Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation
Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this w...
Saved in:
Published in | International journal of hydrogen energy Vol. 143; pp. 307 - 318 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)6 and CH3COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 mAmgPd−1, which is 6.0 times of Pd/C(JM) (866.7 mAmgPd−1). The residual current density value after 5000 s stability test is still 114.8 mAmgPd−1, which is 5.9 times of Pd/C(JM) (19.5 mAmgPd−1). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OHads and further facilitate the oxidation of COads.
[Display omitted]
•Nanoflower-like PdCuP catalysts were prepared to enhance ethanol electrooxidation.•Nonmetal P doping is helpful to adjust the electron structure and d-band center.•PdCuP NFs exhibited excellent activity and anti-poisoning ability for EOR. |
---|---|
AbstractList | Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)6 and CH3COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 mAmgPd−1, which is 6.0 times of Pd/C(JM) (866.7 mAmgPd−1). The residual current density value after 5000 s stability test is still 114.8 mAmgPd−1, which is 5.9 times of Pd/C(JM) (19.5 mAmgPd−1). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OHads and further facilitate the oxidation of COads.
[Display omitted]
•Nanoflower-like PdCuP catalysts were prepared to enhance ethanol electrooxidation.•Nonmetal P doping is helpful to adjust the electron structure and d-band center.•PdCuP NFs exhibited excellent activity and anti-poisoning ability for EOR. |
Author | Zhao, Liubin Liu, Qinglin Zhu, Aimei Wei, Longbo Ye, Meiling Zhang, Qiugen |
Author_xml | – sequence: 1 givenname: Longbo surname: Wei fullname: Wei, Longbo email: 2366586906@qq.com – sequence: 2 givenname: Liubin surname: Zhao fullname: Zhao, Liubin email: 1837307091@qq.com – sequence: 3 givenname: Meiling surname: Ye fullname: Ye, Meiling email: mlye@xmu.edu.cn – sequence: 4 givenname: Aimei orcidid: 0000-0002-0473-1623 surname: Zhu fullname: Zhu, Aimei email: amzhu@xmu.edu.cn – sequence: 5 givenname: Qiugen surname: Zhang fullname: Zhang, Qiugen email: qgzhang@xmu.edu.cn – sequence: 6 givenname: Qinglin surname: Liu fullname: Liu, Qinglin email: qlliu@xmu.edu.cn |
BookMark | eNqFkE1OwzAUhL0oEm3hCigXSHh2YofsQBEFpAq6gLXl2M_UIdjIDj-9fVMV1qxmNjOa-RZk5oNHQi4oFBSouOwL1293Bj0WDBgvgBeM0xmZQykgL2nTnJJFSj0AraFq5mT1qHywQ_jGmA_uDbONaT83mVajGnZpTJkNMUO_VV47_5rhOLkwZDigHmMIP86o0QV_Rk6sGhKe_-qSvKxun9v7fP1099DerHPNBB3zqimNKTWtFcVKITDVNbzjrBKsAmOYoozRigtrQBhoOg41tVeWsVqA4p0tl0Qce3UMKUW08iO6dxV3koI8EJC9_CMgDwQkcDkRmILXxyBO674cRpm0Q6_RuDhdkSa4_yr2Clhsqw |
Cites_doi | 10.1016/S1872-2067(23)64569-3 10.1021/acsnano.9b07775 10.1016/j.apenergy.2015.02.002 10.1002/adfm.202003933 10.1039/C9NR09755D 10.1002/advs.202103722 10.1002/smll.202004727 10.1007/s12274-022-4873-8 10.1016/j.cej.2020.127751 10.1021/acsami.2c17883 10.1016/j.apsusc.2020.147860 10.1002/bkcs.12594 10.1038/s41467-024-44788-0 10.1002/anie.202304510 10.1021/acsaem.2c03815 10.1039/D3NR01112G 10.1021/acsnano.2c09270 10.1016/j.apcatb.2019.04.066 10.1002/adma.201703057 10.1039/D1TA08924B 10.1039/D2TA05109E 10.1002/adfm.202000255 10.1021/acs.inorgchem.0c00132 10.1016/j.jechem.2019.05.011 10.1016/j.electacta.2009.12.071 10.1038/srep01181 10.1016/j.rser.2020.110255 10.1021/acs.inorgchem.1c00885 10.1002/adma.202203612 10.1021/acsaem.2c01558 10.1016/j.inoche.2024.112628 10.1002/adfm.202106401 10.1016/j.joule.2023.02.011 10.1021/acscatal.9b04302 10.1021/acsami.9b13557 10.1021/acsnano.2c07787 10.1007/s40843-022-2104-4 10.1021/acs.langmuir.1c03466 10.1016/j.jcis.2021.11.142 10.1016/j.jcis.2021.05.079 10.1039/D3DT01095C |
ContentType | Journal Article |
Copyright | 2025 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2025 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2025.05.251 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 318 |
ExternalDocumentID | 10_1016_j_ijhydene_2025_05_251 S0360319925025364 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFZHZ AGCQF AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFXIZ AGQPQ AGRNS ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SSH T9H WUQ |
ID | FETCH-LOGICAL-c261t-493dd3c17a1e4ae02ab95b5246240dd2a1221456fd06d09b5071f8f22760a5bf3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Thu Jul 24 02:06:08 EDT 2025 Sat Aug 23 17:12:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Pd-based catalysts Nanoflower-like Nonmetal doping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-493dd3c17a1e4ae02ab95b5246240dd2a1221456fd06d09b5071f8f22760a5bf3 |
ORCID | 0000-0002-0473-1623 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2025_05_251 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_05_251 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-01 2025-07-00 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Gao, Zhang, Ren, Shiraishi, Du (bib30) 2020; 30 Yang, Liang, Chen, Ma, Wang, Tong, Zhang, Ye, Gu, Yang (bib7) 2020; 16 Xu, Fu, Gao, Ma, Gao, Guo (bib9) 2023; 6 Liu, Sheng, Wu, Wang, Wang, Yang, Chen, Hao, Zhi, Wang, Xie (bib11) 2023; 15 Lv, Sun, Xu, Ma, Liu (bib43) 2019; 253 Wang, Xu, Shang, Jin, Chen, Wang, Yuan, Du (bib31) 2020; 59 Li, Zhao, Shu, Niu, Li, Zhao, Yang, Jin, Jin (bib3) 2022; 210 Shen, Chen, Qiu, Shi, Yan, Jiang, Jiang, Xie (bib27) 2022; 10 Badwal, Giddey, Kulkarni, Goel, Basu (bib6) 2015; 145 Ding, Wang, Ou, Li, Guo, Zhao, Tong, Li (bib28) 2013; 3 Li, Chien, Ren, Windl, Ernst, Frankel (bib35) 2021; 221 Gao, Sun, Chen, Yang, Li, Lai, Zhang, Yuan, Huang (bib2) 2024; 15 Lv, Sun, Wang, Liu, Liu (bib45) 2022; 34 Chang, Wang, Li, He, Zhu, Zhang, Sajid, Kara, Gu, Yang (bib10) 2023; 7 Bueno, Leonardi, Kar, Chatterjee, Zhan, Chen, Wang, Engel, Fung, Skrabalak (bib20) 2022; 16 Xiong, Li, Pan, Liu, Zhang, Xu, Li, Lai, Wang (bib25) 2022; 10 Zhang, Wang, Wang, Huang, Meng, Ouyang, Yuan, Guo, Li (bib29) 2020; 30 Fu, Wan, Huang, Duan (bib4) 2022; 32 Huang, Ma, Wang, Feng, Zhou, Duchesne, Zhang, Chen, Han, Zhao, Zhou, Cai, Li (bib19) 2017; 29 Hu, Zhan, Guo, Luo, Zhang, Chen, Zhou (bib44) 2020; 40 Jin, Xu, Chen, Shang, Wang, Wang, Du (bib39) 2019; 11 Ji, Che, Qian, Li, Luo, Li, Wu, Xu, Gong, Cui, Zhang, Yang (bib8) 2023 Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib40) 2020; 10 Wang, Wang, Wu, Huang, Yuan, Zhang (bib22) 2021; 537 Li, Kowal, Sasaki, Marinkovic, Su, Korach, Liu, Adzic (bib5) 2010; 55 Li, Lao, Yang, Fu, Guo (bib15) 2023; 66 Jin, Li, D Zhang, Cao, Liao, Q Luo, Li, Ma (bib41) 2013; 344 Wang, Zheng, Ling, Fang, Jiao, Zheng, Qin, Luo, Gu, Song, Zhu (bib24) 2022; 16 Xu, Wang, Yu, Ren, Ren, Wang, Li, Wang, Wang (bib34) 2021; 421 Lao, Liao, Chen, Wang, Yang, Li, Ma, Fu, Gao, Guo (bib21) 2023; 62 Pang, Yang, Yan, Zhang, Zang, Fu, Guo (bib12) 2022; 14 Yang, Fang, Li, Qu, Deng (bib18) 2023; 52 Sun, Huang, Shan, Li, Zheng, Jiang, Jiang, Xie (bib26) 2022; 5 Zou, Gao, You, Li, Zhang, Wu, Song, Du (bib16) 2021; 601 Liu, Wang, Li, Wang, Li, Cabot (bib17) 2023; 16 Wahidah, Hong (bib32) 2022; 43 Yun, Lu, Li, Chen, Zhang, He, Hu, Zhang, Ge, Yang, Ge, He, Gu, Zhang (bib38) 2019; 13 Zhang, Song, Wang, You, Zou, Guo, Du, Li (bib37) 2021; 60 Siwal, Thakur, Zhang, Thakur (bib14) 2019; 14 Wang, Guo, Mao, Yu, Deng, Wang, Li, Xu, Wang (bib33) 2023; 15 Burton, Padilla, Rose, Habibullah (bib1) 2021; 135 Xu, Shang, Wang, Jin, Chen, Du (bib13) 2020; 12 Li, Wang, Yao, Chen, Li (bib36) 2024; 56 Kandhasamy, Murugadoss, Venkatesh, Sivaramakrishnan, Manogaran, Manavalan, Venkatachalam, Wong (bib42) 2024; 166 Qin, Huang, Yu, Zhang, Li, Wang, Lai, Wang, Feng (bib23) 2022; 9 Gao (10.1016/j.ijhydene.2025.05.251_bib30) 2020; 30 Lv (10.1016/j.ijhydene.2025.05.251_bib43) 2019; 253 Qin (10.1016/j.ijhydene.2025.05.251_bib23) 2022; 9 Wang (10.1016/j.ijhydene.2025.05.251_bib31) 2020; 59 Ji (10.1016/j.ijhydene.2025.05.251_bib8) 2023 Pang (10.1016/j.ijhydene.2025.05.251_bib12) 2022; 14 Xiong (10.1016/j.ijhydene.2025.05.251_bib25) 2022; 10 Wahidah (10.1016/j.ijhydene.2025.05.251_bib32) 2022; 43 Yun (10.1016/j.ijhydene.2025.05.251_bib38) 2019; 13 Burton (10.1016/j.ijhydene.2025.05.251_bib1) 2021; 135 Badwal (10.1016/j.ijhydene.2025.05.251_bib6) 2015; 145 Wang (10.1016/j.ijhydene.2025.05.251_bib22) 2021; 537 Sun (10.1016/j.ijhydene.2025.05.251_bib26) 2022; 5 Lao (10.1016/j.ijhydene.2025.05.251_bib21) 2023; 62 Gao (10.1016/j.ijhydene.2025.05.251_bib2) 2024; 15 Huang (10.1016/j.ijhydene.2025.05.251_bib19) 2017; 29 Xu (10.1016/j.ijhydene.2025.05.251_bib34) 2021; 421 Wang (10.1016/j.ijhydene.2025.05.251_bib24) 2022; 16 Kandhasamy (10.1016/j.ijhydene.2025.05.251_bib42) 2024; 166 Ding (10.1016/j.ijhydene.2025.05.251_bib28) 2013; 3 Yang (10.1016/j.ijhydene.2025.05.251_bib18) 2023; 52 Jin (10.1016/j.ijhydene.2025.05.251_bib39) 2019; 11 Zou (10.1016/j.ijhydene.2025.05.251_bib16) 2021; 601 Lv (10.1016/j.ijhydene.2025.05.251_bib45) 2022; 34 Xu (10.1016/j.ijhydene.2025.05.251_bib13) 2020; 12 Jin (10.1016/j.ijhydene.2025.05.251_bib41) 2013; 344 Zhang (10.1016/j.ijhydene.2025.05.251_bib29) 2020; 30 Li (10.1016/j.ijhydene.2025.05.251_bib3) 2022; 210 Hu (10.1016/j.ijhydene.2025.05.251_bib44) 2020; 40 Nellaiappan (10.1016/j.ijhydene.2025.05.251_bib40) 2020; 10 Xu (10.1016/j.ijhydene.2025.05.251_bib9) 2023; 6 Shen (10.1016/j.ijhydene.2025.05.251_bib27) 2022; 10 Liu (10.1016/j.ijhydene.2025.05.251_bib11) 2023; 15 Wang (10.1016/j.ijhydene.2025.05.251_bib33) 2023; 15 Bueno (10.1016/j.ijhydene.2025.05.251_bib20) 2022; 16 Liu (10.1016/j.ijhydene.2025.05.251_bib17) 2023; 16 Siwal (10.1016/j.ijhydene.2025.05.251_bib14) 2019; 14 Zhang (10.1016/j.ijhydene.2025.05.251_bib37) 2021; 60 Chang (10.1016/j.ijhydene.2025.05.251_bib10) 2023; 7 Li (10.1016/j.ijhydene.2025.05.251_bib15) 2023; 66 Fu (10.1016/j.ijhydene.2025.05.251_bib4) 2022; 32 Li (10.1016/j.ijhydene.2025.05.251_bib35) 2021; 221 Li (10.1016/j.ijhydene.2025.05.251_bib5) 2010; 55 Yang (10.1016/j.ijhydene.2025.05.251_bib7) 2020; 16 Li (10.1016/j.ijhydene.2025.05.251_bib36) 2024; 56 |
References_xml | – volume: 253 start-page: 271 year: 2019 ident: bib43 article-title: When ternary PdCuP alloys meet ultrathin nanowires: synergic boosting of catalytic performance in ethanol electrooxidation publication-title: Appl Catal B Environ – volume: 16 year: 2020 ident: bib7 article-title: A phosphorus-doped Ag@Pd catalyst for enhanced C-C Bond cleavage during ethanol electrooxidation publication-title: Small – volume: 10 start-page: 1735 year: 2022 ident: bib27 article-title: Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation publication-title: J Mater Chem A – volume: 10 start-page: 3658 year: 2020 ident: bib40 article-title: High-entropy alloys as catalysts for the CO publication-title: ACS Catal – volume: 601 start-page: 42 year: 2021 ident: bib16 article-title: One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation publication-title: J Colloid Interface Sci – volume: 59 start-page: 3321 year: 2020 ident: bib31 article-title: Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquidfuel electrocatalysis publication-title: Inorg Chem – volume: 14 year: 2019 ident: bib14 article-title: Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications publication-title: Mater Today Chem – volume: 16 start-page: 2041 year: 2023 ident: bib17 article-title: PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst publication-title: Nano Res – volume: 6 start-page: 2471 year: 2023 ident: bib9 article-title: Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation publication-title: ACS Appl Energy Mater – volume: 62 year: 2023 ident: bib21 article-title: “Pd-enriched-core/Pt-enriched-shell high-entropy alloy with face-Centred cubic structure for C-1 and C-2 alcohol oxidation publication-title: Angew Chem Int Ed – volume: 537 year: 2021 ident: bib22 article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation publication-title: Appl Surf Sci – volume: 56 start-page: 51 year: 2024 ident: bib36 article-title: Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping publication-title: Chin J Catal – volume: 344 year: 2013 ident: bib41 article-title: Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation publication-title: Mater Lett – volume: 30 year: 2020 ident: bib30 article-title: Universal surfactant-free Strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis publication-title: Adv Funct Mater – volume: 13 year: 2019 ident: bib38 article-title: Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation publication-title: ACS Nano – volume: 52 year: 2023 ident: bib18 article-title: Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation publication-title: Dalton Trans – volume: 14 start-page: 4287 year: 2022 ident: bib12 article-title: Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol publication-title: Langmuir – volume: 60 start-page: 7527 year: 2021 ident: bib37 article-title: Surface plasmon resonance boost electrocatalytic alcohol oxidation over three-dimensional PdM (M = Au, Ag, Cu) nanosheet assemblies publication-title: Inorg Chem – volume: 15 start-page: 3934 year: 2023 ident: bib11 article-title: Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation publication-title: ACS Appl Mater Interfaces – volume: 34 year: 2022 ident: bib45 article-title: Highly Curved, Quasi-single-crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis publication-title: Adv Mater – volume: 15 start-page: 508 year: 2024 ident: bib2 article-title: Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell publication-title: Nat Commun – volume: 29 year: 2017 ident: bib19 article-title: Promoting effect of Ni(OH) publication-title: Adv Mater – volume: 10 year: 2022 ident: bib25 article-title: Multiple strategies of porous tetrametallene for efficient ethanol electrooxidation publication-title: J Mater Chem A – volume: 40 start-page: 217 year: 2020 ident: bib44 article-title: Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction publication-title: J Energy Chem – volume: 12 start-page: 2126 year: 2020 ident: bib13 article-title: Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses publication-title: Nanoscale – volume: 135 year: 2021 ident: bib1 article-title: Increasing the efficiency of hydrogen production from solar powered water electrolysis publication-title: Renew Sustain Energy Rev – volume: 66 start-page: 150 year: 2023 ident: bib15 article-title: Assembly of trimetallic palladium-silver-copper nanosheets for efficient C publication-title: Sci China Mater – volume: 11 year: 2019 ident: bib39 article-title: Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis publication-title: ACS Appl Mater Interfaces – volume: 30 year: 2020 ident: bib29 article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and atable electrocatalysts for formic acid oxidation publication-title: Adv Funct Mater – volume: 210 start-page: 944 year: 2022 ident: bib3 article-title: Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation publication-title: J Colloid Interface Sci – volume: 43 start-page: 1111 year: 2022 ident: bib32 article-title: Phosphorus-doped Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction publication-title: Bull Kor Chem Soc – volume: 166 year: 2024 ident: bib42 article-title: Improved electrochemical performance of hydrothermally synthesized Zn-Ni-S/rGO nanocomposite as an electrode for supercapacitor application publication-title: Inorg Chem Commun – volume: 145 start-page: 80 year: 2015 ident: bib6 article-title: Direct ethanol fuel cells for transport and stationary applications - a comprehensive review publication-title: Appl Energy – volume: 9 year: 2022 ident: bib23 article-title: “Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction publication-title: Adv Sci – volume: 16 year: 2022 ident: bib24 article-title: Pd Metallene aerogels with single-Atom W doping for selective ethanol oxidation publication-title: ACS Nano – volume: 421 year: 2021 ident: bib34 article-title: Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance publication-title: Chem Eng J – year: 2023 ident: bib8 article-title: Unconventional s-p-d hybridization in modulating frontier orbitals of carbonaceous radicals on PdBi nanosheets for efficient ethanol electrooxidation publication-title: Appl Catal B Environ – volume: 3 start-page: 1181 year: 2013 ident: bib28 article-title: Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for Ethanol Electrooxidation publication-title: Sci Rep – volume: 15 start-page: 7765 year: 2023 ident: bib33 article-title: Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H2 publication-title: Nanoscale – volume: 221 year: 2021 ident: bib35 article-title: Understanding the efficacy of concentrated interstitial carbon in enhancing the pitting corrosion resistance of stainless steel; response to Comment by Martin et al publication-title: Atca Materialia – volume: 16 year: 2022 ident: bib20 article-title: Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity publication-title: ACS Nano – volume: 7 start-page: 587 year: 2023 ident: bib10 article-title: Rational design of septenary high-entropy alloy for direct ethanol fuel cells publication-title: Joule – volume: 55 start-page: 4331 year: 2010 ident: bib5 article-title: Ethanol oxidation on the ternary Pt-Rh-SnO publication-title: Electrochim Acta – volume: 32 year: 2022 ident: bib4 article-title: Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media publication-title: Adv Funct Mater – volume: 5 year: 2022 ident: bib26 article-title: Interstitial hydrogen atom modified PdPt nanosheets for efficient ethanol electro-oxidation with high C-C bond cleavage selectivity publication-title: ACS Appl Energy Mater – issue: 328 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib8 article-title: Unconventional s-p-d hybridization in modulating frontier orbitals of carbonaceous radicals on PdBi nanosheets for efficient ethanol electrooxidation publication-title: Appl Catal B Environ – volume: 56 start-page: 51 year: 2024 ident: 10.1016/j.ijhydene.2025.05.251_bib36 article-title: Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping publication-title: Chin J Catal doi: 10.1016/S1872-2067(23)64569-3 – volume: 13 year: 2019 ident: 10.1016/j.ijhydene.2025.05.251_bib38 article-title: Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation publication-title: ACS Nano doi: 10.1021/acsnano.9b07775 – volume: 145 start-page: 80 year: 2015 ident: 10.1016/j.ijhydene.2025.05.251_bib6 article-title: Direct ethanol fuel cells for transport and stationary applications - a comprehensive review publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.002 – volume: 30 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib29 article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and atable electrocatalysts for formic acid oxidation publication-title: Adv Funct Mater doi: 10.1002/adfm.202003933 – volume: 12 start-page: 2126 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib13 article-title: Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses publication-title: Nanoscale doi: 10.1039/C9NR09755D – volume: 221 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib35 article-title: Understanding the efficacy of concentrated interstitial carbon in enhancing the pitting corrosion resistance of stainless steel; response to Comment by Martin et al publication-title: Atca Materialia – volume: 9 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib23 article-title: “Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction publication-title: Adv Sci doi: 10.1002/advs.202103722 – volume: 16 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib7 article-title: A phosphorus-doped Ag@Pd catalyst for enhanced C-C Bond cleavage during ethanol electrooxidation publication-title: Small doi: 10.1002/smll.202004727 – volume: 16 start-page: 2041 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib17 article-title: PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst publication-title: Nano Res doi: 10.1007/s12274-022-4873-8 – volume: 421 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib34 article-title: Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance publication-title: Chem Eng J doi: 10.1016/j.cej.2020.127751 – volume: 15 start-page: 3934 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib11 article-title: Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c17883 – volume: 537 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib22 article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2020.147860 – volume: 43 start-page: 1111 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib32 article-title: Phosphorus-doped Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction publication-title: Bull Kor Chem Soc doi: 10.1002/bkcs.12594 – volume: 15 start-page: 508 year: 2024 ident: 10.1016/j.ijhydene.2025.05.251_bib2 article-title: Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell publication-title: Nat Commun doi: 10.1038/s41467-024-44788-0 – volume: 344 year: 2013 ident: 10.1016/j.ijhydene.2025.05.251_bib41 article-title: Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation publication-title: Mater Lett – volume: 62 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib21 article-title: “Pd-enriched-core/Pt-enriched-shell high-entropy alloy with face-Centred cubic structure for C-1 and C-2 alcohol oxidation publication-title: Angew Chem Int Ed doi: 10.1002/anie.202304510 – volume: 6 start-page: 2471 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib9 article-title: Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.2c03815 – volume: 15 start-page: 7765 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib33 article-title: Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H22 production publication-title: Nanoscale doi: 10.1039/D3NR01112G – volume: 16 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib24 article-title: Pd Metallene aerogels with single-Atom W doping for selective ethanol oxidation publication-title: ACS Nano doi: 10.1021/acsnano.2c09270 – volume: 253 start-page: 271 year: 2019 ident: 10.1016/j.ijhydene.2025.05.251_bib43 article-title: When ternary PdCuP alloys meet ultrathin nanowires: synergic boosting of catalytic performance in ethanol electrooxidation publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2019.04.066 – volume: 29 year: 2017 ident: 10.1016/j.ijhydene.2025.05.251_bib19 article-title: Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution publication-title: Adv Mater doi: 10.1002/adma.201703057 – volume: 10 start-page: 1735 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib27 article-title: Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation publication-title: J Mater Chem A doi: 10.1039/D1TA08924B – volume: 10 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib25 article-title: Multiple strategies of porous tetrametallene for efficient ethanol electrooxidation publication-title: J Mater Chem A doi: 10.1039/D2TA05109E – volume: 30 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib30 article-title: Universal surfactant-free Strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis publication-title: Adv Funct Mater doi: 10.1002/adfm.202000255 – volume: 59 start-page: 3321 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib31 article-title: Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquidfuel electrocatalysis publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.0c00132 – volume: 40 start-page: 217 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib44 article-title: Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction publication-title: J Energy Chem doi: 10.1016/j.jechem.2019.05.011 – volume: 55 start-page: 4331 year: 2010 ident: 10.1016/j.ijhydene.2025.05.251_bib5 article-title: Ethanol oxidation on the ternary Pt-Rh-SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios publication-title: Electrochim Acta doi: 10.1016/j.electacta.2009.12.071 – volume: 14 year: 2019 ident: 10.1016/j.ijhydene.2025.05.251_bib14 article-title: Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications publication-title: Mater Today Chem – volume: 3 start-page: 1181 year: 2013 ident: 10.1016/j.ijhydene.2025.05.251_bib28 article-title: Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for Ethanol Electrooxidation publication-title: Sci Rep doi: 10.1038/srep01181 – volume: 135 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib1 article-title: Increasing the efficiency of hydrogen production from solar powered water electrolysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.110255 – volume: 60 start-page: 7527 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib37 article-title: Surface plasmon resonance boost electrocatalytic alcohol oxidation over three-dimensional PdM (M = Au, Ag, Cu) nanosheet assemblies publication-title: Inorg Chem doi: 10.1021/acs.inorgchem.1c00885 – volume: 34 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib45 article-title: Highly Curved, Quasi-single-crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis publication-title: Adv Mater doi: 10.1002/adma.202203612 – volume: 5 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib26 article-title: Interstitial hydrogen atom modified PdPt nanosheets for efficient ethanol electro-oxidation with high C-C bond cleavage selectivity publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.2c01558 – volume: 166 year: 2024 ident: 10.1016/j.ijhydene.2025.05.251_bib42 article-title: Improved electrochemical performance of hydrothermally synthesized Zn-Ni-S/rGO nanocomposite as an electrode for supercapacitor application publication-title: Inorg Chem Commun doi: 10.1016/j.inoche.2024.112628 – volume: 32 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib4 article-title: Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media publication-title: Adv Funct Mater doi: 10.1002/adfm.202106401 – volume: 7 start-page: 587 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib10 article-title: Rational design of septenary high-entropy alloy for direct ethanol fuel cells publication-title: Joule doi: 10.1016/j.joule.2023.02.011 – volume: 10 start-page: 3658 year: 2020 ident: 10.1016/j.ijhydene.2025.05.251_bib40 article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization publication-title: ACS Catal doi: 10.1021/acscatal.9b04302 – volume: 11 year: 2019 ident: 10.1016/j.ijhydene.2025.05.251_bib39 article-title: Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b13557 – volume: 16 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib20 article-title: Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity publication-title: ACS Nano doi: 10.1021/acsnano.2c07787 – volume: 66 start-page: 150 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib15 article-title: Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation publication-title: Sci China Mater doi: 10.1007/s40843-022-2104-4 – volume: 14 start-page: 4287 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib12 article-title: Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol publication-title: Langmuir doi: 10.1021/acs.langmuir.1c03466 – volume: 210 start-page: 944 year: 2022 ident: 10.1016/j.ijhydene.2025.05.251_bib3 article-title: Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.11.142 – volume: 601 start-page: 42 year: 2021 ident: 10.1016/j.ijhydene.2025.05.251_bib16 article-title: One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2021.05.079 – volume: 52 year: 2023 ident: 10.1016/j.ijhydene.2025.05.251_bib18 article-title: Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation publication-title: Dalton Trans doi: 10.1039/D3DT01095C |
SSID | ssj0017049 |
Score | 2.4733195 |
Snippet | Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 307 |
SubjectTerms | Nanoflower-like Nonmetal doping Pd-based catalysts |
Title | Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation |
URI | https://dx.doi.org/10.1016/j.ijhydene.2025.05.251 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA1DL3oQf-L8MXLwmrVJk7Q9juGYCmOgg91C0qSuc7TDdeAu_u0maysTBA8eGxIor-n7XsL3vQ-AOx2FhocyQTpWBFEaKBRJjFFo1UHKZeBUtMu2GPHhhD5O2bQF-k0tjEurrLm_4vQtW9cjXo2mt8wy79lyryvBiW0QJyzgzhOU0tDt8u7nd5oHDmsJbCcjN3unSnjezeazjf29nV0mYc7BkzD8e4DaCTqDY3BUq0XYq17oBLRMfgoOdzwEz8DA8mORLlyzM7TI3gwc6_56DLfXMptVuYJWlUKTz5yvRv4KjbsqLxawbn9TfGRVU6VzMBncv_SHqG6OgBJ76CkRjQOtgwSHEhsqjU-kiplihHIbo7UmEhNnQs5T7XPtx8rpvjRKCQm5L5lKgwuwlxe5uQTQKCWTxBKNlYJUR1T5LNGUpoFODMWKtYHXICKWlQeGaJLD5qLBUDgMhc-ExbAN4gY48eNrCkvUf6y9-sfaa3Dgnqp02huwV76vza0VDaXqbHdFB-z3Hp6Goy-YVcJV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA1zHtSD-BPnzx68ZmvSJG2PMhxT5xi4wW4haVLXOdrhOnAX_3aTtZUJggevTQLltXnfS_i-9wFwqwJfM19EUIUSQ0I8CQOBEPSNOoiZ8KyKttkWfdYdkccxHddAu6qFsWmVJfcXnL5m6_JJq0SzNU-S1ovhXluCE5ogjqnHyBbYJmb72jYGzc_vPA_klxrYzIZ2-kaZ8LSZTCcrs7-tXyam1sITU_R7hNqIOp0DsF_KReeueKNDUNPpEdjbMBE8Bh1DkFk8s93O4Cx5085AtZcDZ30vs1rkC8fIUkenE2uskb462t6VZzOn7H-TfSRFV6UTMOrcD9tdWHZHgJE59eSQhJ5SXoR8gTQR2sVChlRSTJgJ0kphgbB1IWexcplyQ2mFXxzEGPvMFVTG3imop1mqz4CjpRRRZJjGaEGiAiJdGilCYk9FmiBJG6BVIcLnhQkGr7LDprzCkFsMuUu5wbABwgo4_uNzcsPUf6w9_8faG7DTHT73eO-h_3QBdu1IkVt7Cer5-1JfGQWRy-v1H_IFRtbD4w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoflower-like+PdCuP+catalysts+for+enhancing+ethanol+electrooxidation&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Wei%2C+Longbo&rft.au=Zhao%2C+Liubin&rft.au=Ye%2C+Meiling&rft.au=Zhu%2C+Aimei&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=143&rft.spage=307&rft.epage=318&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.05.251&rft.externalDocID=S0360319925025364 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |