Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation

Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this w...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of hydrogen energy Vol. 143; pp. 307 - 318
Main Authors Wei, Longbo, Zhao, Liubin, Ye, Meiling, Zhu, Aimei, Zhang, Qiugen, Liu, Qinglin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)6 and CH3COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 mAmgPd−1, which is 6.0 times of Pd/C(JM) (866.7 mAmgPd−1). The residual current density value after 5000 s stability test is still 114.8 mAmgPd−1, which is 5.9 times of Pd/C(JM) (19.5 mAmgPd−1). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OHads and further facilitate the oxidation of COads. [Display omitted] •Nanoflower-like PdCuP catalysts were prepared to enhance ethanol electrooxidation.•Nonmetal P doping is helpful to adjust the electron structure and d-band center.•PdCuP NFs exhibited excellent activity and anti-poisoning ability for EOR.
AbstractList Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the future. However, their commercial application was limited by the low catalytic activity and anti-poisoning of the anodic catalyst. In this work, nanoflower-like PdCuP catalysts (PdCuP NFs) assembled by nanosheets was successfully prepared by wet chemical method, where W(CO)6 and CH3COOH were used as structure-oriented agents. Towards to ethanol oxidation reaction (EOR), the highest peak current density of as-prepared PdCuP NFs is 5157.1 mAmgPd−1, which is 6.0 times of Pd/C(JM) (866.7 mAmgPd−1). The residual current density value after 5000 s stability test is still 114.8 mAmgPd−1, which is 5.9 times of Pd/C(JM) (19.5 mAmgPd−1). The results showed that the nonmetal P doping was conducive to adjust the absorb energy of OHads and further facilitate the oxidation of COads. [Display omitted] •Nanoflower-like PdCuP catalysts were prepared to enhance ethanol electrooxidation.•Nonmetal P doping is helpful to adjust the electron structure and d-band center.•PdCuP NFs exhibited excellent activity and anti-poisoning ability for EOR.
Author Zhao, Liubin
Liu, Qinglin
Zhu, Aimei
Wei, Longbo
Ye, Meiling
Zhang, Qiugen
Author_xml – sequence: 1
  givenname: Longbo
  surname: Wei
  fullname: Wei, Longbo
  email: 2366586906@qq.com
– sequence: 2
  givenname: Liubin
  surname: Zhao
  fullname: Zhao, Liubin
  email: 1837307091@qq.com
– sequence: 3
  givenname: Meiling
  surname: Ye
  fullname: Ye, Meiling
  email: mlye@xmu.edu.cn
– sequence: 4
  givenname: Aimei
  orcidid: 0000-0002-0473-1623
  surname: Zhu
  fullname: Zhu, Aimei
  email: amzhu@xmu.edu.cn
– sequence: 5
  givenname: Qiugen
  surname: Zhang
  fullname: Zhang, Qiugen
  email: qgzhang@xmu.edu.cn
– sequence: 6
  givenname: Qinglin
  surname: Liu
  fullname: Liu, Qinglin
  email: qlliu@xmu.edu.cn
BookMark eNqFkE1OwzAUhL0oEm3hCigXSHh2YofsQBEFpAq6gLXl2M_UIdjIDj-9fVMV1qxmNjOa-RZk5oNHQi4oFBSouOwL1293Bj0WDBgvgBeM0xmZQykgL2nTnJJFSj0AraFq5mT1qHywQ_jGmA_uDbONaT83mVajGnZpTJkNMUO_VV47_5rhOLkwZDigHmMIP86o0QV_Rk6sGhKe_-qSvKxun9v7fP1099DerHPNBB3zqimNKTWtFcVKITDVNbzjrBKsAmOYoozRigtrQBhoOg41tVeWsVqA4p0tl0Qce3UMKUW08iO6dxV3koI8EJC9_CMgDwQkcDkRmILXxyBO674cRpm0Q6_RuDhdkSa4_yr2Clhsqw
Cites_doi 10.1016/S1872-2067(23)64569-3
10.1021/acsnano.9b07775
10.1016/j.apenergy.2015.02.002
10.1002/adfm.202003933
10.1039/C9NR09755D
10.1002/advs.202103722
10.1002/smll.202004727
10.1007/s12274-022-4873-8
10.1016/j.cej.2020.127751
10.1021/acsami.2c17883
10.1016/j.apsusc.2020.147860
10.1002/bkcs.12594
10.1038/s41467-024-44788-0
10.1002/anie.202304510
10.1021/acsaem.2c03815
10.1039/D3NR01112G
10.1021/acsnano.2c09270
10.1016/j.apcatb.2019.04.066
10.1002/adma.201703057
10.1039/D1TA08924B
10.1039/D2TA05109E
10.1002/adfm.202000255
10.1021/acs.inorgchem.0c00132
10.1016/j.jechem.2019.05.011
10.1016/j.electacta.2009.12.071
10.1038/srep01181
10.1016/j.rser.2020.110255
10.1021/acs.inorgchem.1c00885
10.1002/adma.202203612
10.1021/acsaem.2c01558
10.1016/j.inoche.2024.112628
10.1002/adfm.202106401
10.1016/j.joule.2023.02.011
10.1021/acscatal.9b04302
10.1021/acsami.9b13557
10.1021/acsnano.2c07787
10.1007/s40843-022-2104-4
10.1021/acs.langmuir.1c03466
10.1016/j.jcis.2021.11.142
10.1016/j.jcis.2021.05.079
10.1039/D3DT01095C
ContentType Journal Article
Copyright 2025 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2025 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2025.05.251
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 318
ExternalDocumentID 10_1016_j_ijhydene_2025_05_251
S0360319925025364
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AFZHZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFXIZ
AGQPQ
AGRNS
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
R2-
RIG
SAC
SCB
SSH
T9H
WUQ
ID FETCH-LOGICAL-c261t-493dd3c17a1e4ae02ab95b5246240dd2a1221456fd06d09b5071f8f22760a5bf3
IEDL.DBID .~1
ISSN 0360-3199
IngestDate Thu Jul 24 02:06:08 EDT 2025
Sat Aug 23 17:12:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Pd-based catalysts
Nanoflower-like
Nonmetal doping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-493dd3c17a1e4ae02ab95b5246240dd2a1221456fd06d09b5071f8f22760a5bf3
ORCID 0000-0002-0473-1623
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2025_05_251
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_05_251
PublicationCentury 2000
PublicationDate 2025-07-01
2025-07-00
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle International journal of hydrogen energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Gao, Zhang, Ren, Shiraishi, Du (bib30) 2020; 30
Yang, Liang, Chen, Ma, Wang, Tong, Zhang, Ye, Gu, Yang (bib7) 2020; 16
Xu, Fu, Gao, Ma, Gao, Guo (bib9) 2023; 6
Liu, Sheng, Wu, Wang, Wang, Yang, Chen, Hao, Zhi, Wang, Xie (bib11) 2023; 15
Lv, Sun, Xu, Ma, Liu (bib43) 2019; 253
Wang, Xu, Shang, Jin, Chen, Wang, Yuan, Du (bib31) 2020; 59
Li, Zhao, Shu, Niu, Li, Zhao, Yang, Jin, Jin (bib3) 2022; 210
Shen, Chen, Qiu, Shi, Yan, Jiang, Jiang, Xie (bib27) 2022; 10
Badwal, Giddey, Kulkarni, Goel, Basu (bib6) 2015; 145
Ding, Wang, Ou, Li, Guo, Zhao, Tong, Li (bib28) 2013; 3
Li, Chien, Ren, Windl, Ernst, Frankel (bib35) 2021; 221
Gao, Sun, Chen, Yang, Li, Lai, Zhang, Yuan, Huang (bib2) 2024; 15
Lv, Sun, Wang, Liu, Liu (bib45) 2022; 34
Chang, Wang, Li, He, Zhu, Zhang, Sajid, Kara, Gu, Yang (bib10) 2023; 7
Bueno, Leonardi, Kar, Chatterjee, Zhan, Chen, Wang, Engel, Fung, Skrabalak (bib20) 2022; 16
Xiong, Li, Pan, Liu, Zhang, Xu, Li, Lai, Wang (bib25) 2022; 10
Zhang, Wang, Wang, Huang, Meng, Ouyang, Yuan, Guo, Li (bib29) 2020; 30
Fu, Wan, Huang, Duan (bib4) 2022; 32
Huang, Ma, Wang, Feng, Zhou, Duchesne, Zhang, Chen, Han, Zhao, Zhou, Cai, Li (bib19) 2017; 29
Hu, Zhan, Guo, Luo, Zhang, Chen, Zhou (bib44) 2020; 40
Jin, Xu, Chen, Shang, Wang, Wang, Du (bib39) 2019; 11
Ji, Che, Qian, Li, Luo, Li, Wu, Xu, Gong, Cui, Zhang, Yang (bib8) 2023
Nellaiappan, Katiyar, Kumar, Parui, Malviya, Pradeep, Singh, Sharma, Tiwary, Biswas (bib40) 2020; 10
Wang, Wang, Wu, Huang, Yuan, Zhang (bib22) 2021; 537
Li, Kowal, Sasaki, Marinkovic, Su, Korach, Liu, Adzic (bib5) 2010; 55
Li, Lao, Yang, Fu, Guo (bib15) 2023; 66
Jin, Li, D Zhang, Cao, Liao, Q Luo, Li, Ma (bib41) 2013; 344
Wang, Zheng, Ling, Fang, Jiao, Zheng, Qin, Luo, Gu, Song, Zhu (bib24) 2022; 16
Xu, Wang, Yu, Ren, Ren, Wang, Li, Wang, Wang (bib34) 2021; 421
Lao, Liao, Chen, Wang, Yang, Li, Ma, Fu, Gao, Guo (bib21) 2023; 62
Pang, Yang, Yan, Zhang, Zang, Fu, Guo (bib12) 2022; 14
Yang, Fang, Li, Qu, Deng (bib18) 2023; 52
Sun, Huang, Shan, Li, Zheng, Jiang, Jiang, Xie (bib26) 2022; 5
Zou, Gao, You, Li, Zhang, Wu, Song, Du (bib16) 2021; 601
Liu, Wang, Li, Wang, Li, Cabot (bib17) 2023; 16
Wahidah, Hong (bib32) 2022; 43
Yun, Lu, Li, Chen, Zhang, He, Hu, Zhang, Ge, Yang, Ge, He, Gu, Zhang (bib38) 2019; 13
Zhang, Song, Wang, You, Zou, Guo, Du, Li (bib37) 2021; 60
Siwal, Thakur, Zhang, Thakur (bib14) 2019; 14
Wang, Guo, Mao, Yu, Deng, Wang, Li, Xu, Wang (bib33) 2023; 15
Burton, Padilla, Rose, Habibullah (bib1) 2021; 135
Xu, Shang, Wang, Jin, Chen, Du (bib13) 2020; 12
Li, Wang, Yao, Chen, Li (bib36) 2024; 56
Kandhasamy, Murugadoss, Venkatesh, Sivaramakrishnan, Manogaran, Manavalan, Venkatachalam, Wong (bib42) 2024; 166
Qin, Huang, Yu, Zhang, Li, Wang, Lai, Wang, Feng (bib23) 2022; 9
Gao (10.1016/j.ijhydene.2025.05.251_bib30) 2020; 30
Lv (10.1016/j.ijhydene.2025.05.251_bib43) 2019; 253
Qin (10.1016/j.ijhydene.2025.05.251_bib23) 2022; 9
Wang (10.1016/j.ijhydene.2025.05.251_bib31) 2020; 59
Ji (10.1016/j.ijhydene.2025.05.251_bib8) 2023
Pang (10.1016/j.ijhydene.2025.05.251_bib12) 2022; 14
Xiong (10.1016/j.ijhydene.2025.05.251_bib25) 2022; 10
Wahidah (10.1016/j.ijhydene.2025.05.251_bib32) 2022; 43
Yun (10.1016/j.ijhydene.2025.05.251_bib38) 2019; 13
Burton (10.1016/j.ijhydene.2025.05.251_bib1) 2021; 135
Badwal (10.1016/j.ijhydene.2025.05.251_bib6) 2015; 145
Wang (10.1016/j.ijhydene.2025.05.251_bib22) 2021; 537
Sun (10.1016/j.ijhydene.2025.05.251_bib26) 2022; 5
Lao (10.1016/j.ijhydene.2025.05.251_bib21) 2023; 62
Gao (10.1016/j.ijhydene.2025.05.251_bib2) 2024; 15
Huang (10.1016/j.ijhydene.2025.05.251_bib19) 2017; 29
Xu (10.1016/j.ijhydene.2025.05.251_bib34) 2021; 421
Wang (10.1016/j.ijhydene.2025.05.251_bib24) 2022; 16
Kandhasamy (10.1016/j.ijhydene.2025.05.251_bib42) 2024; 166
Ding (10.1016/j.ijhydene.2025.05.251_bib28) 2013; 3
Yang (10.1016/j.ijhydene.2025.05.251_bib18) 2023; 52
Jin (10.1016/j.ijhydene.2025.05.251_bib39) 2019; 11
Zou (10.1016/j.ijhydene.2025.05.251_bib16) 2021; 601
Lv (10.1016/j.ijhydene.2025.05.251_bib45) 2022; 34
Xu (10.1016/j.ijhydene.2025.05.251_bib13) 2020; 12
Jin (10.1016/j.ijhydene.2025.05.251_bib41) 2013; 344
Zhang (10.1016/j.ijhydene.2025.05.251_bib29) 2020; 30
Li (10.1016/j.ijhydene.2025.05.251_bib3) 2022; 210
Hu (10.1016/j.ijhydene.2025.05.251_bib44) 2020; 40
Nellaiappan (10.1016/j.ijhydene.2025.05.251_bib40) 2020; 10
Xu (10.1016/j.ijhydene.2025.05.251_bib9) 2023; 6
Shen (10.1016/j.ijhydene.2025.05.251_bib27) 2022; 10
Liu (10.1016/j.ijhydene.2025.05.251_bib11) 2023; 15
Wang (10.1016/j.ijhydene.2025.05.251_bib33) 2023; 15
Bueno (10.1016/j.ijhydene.2025.05.251_bib20) 2022; 16
Liu (10.1016/j.ijhydene.2025.05.251_bib17) 2023; 16
Siwal (10.1016/j.ijhydene.2025.05.251_bib14) 2019; 14
Zhang (10.1016/j.ijhydene.2025.05.251_bib37) 2021; 60
Chang (10.1016/j.ijhydene.2025.05.251_bib10) 2023; 7
Li (10.1016/j.ijhydene.2025.05.251_bib15) 2023; 66
Fu (10.1016/j.ijhydene.2025.05.251_bib4) 2022; 32
Li (10.1016/j.ijhydene.2025.05.251_bib35) 2021; 221
Li (10.1016/j.ijhydene.2025.05.251_bib5) 2010; 55
Yang (10.1016/j.ijhydene.2025.05.251_bib7) 2020; 16
Li (10.1016/j.ijhydene.2025.05.251_bib36) 2024; 56
References_xml – volume: 253
  start-page: 271
  year: 2019
  ident: bib43
  article-title: When ternary PdCuP alloys meet ultrathin nanowires: synergic boosting of catalytic performance in ethanol electrooxidation
  publication-title: Appl Catal B Environ
– volume: 16
  year: 2020
  ident: bib7
  article-title: A phosphorus-doped Ag@Pd catalyst for enhanced C-C Bond cleavage during ethanol electrooxidation
  publication-title: Small
– volume: 10
  start-page: 1735
  year: 2022
  ident: bib27
  article-title: Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation
  publication-title: J Mater Chem A
– volume: 10
  start-page: 3658
  year: 2020
  ident: bib40
  article-title: High-entropy alloys as catalysts for the CO
  publication-title: ACS Catal
– volume: 601
  start-page: 42
  year: 2021
  ident: bib16
  article-title: One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation
  publication-title: J Colloid Interface Sci
– volume: 59
  start-page: 3321
  year: 2020
  ident: bib31
  article-title: Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquidfuel electrocatalysis
  publication-title: Inorg Chem
– volume: 14
  year: 2019
  ident: bib14
  article-title: Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications
  publication-title: Mater Today Chem
– volume: 16
  start-page: 2041
  year: 2023
  ident: bib17
  article-title: PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst
  publication-title: Nano Res
– volume: 6
  start-page: 2471
  year: 2023
  ident: bib9
  article-title: Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation
  publication-title: ACS Appl Energy Mater
– volume: 62
  year: 2023
  ident: bib21
  article-title: “Pd-enriched-core/Pt-enriched-shell high-entropy alloy with face-Centred cubic structure for C-1 and C-2 alcohol oxidation
  publication-title: Angew Chem Int Ed
– volume: 537
  year: 2021
  ident: bib22
  article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation
  publication-title: Appl Surf Sci
– volume: 56
  start-page: 51
  year: 2024
  ident: bib36
  article-title: Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping
  publication-title: Chin J Catal
– volume: 344
  year: 2013
  ident: bib41
  article-title: Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation
  publication-title: Mater Lett
– volume: 30
  year: 2020
  ident: bib30
  article-title: Universal surfactant-free Strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis
  publication-title: Adv Funct Mater
– volume: 13
  year: 2019
  ident: bib38
  article-title: Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation
  publication-title: ACS Nano
– volume: 52
  year: 2023
  ident: bib18
  article-title: Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation
  publication-title: Dalton Trans
– volume: 14
  start-page: 4287
  year: 2022
  ident: bib12
  article-title: Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol
  publication-title: Langmuir
– volume: 60
  start-page: 7527
  year: 2021
  ident: bib37
  article-title: Surface plasmon resonance boost electrocatalytic alcohol oxidation over three-dimensional PdM (M = Au, Ag, Cu) nanosheet assemblies
  publication-title: Inorg Chem
– volume: 15
  start-page: 3934
  year: 2023
  ident: bib11
  article-title: Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation
  publication-title: ACS Appl Mater Interfaces
– volume: 34
  year: 2022
  ident: bib45
  article-title: Highly Curved, Quasi-single-crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis
  publication-title: Adv Mater
– volume: 15
  start-page: 508
  year: 2024
  ident: bib2
  article-title: Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell
  publication-title: Nat Commun
– volume: 29
  year: 2017
  ident: bib19
  article-title: Promoting effect of Ni(OH)
  publication-title: Adv Mater
– volume: 10
  year: 2022
  ident: bib25
  article-title: Multiple strategies of porous tetrametallene for efficient ethanol electrooxidation
  publication-title: J Mater Chem A
– volume: 40
  start-page: 217
  year: 2020
  ident: bib44
  article-title: Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction
  publication-title: J Energy Chem
– volume: 12
  start-page: 2126
  year: 2020
  ident: bib13
  article-title: Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses
  publication-title: Nanoscale
– volume: 135
  year: 2021
  ident: bib1
  article-title: Increasing the efficiency of hydrogen production from solar powered water electrolysis
  publication-title: Renew Sustain Energy Rev
– volume: 66
  start-page: 150
  year: 2023
  ident: bib15
  article-title: Assembly of trimetallic palladium-silver-copper nanosheets for efficient C
  publication-title: Sci China Mater
– volume: 11
  year: 2019
  ident: bib39
  article-title: Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis
  publication-title: ACS Appl Mater Interfaces
– volume: 30
  year: 2020
  ident: bib29
  article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and atable electrocatalysts for formic acid oxidation
  publication-title: Adv Funct Mater
– volume: 210
  start-page: 944
  year: 2022
  ident: bib3
  article-title: Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation
  publication-title: J Colloid Interface Sci
– volume: 43
  start-page: 1111
  year: 2022
  ident: bib32
  article-title: Phosphorus-doped Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction
  publication-title: Bull Kor Chem Soc
– volume: 166
  year: 2024
  ident: bib42
  article-title: Improved electrochemical performance of hydrothermally synthesized Zn-Ni-S/rGO nanocomposite as an electrode for supercapacitor application
  publication-title: Inorg Chem Commun
– volume: 145
  start-page: 80
  year: 2015
  ident: bib6
  article-title: Direct ethanol fuel cells for transport and stationary applications - a comprehensive review
  publication-title: Appl Energy
– volume: 9
  year: 2022
  ident: bib23
  article-title: “Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction
  publication-title: Adv Sci
– volume: 16
  year: 2022
  ident: bib24
  article-title: Pd Metallene aerogels with single-Atom W doping for selective ethanol oxidation
  publication-title: ACS Nano
– volume: 421
  year: 2021
  ident: bib34
  article-title: Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance
  publication-title: Chem Eng J
– year: 2023
  ident: bib8
  article-title: Unconventional s-p-d hybridization in modulating frontier orbitals of carbonaceous radicals on PdBi nanosheets for efficient ethanol electrooxidation
  publication-title: Appl Catal B Environ
– volume: 3
  start-page: 1181
  year: 2013
  ident: bib28
  article-title: Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for Ethanol Electrooxidation
  publication-title: Sci Rep
– volume: 15
  start-page: 7765
  year: 2023
  ident: bib33
  article-title: Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H2
  publication-title: Nanoscale
– volume: 221
  year: 2021
  ident: bib35
  article-title: Understanding the efficacy of concentrated interstitial carbon in enhancing the pitting corrosion resistance of stainless steel; response to Comment by Martin et al
  publication-title: Atca Materialia
– volume: 16
  year: 2022
  ident: bib20
  article-title: Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity
  publication-title: ACS Nano
– volume: 7
  start-page: 587
  year: 2023
  ident: bib10
  article-title: Rational design of septenary high-entropy alloy for direct ethanol fuel cells
  publication-title: Joule
– volume: 55
  start-page: 4331
  year: 2010
  ident: bib5
  article-title: Ethanol oxidation on the ternary Pt-Rh-SnO
  publication-title: Electrochim Acta
– volume: 32
  year: 2022
  ident: bib4
  article-title: Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media
  publication-title: Adv Funct Mater
– volume: 5
  year: 2022
  ident: bib26
  article-title: Interstitial hydrogen atom modified PdPt nanosheets for efficient ethanol electro-oxidation with high C-C bond cleavage selectivity
  publication-title: ACS Appl Energy Mater
– issue: 328
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib8
  article-title: Unconventional s-p-d hybridization in modulating frontier orbitals of carbonaceous radicals on PdBi nanosheets for efficient ethanol electrooxidation
  publication-title: Appl Catal B Environ
– volume: 56
  start-page: 51
  year: 2024
  ident: 10.1016/j.ijhydene.2025.05.251_bib36
  article-title: Enhancing the performance of platinum group metal-based electrocatalysts through nonmetallic element doping
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(23)64569-3
– volume: 13
  year: 2019
  ident: 10.1016/j.ijhydene.2025.05.251_bib38
  article-title: Synthesis of PdM (M = Zn, Cd, ZnCd) nanosheets with an unconventional face centered tetragonal phase as highly efficient electrocatalysts for ethanol oxidation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b07775
– volume: 145
  start-page: 80
  year: 2015
  ident: 10.1016/j.ijhydene.2025.05.251_bib6
  article-title: Direct ethanol fuel cells for transport and stationary applications - a comprehensive review
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.02.002
– volume: 30
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib29
  article-title: Layered and heterostructured Pd/PdWCr sheet-assembled nanoflowers as highly active and atable electrocatalysts for formic acid oxidation
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202003933
– volume: 12
  start-page: 2126
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib13
  article-title: Nanoscale engineering of porous Fe-doped Pd nanosheet assemblies for efficient methanol and ethanol electrocatalyses
  publication-title: Nanoscale
  doi: 10.1039/C9NR09755D
– volume: 221
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib35
  article-title: Understanding the efficacy of concentrated interstitial carbon in enhancing the pitting corrosion resistance of stainless steel; response to Comment by Martin et al
  publication-title: Atca Materialia
– volume: 9
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib23
  article-title: “Porous PdWM (M = Nb, Mo and Ta) trimetallene for high C1 selectivity in alkaline ethanol oxidation reaction
  publication-title: Adv Sci
  doi: 10.1002/advs.202103722
– volume: 16
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib7
  article-title: A phosphorus-doped Ag@Pd catalyst for enhanced C-C Bond cleavage during ethanol electrooxidation
  publication-title: Small
  doi: 10.1002/smll.202004727
– volume: 16
  start-page: 2041
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib17
  article-title: PdMoSb trimetallene as high-performance alcohol oxidation electrocatalyst
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4873-8
– volume: 421
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib34
  article-title: Electronic structure control over Pd nanorods by B, P-co-doping enables enhanced electrocatalytic performance
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.127751
– volume: 15
  start-page: 3934
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib11
  article-title: Controllable synthesis of PtIrCu ternary alloy ultrathin nanowires for enhanced ethanol electrooxidation
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.2c17883
– volume: 537
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib22
  article-title: Layered PdW nanosheet assemblies for alcohol electrooxidation
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2020.147860
– volume: 43
  start-page: 1111
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib32
  article-title: Phosphorus-doped Pt nanowires as efficient catalysts for electrochemical hydrogen evolution and methanol oxidation reaction
  publication-title: Bull Kor Chem Soc
  doi: 10.1002/bkcs.12594
– volume: 15
  start-page: 508
  year: 2024
  ident: 10.1016/j.ijhydene.2025.05.251_bib2
  article-title: Identifying the distinct roles of dual dopants in stabilizing the platinum-nickel nanowire catalyst for durable fuel cell
  publication-title: Nat Commun
  doi: 10.1038/s41467-024-44788-0
– volume: 344
  year: 2013
  ident: 10.1016/j.ijhydene.2025.05.251_bib41
  article-title: Ultrafine high-entropy alloy nanoparticles for extremely superior electrocatalytic methanol oxidation
  publication-title: Mater Lett
– volume: 62
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib21
  article-title: “Pd-enriched-core/Pt-enriched-shell high-entropy alloy with face-Centred cubic structure for C-1 and C-2 alcohol oxidation
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.202304510
– volume: 6
  start-page: 2471
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib9
  article-title: Strain engineering of face-centered cubic Pd-Pb nanosheets boosts electrocatalytic ethanol oxidation
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.2c03815
– volume: 15
  start-page: 7765
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib33
  article-title: Sulfur and phosphorus co-doping optimized electronic structure and modulated intermediate affinity on PdSP metallene for ethanol-assisted energy-saving H22 production
  publication-title: Nanoscale
  doi: 10.1039/D3NR01112G
– volume: 16
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib24
  article-title: Pd Metallene aerogels with single-Atom W doping for selective ethanol oxidation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c09270
– volume: 253
  start-page: 271
  year: 2019
  ident: 10.1016/j.ijhydene.2025.05.251_bib43
  article-title: When ternary PdCuP alloys meet ultrathin nanowires: synergic boosting of catalytic performance in ethanol electrooxidation
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2019.04.066
– volume: 29
  year: 2017
  ident: 10.1016/j.ijhydene.2025.05.251_bib19
  article-title: Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution
  publication-title: Adv Mater
  doi: 10.1002/adma.201703057
– volume: 10
  start-page: 1735
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib27
  article-title: Introducing oxophilic metal and interstitial hydrogen into the Pd lattice to boost electrochemical performance for alkaline ethanol oxidation
  publication-title: J Mater Chem A
  doi: 10.1039/D1TA08924B
– volume: 10
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib25
  article-title: Multiple strategies of porous tetrametallene for efficient ethanol electrooxidation
  publication-title: J Mater Chem A
  doi: 10.1039/D2TA05109E
– volume: 30
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib30
  article-title: Universal surfactant-free Strategy for self-standing 3D tremella-like Pd-M (M = Ag, Pb, and Au) nanosheets for superior alcohols electrocatalysis
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202000255
– volume: 59
  start-page: 3321
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib31
  article-title: Ir-doped Pd nanosheet assemblies as bifunctional electrocatalysts for advanced hydrogen evolution reaction and liquidfuel electrocatalysis
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.0c00132
– volume: 40
  start-page: 217
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib44
  article-title: Heat treatment bimetallic PdAu nanocatalyst for oxygen reduction reaction
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2019.05.011
– volume: 55
  start-page: 4331
  year: 2010
  ident: 10.1016/j.ijhydene.2025.05.251_bib5
  article-title: Ethanol oxidation on the ternary Pt-Rh-SnO2/C electrocatalysts with varied Pt:Rh:Sn ratios
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2009.12.071
– volume: 14
  year: 2019
  ident: 10.1016/j.ijhydene.2025.05.251_bib14
  article-title: Electrocatalysts for electrooxidation of direct alcohol fuel cell: chemistry and applications
  publication-title: Mater Today Chem
– volume: 3
  start-page: 1181
  year: 2013
  ident: 10.1016/j.ijhydene.2025.05.251_bib28
  article-title: Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for Ethanol Electrooxidation
  publication-title: Sci Rep
  doi: 10.1038/srep01181
– volume: 135
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib1
  article-title: Increasing the efficiency of hydrogen production from solar powered water electrolysis
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.110255
– volume: 60
  start-page: 7527
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib37
  article-title: Surface plasmon resonance boost electrocatalytic alcohol oxidation over three-dimensional PdM (M = Au, Ag, Cu) nanosheet assemblies
  publication-title: Inorg Chem
  doi: 10.1021/acs.inorgchem.1c00885
– volume: 34
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib45
  article-title: Highly Curved, Quasi-single-crystalline mesoporous metal nanoplates promote C-C bond cleavage in ethanol oxidation electrocatalysis
  publication-title: Adv Mater
  doi: 10.1002/adma.202203612
– volume: 5
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib26
  article-title: Interstitial hydrogen atom modified PdPt nanosheets for efficient ethanol electro-oxidation with high C-C bond cleavage selectivity
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.2c01558
– volume: 166
  year: 2024
  ident: 10.1016/j.ijhydene.2025.05.251_bib42
  article-title: Improved electrochemical performance of hydrothermally synthesized Zn-Ni-S/rGO nanocomposite as an electrode for supercapacitor application
  publication-title: Inorg Chem Commun
  doi: 10.1016/j.inoche.2024.112628
– volume: 32
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib4
  article-title: Noble metal based electrocatalysts for alcohol oxidation reactions in alkaline media
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202106401
– volume: 7
  start-page: 587
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib10
  article-title: Rational design of septenary high-entropy alloy for direct ethanol fuel cells
  publication-title: Joule
  doi: 10.1016/j.joule.2023.02.011
– volume: 10
  start-page: 3658
  year: 2020
  ident: 10.1016/j.ijhydene.2025.05.251_bib40
  article-title: High-entropy alloys as catalysts for the CO2 and CO reduction reactions: experimental realization
  publication-title: ACS Catal
  doi: 10.1021/acscatal.9b04302
– volume: 11
  year: 2019
  ident: 10.1016/j.ijhydene.2025.05.251_bib39
  article-title: Three-dimensional PdCuM (M = Ru, Rh, Ir) trimetallic alloy nanosheets for enhancing methanol oxidation electrocatalysis
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.9b13557
– volume: 16
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib20
  article-title: Quinary, senary, and septenary high entropy alloy nanoparticle catalysts from core@shell nanoparticles and the significance of intraparticle heterogeneity
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c07787
– volume: 66
  start-page: 150
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib15
  article-title: Assembly of trimetallic palladium-silver-copper nanosheets for efficient C2 alcohol electrooxidation
  publication-title: Sci China Mater
  doi: 10.1007/s40843-022-2104-4
– volume: 14
  start-page: 4287
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib12
  article-title: Assembly of alloyed PdCu nanosheets and their electrocatalytic oxidation of ethanol
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c03466
– volume: 210
  start-page: 944
  year: 2022
  ident: 10.1016/j.ijhydene.2025.05.251_bib3
  article-title: Mxene coupled over nitrogen-doped graphene anchoring palladium nanocrystals as an advanced electrocatalyst for the ethanol electrooxidation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.11.142
– volume: 601
  start-page: 42
  year: 2021
  ident: 10.1016/j.ijhydene.2025.05.251_bib16
  article-title: One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2021.05.079
– volume: 52
  year: 2023
  ident: 10.1016/j.ijhydene.2025.05.251_bib18
  article-title: Sn-doped PdCu alloy nanosheet assemblies as an efficient electrocatalyst for formic acid oxidation
  publication-title: Dalton Trans
  doi: 10.1039/D3DT01095C
SSID ssj0017049
Score 2.4733195
Snippet Direct ethanol fuel cells with the advantages of high safety, portability and energy conversion efficiency draw high attention and have great prospects for the...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 307
SubjectTerms Nanoflower-like
Nonmetal doping
Pd-based catalysts
Title Nanoflower-like PdCuP catalysts for enhancing ethanol electrooxidation
URI https://dx.doi.org/10.1016/j.ijhydene.2025.05.251
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA1DL3oQf-L8MXLwmrVJk7Q9juGYCmOgg91C0qSuc7TDdeAu_u0maysTBA8eGxIor-n7XsL3vQ-AOx2FhocyQTpWBFEaKBRJjFFo1UHKZeBUtMu2GPHhhD5O2bQF-k0tjEurrLm_4vQtW9cjXo2mt8wy79lyryvBiW0QJyzgzhOU0tDt8u7nd5oHDmsJbCcjN3unSnjezeazjf29nV0mYc7BkzD8e4DaCTqDY3BUq0XYq17oBLRMfgoOdzwEz8DA8mORLlyzM7TI3gwc6_56DLfXMptVuYJWlUKTz5yvRv4KjbsqLxawbn9TfGRVU6VzMBncv_SHqG6OgBJ76CkRjQOtgwSHEhsqjU-kiplihHIbo7UmEhNnQs5T7XPtx8rpvjRKCQm5L5lKgwuwlxe5uQTQKCWTxBKNlYJUR1T5LNGUpoFODMWKtYHXICKWlQeGaJLD5qLBUDgMhc-ExbAN4gY48eNrCkvUf6y9-sfaa3Dgnqp02huwV76vza0VDaXqbHdFB-z3Hp6Goy-YVcJV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwGA1zHtSD-BPnzx68ZmvSJG2PMhxT5xi4wW4haVLXOdrhOnAX_3aTtZUJggevTQLltXnfS_i-9wFwqwJfM19EUIUSQ0I8CQOBEPSNOoiZ8KyKttkWfdYdkccxHddAu6qFsWmVJfcXnL5m6_JJq0SzNU-S1ovhXluCE5ogjqnHyBbYJmb72jYGzc_vPA_klxrYzIZ2-kaZ8LSZTCcrs7-tXyam1sITU_R7hNqIOp0DsF_KReeueKNDUNPpEdjbMBE8Bh1DkFk8s93O4Cx5085AtZcDZ30vs1rkC8fIUkenE2uskb462t6VZzOn7H-TfSRFV6UTMOrcD9tdWHZHgJE59eSQhJ5SXoR8gTQR2sVChlRSTJgJ0kphgbB1IWexcplyQ2mFXxzEGPvMFVTG3imop1mqz4CjpRRRZJjGaEGiAiJdGilCYk9FmiBJG6BVIcLnhQkGr7LDprzCkFsMuUu5wbABwgo4_uNzcsPUf6w9_8faG7DTHT73eO-h_3QBdu1IkVt7Cer5-1JfGQWRy-v1H_IFRtbD4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nanoflower-like+PdCuP+catalysts+for+enhancing+ethanol+electrooxidation&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Wei%2C+Longbo&rft.au=Zhao%2C+Liubin&rft.au=Ye%2C+Meiling&rft.au=Zhu%2C+Aimei&rft.date=2025-07-01&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=143&rft.spage=307&rft.epage=318&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.05.251&rft.externalDocID=S0360319925025364
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon