022 ident: bib0033 article-title: Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo publication-title: Acta Mater. – reference: H.R. Brager, L.D. Blackburn, D.L. Greenslade, Dependence on displacement rate of radiation-induced changes in microstructure and tensile properties of AISI 304 and 316, United States, 1983. – volume: 14 start-page: 20 year: 2021 end-page: 35 ident: bib0020 article-title: Machine learning regression guided thermoelectric materials discovery - a review publication-title: ES Mater. Manufact. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib0051 publication-title: Scikit-learn – reference: R.L. Fish, N.S. Cannon, G.L. Wire, Tensile property correlations for highly irradiated 20% C. W. type 316 stainless steel., United States, 1978. – volume: 543 year: 2021 ident: bib0064 article-title: Grain-boundary phosphorus segregation in highly neutron-irradiated reactor pressure vessel steels and its effect on irradiation embrittlement publication-title: J. Nuclear Materi. – volume: 559 year: 2022 ident: bib0031 article-title: Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method publication-title: J. Nuclear Mater. – volume: 8 start-page: 84 year: 2022 ident: bib0018 article-title: Accelerating materials discovery using artificial intelligence, high performance computing and robotics, npj publication-title: Computat. Mater. – volume: 280 start-page: 73 year: 2000 end-page: 85 ident: bib0016 article-title: Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades publication-title: J. Nuclear Mater. – volume: 129 start-page: 16 year: 2017 end-page: 19 ident: bib0061 article-title: Formation of carbon Cottrell atmospheres and their effect on the stress field around an edge dislocation publication-title: Scr. Mater. – volume: 585 year: 2023 ident: bib0058 article-title: The effect of phosphorus on precipitation in irradiated reactor pressure vessel (RPV) steels publication-title: J. Nuclear Mater. – volume: 600 start-page: 12 year: 2014 ident: 10.1016/j.fusengdes.2024.114691_bib0057 article-title: Influence of alloying elements on the microstructure evolution and mechanical properties in quenched and partitioned steels publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2014.01.066 – ident: 10.1016/j.fusengdes.2024.114691_bib0041 doi: 10.2172/4617810 – volume: 24 start-page: 586 year: 2023 ident: 10.1016/j.fusengdes.2024.114691_bib0070 article-title: Unusual grain-size effects on tensile deformation behavior of twinning-induced plasticity steel with low Mn content publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2023.03.032 – volume: 15 start-page: 30 issue: 1 year: 1999 ident: 10.1016/j.fusengdes.2024.114691_bib0068 article-title: Precipitation hardening in metals publication-title: Mater. Sci. Techn. doi: 10.1179/026708399773002782 – volume: 355 start-page: 83 issue: 1 year: 2006 ident: 10.1016/j.fusengdes.2024.114691_bib0003 article-title: High-dose neutron irradiation embrittlement of RAFM steels publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2006.04.014 – volume: 79 start-page: 178 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0021 article-title: Accelerating materials discovery using machine learning publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.12.010 – volume: 67 start-page: 173 issue: 1 year: 2012 ident: 10.1016/j.fusengdes.2024.114691_bib0038 article-title: X-ray diffraction Rietveld analysis of cold worked austenitic stainless steel publication-title: Mater. Lett. doi: 10.1016/j.matlet.2011.09.065 – volume: 204 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0030 article-title: Machine learning to predict aluminum segregation to magnesium grain boundaries publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2021.114150 – volume: 39 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0029 article-title: Predicting hydrogen segregation energy distributions in strained regions of tungsten using artificial neural network publication-title: Nuclear Mater. Energy – volume: 39 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0010 article-title: Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study publication-title: Nucl. Mater. Energy – volume: 548 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0037 article-title: Deuterium permeation and retention in 316l stainless steel manufactured by laser powder bed fusion publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2021.152871 – ident: 10.1016/j.fusengdes.2024.114691_bib0039 – volume: 85-86 start-page: 883 year: 1979 ident: 10.1016/j.fusengdes.2024.114691_bib0050 article-title: Tensile properties of type 316 stainless steel irradiated in a simulated fusion reactor environment publication-title: J. Nucl. Mate. doi: 10.1016/0022-3115(79)90372-6 – volume: 39 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0008 article-title: Dependence of thermal conductivity on radiation defects in ThO2 investigated by molecular dynamics method publication-title: Nuclear Mater. Energy – volume: 38 start-page: 3611 issue: 17 year: 2003 ident: 10.1016/j.fusengdes.2024.114691_bib0056 article-title: Effects of alloying elements on microstructural evolution and mechanical properties of induction quenched-and-tempered steels publication-title: J. Mater. Sci. doi: 10.1023/A:1025625330442 – volume: 59 start-page: 51 issue: 1 year: 2008 ident: 10.1016/j.fusengdes.2024.114691_bib0011 article-title: Molecular dynamics simulations of the interactions between screw dislocations and self-interstitial clusters in body-centered cubic Fe publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2008.02.031 – volume: 588 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0036 article-title: Development of machine learning and empirical interatomic potentials for the binary Zr-Sn system publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2023.154794 – volume: 202 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0034 article-title: Machine-learning interatomic potential for radiation damage effects in bcc-iron publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110960 – ident: 10.1016/j.fusengdes.2024.114691_bib0055 doi: 10.1520/STP38181S – volume: 14 start-page: 20 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0020 article-title: Machine learning regression guided thermoelectric materials discovery - a review publication-title: ES Mater. Manufact. – volume: 600 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0028 article-title: Prediction of the swelling rate of irradiated type 316 stainless steels via machine learning methods publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2024.155288 – volume: 129 start-page: 16 year: 2017 ident: 10.1016/j.fusengdes.2024.114691_bib0061 article-title: Formation of carbon Cottrell atmospheres and their effect on the stress field around an edge dislocation publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2016.09.032 – ident: 10.1016/j.fusengdes.2024.114691_bib0054 doi: 10.1016/0022-3115(82)90698-5 – volume: 10 start-page: 1356 issue: 10 year: 2020 ident: 10.1016/j.fusengdes.2024.114691_bib0067 article-title: Modeling precipitation hardening and yield strength in cast Al-Si-Mg-Mn Alloys publication-title: Metals. doi: 10.3390/met10101356 – ident: 10.1016/j.fusengdes.2024.114691_bib0066 doi: 10.1016/B978-0-08-096672-4.00003-7 – ident: 10.1016/j.fusengdes.2024.114691_bib0044 doi: 10.1016/0022-3115(82)90702-4 – volume: 46 start-page: 113 issue: 2 year: 1973 ident: 10.1016/j.fusengdes.2024.114691_bib0048 article-title: Tensile properties of annealed type 316 stainless steel after EBR-II irradiation publication-title: J. Nucl. Mater. doi: 10.1016/0022-3115(73)90129-3 – volume: 8 start-page: 84 issue: 1 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0018 article-title: Accelerating materials discovery using artificial intelligence, high performance computing and robotics, npj publication-title: Computat. Mater. – volume: 45 start-page: 1876 issue: 4 year: 2014 ident: 10.1016/j.fusengdes.2024.114691_bib0062 article-title: Grain boundary segregation behavior of boron in low-alloy steel publication-title: Metallurg. Mater. Transact. doi: 10.1007/s11661-013-2155-3 – year: 2006 ident: 10.1016/j.fusengdes.2024.114691_bib0004 – volume: 92 issue: 10 year: 2015 ident: 10.1016/j.fusengdes.2024.114691_bib0014 article-title: Predicting vacancy-mediated diffusion of interstitial solutes in α-Fe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.104102 – start-page: 1 year: 2002 ident: 10.1016/j.fusengdes.2024.114691_bib0052 article-title: 1 - Introduction to Austenitic Stainless Steels – ident: 10.1016/j.fusengdes.2024.114691_bib0053 doi: 10.1016/0022-3115(84)90620-2 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.fusengdes.2024.114691_bib0051 publication-title: Scikit-learn – volume: 593 year: 2024 ident: 10.1016/j.fusengdes.2024.114691_bib0032 article-title: Prediction of the energetics of stable self-interstitial atoms at tungsten grain boundaries via machine learning publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2024.154992 – year: 2019 ident: 10.1016/j.fusengdes.2024.114691_bib0005 – volume: 45 start-page: 111 issue: 1 year: 2009 ident: 10.1016/j.fusengdes.2024.114691_bib0022 article-title: A genetic algorithm for the atomistic design and global optimisation of substitutionally disordered materials publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2008.03.046 – volume: 255 year: 2023 ident: 10.1016/j.fusengdes.2024.114691_bib0063 article-title: Boron segregation at austenite grain boundaries: an equilibrium phenomenon publication-title: Acta Mater. doi: 10.1016/j.actamat.2023.119098 – volume: 53 start-page: 4022 issue: 12 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0024 article-title: Machine learning modeling of irradiation embrittlement in low alloy steel of nuclear power plants publication-title: Nuclear Eng. Techn. doi: 10.1016/j.net.2021.06.014 – volume: 280 start-page: 73 issue: 1 year: 2000 ident: 10.1016/j.fusengdes.2024.114691_bib0016 article-title: Influence of the interatomic potentials on molecular dynamics simulations of displacement cascades publication-title: J. Nuclear Mater. doi: 10.1016/S0022-3115(00)00029-5 – ident: 10.1016/j.fusengdes.2024.114691_bib0065 – ident: 10.1016/j.fusengdes.2024.114691_bib0046 doi: 10.1520/STP38042S – volume: 33 issue: 27 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0015 article-title: Assessment of empirical interatomic potential to predict thermal conductivity in ThO2 and UO2 publication-title: J. Phys. – ident: 10.1016/j.fusengdes.2024.114691_bib0047 doi: 10.1016/B978-0-08-022138-0.50084-8 – volume: 12 start-page: 761 issue: 5 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0006 article-title: Effect of radiation defects on thermo–mechanical properties of UO2 investigated by molecular dynamics method publication-title: Metals. doi: 10.3390/met12050761 – volume: 408 start-page: 30 issue: 1 year: 2011 ident: 10.1016/j.fusengdes.2024.114691_bib0023 article-title: Prediction of radiation induced hardening of reactor pressure vessel steels using artificial neural networks publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2010.10.039 – volume: 22 issue: 6 year: 2014 ident: 10.1016/j.fusengdes.2024.114691_bib0013 article-title: Spatially dependent cluster dynamics modeling of microstructure evolution in low energy helium irradiated tungsten publication-title: Model. Simul. Mat. Sci. Eng. doi: 10.1088/0965-0393/22/6/065010 – volume: 22 start-page: 68 issue: 1 year: 1967 ident: 10.1016/j.fusengdes.2024.114691_bib0040 article-title: The effect of irradiation temperature on strength and microstructure of stainless steel publication-title: J. Nuclear Mater. doi: 10.1016/0022-3115(67)90109-2 – volume: 100 issue: 14 year: 2019 ident: 10.1016/j.fusengdes.2024.114691_bib0035 article-title: Machine-learning interatomic potential for radiation damage and defects in tungsten publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.144105 – volume: 559 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0031 article-title: Prediction of vacancy formation energies at tungsten grain boundaries from local structure via machine learning method publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2021.153412 – ident: 10.1016/j.fusengdes.2024.114691_bib0043 – ident: 10.1016/j.fusengdes.2024.114691_bib0045 doi: 10.2172/6849206 – volume: 585 year: 2023 ident: 10.1016/j.fusengdes.2024.114691_bib0058 article-title: The effect of phosphorus on precipitation in irradiated reactor pressure vessel (RPV) steels publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2023.154614 – volume: 104 start-page: 821 year: 1981 ident: 10.1016/j.fusengdes.2024.114691_bib0042 article-title: The influence of neutron irradiation at 55 °C on the properties of austenitic stainless steels publication-title: J. Nuclear Mater. doi: 10.1016/0022-3115(82)90701-2 – volume: 101 start-page: 221 year: 1988 ident: 10.1016/j.fusengdes.2024.114691_bib0049 article-title: The effects of nitrogen content and twin boundaries on the yield strength of various commercial heats of type 316 austenitic stainless steel publication-title: Mater. Sci. Eng. – volume: 8 start-page: 85 issue: 1 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0002 article-title: Machine learning predictions of irradiation embrittlement in reactor pressure vessel steels publication-title: NPJ. Comput. Mater. doi: 10.1038/s41524-022-00760-4 – volume: 523 start-page: 189 year: 2019 ident: 10.1016/j.fusengdes.2024.114691_bib0027 article-title: Predicting the onset of void swelling in irradiated metals with machine learning publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2019.05.054 – volume: 527 start-page: 7832 issue: 29 year: 2010 ident: 10.1016/j.fusengdes.2024.114691_bib0071 article-title: Effect of grain refinement to 1μm on strength and toughness of dual-phase steels publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2010.08.062 – volume: 502 start-page: 311 year: 2018 ident: 10.1016/j.fusengdes.2024.114691_bib0026 article-title: Reactor pressure vessel embrittlement: insights from neural network modelling publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2018.02.027 – volume: 568 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0025 article-title: Application of a machine learning approach based on nearest neighbors to extract embrittlement trends from RPV surveillance data publication-title: J. Nuclear Mater. doi: 10.1016/j.jnucmat.2022.153886 – volume: 863 year: 2023 ident: 10.1016/j.fusengdes.2024.114691_bib0059 article-title: Effect of boron on the microstructure and mechanical properties of as-cast and annealed CrFeNi medium-entropy alloys publication-title: Mater. Sci. Eng. doi: 10.1016/j.msea.2022.144524 – volume: 309-310 start-page: 198 year: 2001 ident: 10.1016/j.fusengdes.2024.114691_bib0001 article-title: Irradiation hardening by interstitial loops: atomistic study and micromechanical model publication-title: Mater. Sci. Eng. doi: 10.1016/S0921-5093(00)01723-8 – start-page: 1 year: 2009 ident: 10.1016/j.fusengdes.2024.114691_bib0012 article-title: Chapter 88 dislocation–obstacle interactions at the atomic level doi: 10.1016/S1572-4859(09)01501-0 – volume: 07 start-page: 953 issue: 05 year: 2008 ident: 10.1016/j.fusengdes.2024.114691_bib0017 article-title: Prediction of the glass transition temperatures for polymers with artifical neural network publication-title: J. Theoret. Computat. Chem. doi: 10.1142/S0219633608004416 – volume: 543 year: 2021 ident: 10.1016/j.fusengdes.2024.114691_bib0064 article-title: Grain-boundary phosphorus segregation in highly neutron-irradiated reactor pressure vessel steels and its effect on irradiation embrittlement publication-title: J. Nuclear Materi. doi: 10.1016/j.jnucmat.2020.152564 – volume: 234 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0033 article-title: Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.118051 – volume: 108 start-page: 19 year: 2015 ident: 10.1016/j.fusengdes.2024.114691_bib0060 article-title: Monte Carlo and molecular dynamics simulations of screw dislocation locking by Cottrell atmospheres in low carbon Fe–C alloys publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.06.012 – volume: 245 year: 2023 ident: 10.1016/j.fusengdes.2024.114691_bib0009 article-title: Coupled effect of Cr and Al on interactions between a prismatic interstitial dislocation loop and an edge dislocation line in Fe-Cr-Al alloy publication-title: Acta Mater. doi: 10.1016/j.actamat.2022.118651 – volume: 533 start-page: 73 issue: 7601 year: 2016 ident: 10.1016/j.fusengdes.2024.114691_bib0019 article-title: Machine-learning-assisted materials discovery using failed experiments publication-title: Nature doi: 10.1038/nature17439 – volume: 17 start-page: 2999 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0069 article-title: Grain refinement strengthening mechanism of an austenitic stainless steel: critically analyze the impacts of grain interior and grain boundary publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2022.02.056 – volume: 34 year: 2022 ident: 10.1016/j.fusengdes.2024.114691_bib0007 article-title: New mechanisms of dislocation line-loop interactions in BCC-Fe explored by molecular dynamics method publication-title: Results. Phys. doi: 10.1016/j.rinp.2022.105226 |
SSID | ssj0017017 |
Score | 2.3885906 |
Snippet | •A machine learning model for predicting yield strength in irradiated type 316 stainless steels is developed.•The gradient boosting model exhibits superior... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 114691 |
SubjectTerms | Irradiation hardening Machine learning Prediction Type 316 stainless steels Yield strength |
Title | Machine learning - assisted prediction of yield strength in irradiated type 316 stainless steels |
URI | https://dx.doi.org/10.1016/j.fusengdes.2024.114691 |
Volume | 208 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8MwGA5jXvQgfuL8GDl4jUvXpG28jeGYynbRwW41TZNZkW6MevDib_d9-yEbCB68tSGB8CS8eZI8zxtCrpVO8XKIs8hKnwlpE6a18piSSWDCyAhbZuCbTIPxTDzM5bxFho0XBmWVdeyvYnoZreuSXo1mb5VlvSeu-twPVYAqSAm8Ah3sIkRZ383Xj8wD042XlmmFTmGovaXxcnjMsUgt5u3uizJvrvJ-X6E2Vp3RAdmv6SIdVD06JC2bH5G9jSSCx-RlUuohLa0fgFhQRoER4_CldLXGixgEny4d_US5GkV7SL4oXmmW02y9xuQEWBUPY6nvBbR0VL1DBIQvCx07IbPR3fNwzOp3E5iB_VDBpPEEQO0DFwP6oqWJEo9b4GkuCAPHrUuEbwING8FUp1ECw6U8FUKhko5HLvJPSTtf5vaMUOFrF9rIc9Y44RxXiZTGmT7XwlnLeYfwBqt4VaXHiBvd2Fv8A2-M8MYVvB1y22Aab410DEH8r8bn_2l8QXbxr3ISXpJ2sf6wV0ApiqRbzpku2RncP46n39YXzS0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED6VdgAGxFOUpwdWq05jJzFbVVG19LHQSt1C4tilCKVVVAb-Pb48UCshMbBFji1Zn63zZ9_ddwAPMkrQOcRooIVLudAxjSLpUCliT_mB4jpX4BtPvP6MP8_FvAbdKhcGwypL21_Y9Nxaly2tEs3WerlsvTDZZq4vPYyCFJZX7EED1al4HRqdwbA_-XEm-CwvvIv9KQ7YCfMy-NKxSDRKd7d5Lp0rnd8Pqa2Dp3cMRyVjJJ1iUidQ0-kpHG7pCJ7B6zgPidSkrAGxIJRYUowrmJB1hr4YxJ-sDPnCiDWCGSLpYvNGlilZZhnqE2BXfI8lruORPKnqwxpB-6XtxM5h1nuadvu0LJ1Alb0SbahQDrdou5aOWQYTCRXEDtOWqhnP9wzTJuau8iJ7F0yiJIjtiklH-rZRCsMCE7gXUE9Xqb4Ewt3I-DpwjFaGG8NkLIQyqs0ibrRmrAmswipcFwoZYRU69h7-wBsivGEBbxMeK0zDncUOrR3_a_DVfwbfw35_Oh6Fo8FkeA0H-KdILLyB-ib71LeWYWziu3IHfQPrZ8_e |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+-+assisted+prediction+of+yield+strength+in+irradiated+type+316+stainless+steels&rft.jtitle=Fusion+engineering+and+design&rft.au=Wang%2C+Ziqiang&rft.au=Yang%2C+Chen&rft.au=Gao%2C+Ning&rft.au=Wu%2C+Xuebang&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0920-3796&rft.volume=208&rft_id=info:doi/10.1016%2Fj.fusengdes.2024.114691&rft.externalDocID=S0920379624005416 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon |