A deep learning based iterative denoising algorithm for multiple frequency lines recovery
Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extracti...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 159; p. 111601 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extraction of line spectral components relevant to the target, given the convoluted underwater environment teeming with significant noise pollution. In this paper, a pioneering deep learning-based algorithm, known as the Additive Diffusion Probabilistic Denoising Model (ADPDM), is proposed to rectify the performance inadequacies of neural network-based approaches when operating under low signal-to-noise ratios (SNRs). To begin with, the ADPDM was ingeniously crafted. It was designed to astutely modify the representation of underwater signals by transforming the generative inference process of the diffusion model into a deterministic recovery strategy. Subsequently, the ADPDM was expanded into the complex-valued time–frequency joint domain, in order to take full advantage of the multi-dimensional information representation brought about by the lofargram. Moreover, an accelerating inference algorithm was adopted and calibrated to be fully compatible with the ADPDM framework. In contrast to the prevailing frequency line trackers that predominantly concentrate on discerning the frequency positions of the line spectrum, the ADPDM is dedicated to unearthing and reconstructing the latent line spectrum components concealed within the observed signal. This, in turn, paves the way for more effective subsequent detection or estimation operations. Empirical results demonstrated that the frequency lines within the signal enhanced by the ADPDM can be detected with remarkable efficacy, even when a relatively less sophisticated tracker is employed. On the basis of these findings, the detection performance metrics of the ADPDM have been shown to outstrip those of the current state-of-the-art (SOTA) methods, both those founded on deep learning and the hidden Markov model (HMM), across the entire spectrum of experimental SNRs. |
---|---|
AbstractList | Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extraction of line spectral components relevant to the target, given the convoluted underwater environment teeming with significant noise pollution. In this paper, a pioneering deep learning-based algorithm, known as the Additive Diffusion Probabilistic Denoising Model (ADPDM), is proposed to rectify the performance inadequacies of neural network-based approaches when operating under low signal-to-noise ratios (SNRs). To begin with, the ADPDM was ingeniously crafted. It was designed to astutely modify the representation of underwater signals by transforming the generative inference process of the diffusion model into a deterministic recovery strategy. Subsequently, the ADPDM was expanded into the complex-valued time–frequency joint domain, in order to take full advantage of the multi-dimensional information representation brought about by the lofargram. Moreover, an accelerating inference algorithm was adopted and calibrated to be fully compatible with the ADPDM framework. In contrast to the prevailing frequency line trackers that predominantly concentrate on discerning the frequency positions of the line spectrum, the ADPDM is dedicated to unearthing and reconstructing the latent line spectrum components concealed within the observed signal. This, in turn, paves the way for more effective subsequent detection or estimation operations. Empirical results demonstrated that the frequency lines within the signal enhanced by the ADPDM can be detected with remarkable efficacy, even when a relatively less sophisticated tracker is employed. On the basis of these findings, the detection performance metrics of the ADPDM have been shown to outstrip those of the current state-of-the-art (SOTA) methods, both those founded on deep learning and the hidden Markov model (HMM), across the entire spectrum of experimental SNRs. |
ArticleNumber | 111601 |
Author | Chen, Long Shen, Qifan Luo, Xinwei |
Author_xml | – sequence: 1 givenname: Qifan surname: Shen fullname: Shen, Qifan – sequence: 2 givenname: Xinwei surname: Luo fullname: Luo, Xinwei email: luoxinwei@seu.edu.cn – sequence: 3 givenname: Long surname: Chen fullname: Chen, Long |
BookMark | eNqFkL9OwzAYxD0UibbwCsgvkGA7tptsVBX_pEosMDBZX53PxVVqBzut1LcnVWFmuuF0p7vfjExCDEjIHWclZ1zf70oMW-h78KVgQpWcc834hExZo0TBm4W-JrOcd4yxqpZ6Sj6XtEXsaYeQgg9buoGMLfUDJhj8EUc3RJ_PDnTbmPzwtacuJro_dIPvO6Qu4fcBgz3RzgfMNKGNR0ynG3LloMt4-6tz8vH0-L56KdZvz6-r5bqwQvOhkFIDOFljbVs-TpaIALKCjVIbRIdOOWeFQxBKyNopWTeLRshm0QotKsGrOdGXXptizgmd6ZPfQzoZzswZitmZPyjmDMVcoIzBh0sQx3VHj8lk68cj2Prxw2Da6P-r-AFGAXRE |
Cites_doi | 10.1016/j.apacoust.2009.08.007 10.1016/j.oceaneng.2022.113202 10.1016/j.procs.2021.05.061 10.1109/48.725238 10.3390/s19224866 10.1109/TASLP.2023.3285241 10.1016/j.displa.2022.102192 10.1109/29.52700 10.1016/j.apacoust.2020.107609 10.1109/JSEN.2024.3424500 10.1109/TNNLS.2024.3376563 10.1109/ICME57554.2024.10687605 10.1109/JAS.2022.105743 10.1121/1.3567084 10.1109/TMI.2019.2959609 10.1109/TAES.2003.1207256 10.1016/j.patcog.2012.11.009 10.1109/TPAMI.2016.2644615 10.1121/10.0002172 10.1109/LSP.2019.2939049 10.1109/ICCE59016.2024.10444246 10.1016/j.apacoust.2024.110375 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2025.111601 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
ExternalDocumentID | 10_1016_j_engappai_2025_111601 S0952197625016033 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- 29G AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- RIG SBC SET SSH UHS WUQ ZMT |
ID | FETCH-LOGICAL-c261t-446aaf48e8cd10254eeaa43ab55beefef5ffc2fea25248f5489792497d2623213 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Wed Jul 16 16:48:29 EDT 2025 Sat Aug 09 17:30:45 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep learning Diffusion models Passive detection technology Frequency lines detection Low signal-to-noise ratios |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-446aaf48e8cd10254eeaa43ab55beefef5ffc2fea25248f5489792497d2623213 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_111601 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111601 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Streit, Barrett (b35) 1990; 38 Gao, Sun, Chen (b6) 2021 Song, J., Meng, C., Ermon, S., 2021. Denoising diffusion implicit models. In: International Conference on Learning Representations. Abel, Lee, Lowell (b1) 1992; vol. 2 Lampert, O’Keefe (b16) 2013; 46 Zhou, Shi, Xiang, Kang, Latecki (b41) 2025; 36 Zhao, Li (b40) 2022 Kim, G., Han, D.K., Ko, H., 2024. Sound source localization using complex-valued deep neural networks. In: 2024 IEEE International Conference on Consumer Electronics. ICCE, pp. 1–4. Ho, Jain, Abbeel (b9) 2020 Mayer, Soares, Cruz, Arantes (b26) 2023 Richter, Welker, Lemercier, Lay, Gerkmann (b30) 2023; 31 Yin, Li, Wang, Yang (b38) 2021 Han, Zhou, Xie, Zheng, Zhang (b8) 2022; 73 Ronneberger, Fischer, Brox (b32) 2015 Chen, K., Huang, Z., Lu, K., Yan, Y., 2024. Cosdiff: Code-switching tts model based on a multi-task ddim. In: 2024 IEEE International Conference on Multimedia and Expo. ICME, pp. 1–6. Lu, Song, Hu, Li (b22) 2020 Paris, Jauffret (b29) 2003; 39 Lee, Hasegawa, Gao (b17) 2022; 9 McIntyre, Ashley (b27) 1990; vol. 5 Chapman, Price (b4) 2011; 129 Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, (2014) 14-16, Conference Track Proceedings. Zhou, Siddiquee, Tajbakhsh, Liang (b42) 2020; 39 Lourens, Prcez (b21) 1998; 23 Neven, Brabandere, Georgoulis, Proesmans, Gool (b28) 2018 Han, Li, Liu, Ma (b7) 2020; 148 Zhang, Xiao (b39) 2021; 188 Luo, Shen (b24) 2021; 172 Liu, Wang, Fan, Wang, Tang, Qu (b20) 2024 Luo, Shen (b23) 2019; 19 Martino, Haton, Laporte (b25) 1993; vol.1 Rombach, Blattmann, Lorenz, Esser, Ommer (b31) 2022 Lampert, O’Keefe (b15) 2010; 71 Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b33) 2015 Xia, Zhang, Wang, Wang, Wu, Tian, Yang, Gool (b37) 2023 . Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b36) 2017 Bansal, Borgnia, Chu, Li, Kazemi, Huang, Goldblum, Geiping, Goldstein (b3) 2023 Huang, Zou, Wu, Wang, Ye (b10) 2025; 229 Jiang, Li, Rangaswamy (b12) 2019; 26 Li, Guo, Wang (b18) 2023; 15 Badrinarayanan, Kendall, Cipolla (b2) 2017; 39 Huy, Sadjoli, Azam, Elhadidi, Cai, Seet (b11) 2023; 267 Lin, Gao, Zhu, Zhang, Huang (b19) 2024; 24 Zhuang, Liu, Luo, Li (b43) 2024 Luo (10.1016/j.engappai.2025.111601_b23) 2019; 19 Lu (10.1016/j.engappai.2025.111601_b22) 2020 Neven (10.1016/j.engappai.2025.111601_b28) 2018 Paris (10.1016/j.engappai.2025.111601_b29) 2003; 39 Chapman (10.1016/j.engappai.2025.111601_b4) 2011; 129 Bansal (10.1016/j.engappai.2025.111601_b3) 2023 Gao (10.1016/j.engappai.2025.111601_b6) 2021 Lourens (10.1016/j.engappai.2025.111601_b21) 1998; 23 Jiang (10.1016/j.engappai.2025.111601_b12) 2019; 26 Zhao (10.1016/j.engappai.2025.111601_b40) 2022 Lampert (10.1016/j.engappai.2025.111601_b16) 2013; 46 Lee (10.1016/j.engappai.2025.111601_b17) 2022; 9 Lin (10.1016/j.engappai.2025.111601_b19) 2024; 24 Zhou (10.1016/j.engappai.2025.111601_b41) 2025; 36 10.1016/j.engappai.2025.111601_b5 Ronneberger (10.1016/j.engappai.2025.111601_b32) 2015 Abel (10.1016/j.engappai.2025.111601_b1) 1992; vol. 2 Mayer (10.1016/j.engappai.2025.111601_b26) 2023 Xia (10.1016/j.engappai.2025.111601_b37) 2023 Zhou (10.1016/j.engappai.2025.111601_b42) 2020; 39 Richter (10.1016/j.engappai.2025.111601_b30) 2023; 31 Yin (10.1016/j.engappai.2025.111601_b38) 2021 Huy (10.1016/j.engappai.2025.111601_b11) 2023; 267 Lampert (10.1016/j.engappai.2025.111601_b15) 2010; 71 Han (10.1016/j.engappai.2025.111601_b8) 2022; 73 Liu (10.1016/j.engappai.2025.111601_b20) 2024 Zhuang (10.1016/j.engappai.2025.111601_b43) 2024 Sohl-Dickstein (10.1016/j.engappai.2025.111601_b33) 2015 10.1016/j.engappai.2025.111601_b14 McIntyre (10.1016/j.engappai.2025.111601_b27) 1990; vol. 5 Streit (10.1016/j.engappai.2025.111601_b35) 1990; 38 Zhang (10.1016/j.engappai.2025.111601_b39) 2021; 188 Han (10.1016/j.engappai.2025.111601_b7) 2020; 148 Luo (10.1016/j.engappai.2025.111601_b24) 2021; 172 10.1016/j.engappai.2025.111601_b34 Huang (10.1016/j.engappai.2025.111601_b10) 2025; 229 10.1016/j.engappai.2025.111601_b13 Martino (10.1016/j.engappai.2025.111601_b25) 1993; vol.1 Vaswani (10.1016/j.engappai.2025.111601_b36) 2017 Li (10.1016/j.engappai.2025.111601_b18) 2023; 15 Rombach (10.1016/j.engappai.2025.111601_b31) 2022 Ho (10.1016/j.engappai.2025.111601_b9) 2020 Badrinarayanan (10.1016/j.engappai.2025.111601_b2) 2017; 39 |
References_xml | – start-page: 2256 year: 2015 end-page: 2265 ident: b33 article-title: Deep unsupervised learning using nonequilibrium thermodynamics publication-title: Proceedings of the 32nd International Conference on Machine Learning – start-page: 1096 year: 2024 end-page: 1099 ident: b43 article-title: A method to extract the time-frequency feature of underwater acoustic signals publication-title: 2024 4th International Conference on Neural Networks, Information and Communication Engineering – volume: 39 start-page: 1856 year: 2020 end-page: 1867 ident: b42 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 267 year: 2023 ident: b11 article-title: Object perception in underwater environments: a survey on sensors and sensing methodologies publication-title: Ocean Eng. – year: 2020 ident: b9 article-title: Denoising diffusion probabilistic models publication-title: Proceedings of the 34th International Conference on Neural Information Processing Systems – start-page: 25 year: 2022 end-page: 31 ident: b40 article-title: A novel method for extracting frequency line on lofargram based on feature function publication-title: Proceedings of the 2022 4th International Conference on Image, Video and Signal Processing, Association for Computing Machinery – volume: 71 start-page: 87 year: 2010 end-page: 100 ident: b15 article-title: A survey of spectrogram track detection algorithms publication-title: Appl. Acoust. – start-page: 2773 year: 2024 end-page: 2783 ident: b20 article-title: Residual denoising diffusion models publication-title: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: vol.1 start-page: 317 year: 1993 end-page: 320 ident: b25 article-title: Lofargram line tracking by multistage decision process publication-title: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing – volume: 129 start-page: EL161 year: 2011 end-page: EL165 ident: b4 article-title: Low frequency deep ocean ambient noise trend in the northeast pacific ocean publication-title: J. Acoust. Soc. Am. – year: 2023 ident: b3 article-title: Cold diffusion: Inverting arbitrary image transforms without noise – volume: 148 start-page: 2182 year: 2020 end-page: 2194 ident: b7 article-title: Deeplofargram: A deep learning based fluctuating dim frequency line detection and recovery publication-title: J. Acoust. Soc. Am. – reference: Song, J., Meng, C., Ermon, S., 2021. Denoising diffusion implicit models. In: International Conference on Learning Representations. – volume: vol. 2 start-page: 561 year: 1992 end-page: 564 ident: b1 article-title: An image processing approach to frequency tracking (application to sonar data) publication-title: [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing – start-page: 286 year: 2018 end-page: 291 ident: b28 article-title: Towards end-to-end lane detection: an instance segmentation approach publication-title: 2018 IEEE Intelligent Vehicles Symposium – start-page: 4613 year: 2021 end-page: 4616 ident: b38 article-title: Automatic underwater acoustic target tracking by using image processing methods with jamming targets publication-title: 2021 China Automation Congress – volume: 38 start-page: 586 year: 1990 end-page: 598 ident: b35 article-title: Frequency line tracking using hidden markov models publication-title: IEEE Trans. Acoust. Speech Signal Process. – start-page: 685 year: 2021 end-page: 688 ident: b6 article-title: Frequency line extractor using hidden markov models publication-title: 2021 OES China Ocean Acoustics – volume: 229 year: 2025 ident: b10 article-title: The effect of time-varying characteristics of shallow-sea waveguides on low-frequency acoustic signal transmission publication-title: Appl. Acoust. – volume: 15 year: 2023 ident: b18 article-title: Joint detection and reconstruction of weak spectral lines under non-gaussian impulsive noise with deep learning publication-title: Remote. Sens. – reference: Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, (2014) 14-16, Conference Track Proceedings. – volume: 19 year: 2019 ident: b23 article-title: A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals publication-title: Sensors – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b2 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 6000 year: 2017 end-page: 6010 ident: b36 article-title: Attention is all you need publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 23 start-page: 448 year: 1998 end-page: 453 ident: b21 article-title: Passive sonar ml estimator for ship propeller speed publication-title: IEEE J. Ocean. Eng. – volume: vol. 5 start-page: 2899 year: 1990 end-page: 2902 ident: b27 article-title: A comparison of five algorithms for tracking frequency and frequency rate-of-change publication-title: International Conference on Acoustics, Speech, and Signal Processing – start-page: 1 year: 2023 end-page: 5 ident: b26 article-title: On the computational complexities of complex-valued neural networks publication-title: 2023 IEEE Latin-American Conference on Communications – volume: 24 start-page: 26199 year: 2024 end-page: 26210 ident: b19 article-title: An underwater acoustic target recognition method based on iterative short-time fourier transform publication-title: IEEE Sensors J. – reference: Kim, G., Han, D.K., Ko, H., 2024. Sound source localization using complex-valued deep neural networks. In: 2024 IEEE International Conference on Consumer Electronics. ICCE, pp. 1–4. – reference: Chen, K., Huang, Z., Lu, K., Yan, Y., 2024. Cosdiff: Code-switching tts model based on a multi-task ddim. In: 2024 IEEE International Conference on Multimedia and Expo. ICME, pp. 1–6. – volume: 9 start-page: 1406 year: 2022 end-page: 1426 ident: b17 article-title: Complex-valued neural networks: A comprehensive survey publication-title: IEEE/ CAA J. Autom. Sin. – start-page: 10674 year: 2022 end-page: 10685 ident: b31 article-title: High-resolution image synthesis with latent diffusion models publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition – volume: 31 start-page: 2351 year: 2023 end-page: 2364 ident: b30 article-title: Speech enhancement and dereverberation with diffusion-based generative models publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process. – reference: . – volume: 188 start-page: 130 year: 2021 end-page: 136 ident: b39 article-title: Overview of data acquisition technology in underwater acoustic detection publication-title: Procedia Comput. Sci. – volume: 46 start-page: 1396 year: 2013 end-page: 1408 ident: b16 article-title: On the detection of tracks in spectrogram images publication-title: Pattern Recognit. – volume: 26 start-page: 1573 year: 2019 end-page: 1577 ident: b12 article-title: Deep learning denoising based line spectral estimation publication-title: IEEE Signal Process. Lett. – volume: 39 start-page: 439 year: 2003 end-page: 449 ident: b29 article-title: Frequency line tracking using hmm-based schemes [passive sonar] publication-title: IEEE Trans. Aerosp. Electron. Syst. – start-page: 13049 year: 2023 end-page: 13059 ident: b37 article-title: Diffir: Efficient diffusion model for image restoration publication-title: IEEE/CVF International Conference on Computer Vision, ICCV 2023 – volume: 36 start-page: 4504 year: 2025 end-page: 4518 ident: b41 article-title: Dpnet: Dual-path network for real-time object detection with lightweight attention publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 172 year: 2021 ident: b24 article-title: A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals publication-title: Appl. Acoust. – start-page: 778 year: 2020 end-page: 784 ident: b22 article-title: Fundamental frequency detection of underwater acoustic target using demon spectrum and cnn network publication-title: 2020 3rd International Conference on Unmanned Systems – volume: 73 year: 2022 ident: b8 article-title: Multi-level u-net network for image super-resolution reconstruction publication-title: Displays – start-page: 234 year: 2015 end-page: 241 ident: b32 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 – start-page: 685 year: 2021 ident: 10.1016/j.engappai.2025.111601_b6 article-title: Frequency line extractor using hidden markov models – volume: 71 start-page: 87 year: 2010 ident: 10.1016/j.engappai.2025.111601_b15 article-title: A survey of spectrogram track detection algorithms publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2009.08.007 – start-page: 2773 year: 2024 ident: 10.1016/j.engappai.2025.111601_b20 article-title: Residual denoising diffusion models – start-page: 10674 year: 2022 ident: 10.1016/j.engappai.2025.111601_b31 article-title: High-resolution image synthesis with latent diffusion models – start-page: 6000 year: 2017 ident: 10.1016/j.engappai.2025.111601_b36 article-title: Attention is all you need – volume: 267 year: 2023 ident: 10.1016/j.engappai.2025.111601_b11 article-title: Object perception in underwater environments: a survey on sensors and sensing methodologies publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.113202 – year: 2023 ident: 10.1016/j.engappai.2025.111601_b3 – ident: 10.1016/j.engappai.2025.111601_b34 – volume: 188 start-page: 130 year: 2021 ident: 10.1016/j.engappai.2025.111601_b39 article-title: Overview of data acquisition technology in underwater acoustic detection publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2021.05.061 – volume: 23 start-page: 448 year: 1998 ident: 10.1016/j.engappai.2025.111601_b21 article-title: Passive sonar ml estimator for ship propeller speed publication-title: IEEE J. Ocean. Eng. doi: 10.1109/48.725238 – volume: 19 year: 2019 ident: 10.1016/j.engappai.2025.111601_b23 article-title: A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals publication-title: Sensors doi: 10.3390/s19224866 – volume: 31 start-page: 2351 year: 2023 ident: 10.1016/j.engappai.2025.111601_b30 article-title: Speech enhancement and dereverberation with diffusion-based generative models publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process. doi: 10.1109/TASLP.2023.3285241 – volume: 73 year: 2022 ident: 10.1016/j.engappai.2025.111601_b8 article-title: Multi-level u-net network for image super-resolution reconstruction publication-title: Displays doi: 10.1016/j.displa.2022.102192 – volume: 38 start-page: 586 year: 1990 ident: 10.1016/j.engappai.2025.111601_b35 article-title: Frequency line tracking using hidden markov models publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.52700 – volume: vol. 2 start-page: 561 year: 1992 ident: 10.1016/j.engappai.2025.111601_b1 article-title: An image processing approach to frequency tracking (application to sonar data) – start-page: 13049 year: 2023 ident: 10.1016/j.engappai.2025.111601_b37 article-title: Diffir: Efficient diffusion model for image restoration – volume: 172 year: 2021 ident: 10.1016/j.engappai.2025.111601_b24 article-title: A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2020.107609 – volume: vol.1 start-page: 317 year: 1993 ident: 10.1016/j.engappai.2025.111601_b25 article-title: Lofargram line tracking by multistage decision process – start-page: 1 year: 2023 ident: 10.1016/j.engappai.2025.111601_b26 article-title: On the computational complexities of complex-valued neural networks – volume: 24 start-page: 26199 year: 2024 ident: 10.1016/j.engappai.2025.111601_b19 article-title: An underwater acoustic target recognition method based on iterative short-time fourier transform publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2024.3424500 – start-page: 1096 year: 2024 ident: 10.1016/j.engappai.2025.111601_b43 article-title: A method to extract the time-frequency feature of underwater acoustic signals – year: 2020 ident: 10.1016/j.engappai.2025.111601_b9 article-title: Denoising diffusion probabilistic models – volume: 36 start-page: 4504 year: 2025 ident: 10.1016/j.engappai.2025.111601_b41 article-title: Dpnet: Dual-path network for real-time object detection with lightweight attention publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2024.3376563 – ident: 10.1016/j.engappai.2025.111601_b14 – ident: 10.1016/j.engappai.2025.111601_b5 doi: 10.1109/ICME57554.2024.10687605 – start-page: 4613 year: 2021 ident: 10.1016/j.engappai.2025.111601_b38 article-title: Automatic underwater acoustic target tracking by using image processing methods with jamming targets – volume: 9 start-page: 1406 year: 2022 ident: 10.1016/j.engappai.2025.111601_b17 article-title: Complex-valued neural networks: A comprehensive survey publication-title: IEEE/ CAA J. Autom. Sin. doi: 10.1109/JAS.2022.105743 – volume: 129 start-page: EL161 year: 2011 ident: 10.1016/j.engappai.2025.111601_b4 article-title: Low frequency deep ocean ambient noise trend in the northeast pacific ocean publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3567084 – start-page: 234 year: 2015 ident: 10.1016/j.engappai.2025.111601_b32 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 39 start-page: 1856 year: 2020 ident: 10.1016/j.engappai.2025.111601_b42 article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2959609 – volume: 39 start-page: 439 year: 2003 ident: 10.1016/j.engappai.2025.111601_b29 article-title: Frequency line tracking using hmm-based schemes [passive sonar] publication-title: IEEE Trans. Aerosp. Electron. Syst. doi: 10.1109/TAES.2003.1207256 – volume: 46 start-page: 1396 year: 2013 ident: 10.1016/j.engappai.2025.111601_b16 article-title: On the detection of tracks in spectrogram images publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.11.009 – start-page: 25 year: 2022 ident: 10.1016/j.engappai.2025.111601_b40 article-title: A novel method for extracting frequency line on lofargram based on feature function – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.engappai.2025.111601_b2 article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – volume: 15 year: 2023 ident: 10.1016/j.engappai.2025.111601_b18 article-title: Joint detection and reconstruction of weak spectral lines under non-gaussian impulsive noise with deep learning publication-title: Remote. Sens. – volume: 148 start-page: 2182 year: 2020 ident: 10.1016/j.engappai.2025.111601_b7 article-title: Deeplofargram: A deep learning based fluctuating dim frequency line detection and recovery publication-title: J. Acoust. Soc. Am. doi: 10.1121/10.0002172 – volume: 26 start-page: 1573 year: 2019 ident: 10.1016/j.engappai.2025.111601_b12 article-title: Deep learning denoising based line spectral estimation publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2019.2939049 – ident: 10.1016/j.engappai.2025.111601_b13 doi: 10.1109/ICCE59016.2024.10444246 – volume: 229 year: 2025 ident: 10.1016/j.engappai.2025.111601_b10 article-title: The effect of time-varying characteristics of shallow-sea waveguides on low-frequency acoustic signal transmission publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2024.110375 – start-page: 778 year: 2020 ident: 10.1016/j.engappai.2025.111601_b22 article-title: Fundamental frequency detection of underwater acoustic target using demon spectrum and cnn network – volume: vol. 5 start-page: 2899 year: 1990 ident: 10.1016/j.engappai.2025.111601_b27 article-title: A comparison of five algorithms for tracking frequency and frequency rate-of-change – start-page: 286 year: 2018 ident: 10.1016/j.engappai.2025.111601_b28 article-title: Towards end-to-end lane detection: an instance segmentation approach – start-page: 2256 year: 2015 ident: 10.1016/j.engappai.2025.111601_b33 article-title: Deep unsupervised learning using nonequilibrium thermodynamics |
SSID | ssj0003846 |
Score | 2.437651 |
Snippet | Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 111601 |
SubjectTerms | Deep learning Diffusion models Frequency lines detection Low signal-to-noise ratios Passive detection technology |
Title | A deep learning based iterative denoising algorithm for multiple frequency lines recovery |
URI | https://dx.doi.org/10.1016/j.engappai.2025.111601 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRjwrD6xuG8dO0rGqqAqVOgAVZYrcxC6pII3aMHTht3PX2KKIgYEp0sWWovP57vuiexBywxMDgc4zLNTSZ0JHbRYZHjIT-YEJlEAJZluMgsFY3E_kpEZ6rhYG0yqt7698-sZbW0nLarNVZFnrEcABXDe4zHIzKxk7fgoRopU3P7_TPPyoKtaBxQxXb1UJz5s6n6miUBnwRC7RewR2OMyvALUVdPoHZM-iRdqtPuiQ1HR-RPYtcqT2Xq5A5IYzONkxeenSVOuC2rEQM4rxKqVVF2VwcfA2X2T4p4Cqt9limZWv7xQQLHUphtQsqzTrNUUouqLIncHw1ydk3L996g2YnaPAEuBHJQPGp5QRkY6S1MPqd62VEr6aSjnV2mgjjUm40YpLLiIDHKYTIi0LUw7giHv-Kanni1yfEZqkPgT8FEiK9AV2_xOBFkBsVWTCpO13zknLKS8uqnYZscsjm8dO3TGqO67UfU46Tsfxj4OPwaf_sffiH3svyS5gH4llhZ53Rerl8kNfA74op42NATXITvduOBjhc_jwPPwCtrzR3g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGWDhjShPD6xu2thO3LGqqAqULrRSmSI3sUsqSKM2DF347ZwbWxQxMLCebcm6-O6-L7oHQrd-rCHQNTUJFaeEKdEgQvsh0YIGOpDMSEy2xSDojdjDmI8rqONqYUxapfX9pU9fe2sr8aw2vTxNvWcAB2BuYMx8PSuZbqFtBuZrxhjUP7_zPKgoq3VgNzHbN8qEZ3WVTWWeyxSIos-N-wjsdJhfEWoj6nQP0J6Fi7hd3ugQVVR2hPYtdMTWMJcgctMZnOwYvbRxolSO7VyIKTYBK8FlG2XwcbCazVPzqwDLt-l8kRav7xggLHY5hlgvyjzrFTZYdIkNeYaXvzpBo-7dsNMjdpACiYEgFQQon5SaCSXipGnK35WSklE54XyilFaaax37Wkmf-0xoIDGt0PCyMPEBHflNeoqq2TxTZwjHCYWInwBL4ZSZ9n8sUAyYrRQ6jBu0VUOeU16Ul_0yIpdINoucuiOj7qhUdw21nI6jH18-Aqf-x9nzf5y9QTu94VM_6t8PHi_QrlkpawwvUbVYfKgrABvF5Hr9mL4AHe3RyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+iterative+denoising+algorithm+for+multiple+frequency+lines+recovery&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shen%2C+Qifan&rft.au=Luo%2C+Xinwei&rft.au=Chen%2C+Long&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=159&rft_id=info:doi/10.1016%2Fj.engappai.2025.111601&rft.externalDocID=S0952197625016033 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |