A deep learning based iterative denoising algorithm for multiple frequency lines recovery

Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extracti...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 159; p. 111601
Main Authors Shen, Qifan, Luo, Xinwei, Chen, Long
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extraction of line spectral components relevant to the target, given the convoluted underwater environment teeming with significant noise pollution. In this paper, a pioneering deep learning-based algorithm, known as the Additive Diffusion Probabilistic Denoising Model (ADPDM), is proposed to rectify the performance inadequacies of neural network-based approaches when operating under low signal-to-noise ratios (SNRs). To begin with, the ADPDM was ingeniously crafted. It was designed to astutely modify the representation of underwater signals by transforming the generative inference process of the diffusion model into a deterministic recovery strategy. Subsequently, the ADPDM was expanded into the complex-valued time–frequency joint domain, in order to take full advantage of the multi-dimensional information representation brought about by the lofargram. Moreover, an accelerating inference algorithm was adopted and calibrated to be fully compatible with the ADPDM framework. In contrast to the prevailing frequency line trackers that predominantly concentrate on discerning the frequency positions of the line spectrum, the ADPDM is dedicated to unearthing and reconstructing the latent line spectrum components concealed within the observed signal. This, in turn, paves the way for more effective subsequent detection or estimation operations. Empirical results demonstrated that the frequency lines within the signal enhanced by the ADPDM can be detected with remarkable efficacy, even when a relatively less sophisticated tracker is employed. On the basis of these findings, the detection performance metrics of the ADPDM have been shown to outstrip those of the current state-of-the-art (SOTA) methods, both those founded on deep learning and the hidden Markov model (HMM), across the entire spectrum of experimental SNRs.
AbstractList Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing investigations to address the pressing need for stealth capabilities. The most formidable hurdle that all types of detectors must overcome is the extraction of line spectral components relevant to the target, given the convoluted underwater environment teeming with significant noise pollution. In this paper, a pioneering deep learning-based algorithm, known as the Additive Diffusion Probabilistic Denoising Model (ADPDM), is proposed to rectify the performance inadequacies of neural network-based approaches when operating under low signal-to-noise ratios (SNRs). To begin with, the ADPDM was ingeniously crafted. It was designed to astutely modify the representation of underwater signals by transforming the generative inference process of the diffusion model into a deterministic recovery strategy. Subsequently, the ADPDM was expanded into the complex-valued time–frequency joint domain, in order to take full advantage of the multi-dimensional information representation brought about by the lofargram. Moreover, an accelerating inference algorithm was adopted and calibrated to be fully compatible with the ADPDM framework. In contrast to the prevailing frequency line trackers that predominantly concentrate on discerning the frequency positions of the line spectrum, the ADPDM is dedicated to unearthing and reconstructing the latent line spectrum components concealed within the observed signal. This, in turn, paves the way for more effective subsequent detection or estimation operations. Empirical results demonstrated that the frequency lines within the signal enhanced by the ADPDM can be detected with remarkable efficacy, even when a relatively less sophisticated tracker is employed. On the basis of these findings, the detection performance metrics of the ADPDM have been shown to outstrip those of the current state-of-the-art (SOTA) methods, both those founded on deep learning and the hidden Markov model (HMM), across the entire spectrum of experimental SNRs.
ArticleNumber 111601
Author Chen, Long
Shen, Qifan
Luo, Xinwei
Author_xml – sequence: 1
  givenname: Qifan
  surname: Shen
  fullname: Shen, Qifan
– sequence: 2
  givenname: Xinwei
  surname: Luo
  fullname: Luo, Xinwei
  email: luoxinwei@seu.edu.cn
– sequence: 3
  givenname: Long
  surname: Chen
  fullname: Chen, Long
BookMark eNqFkL9OwzAYxD0UibbwCsgvkGA7tptsVBX_pEosMDBZX53PxVVqBzut1LcnVWFmuuF0p7vfjExCDEjIHWclZ1zf70oMW-h78KVgQpWcc834hExZo0TBm4W-JrOcd4yxqpZ6Sj6XtEXsaYeQgg9buoGMLfUDJhj8EUc3RJ_PDnTbmPzwtacuJro_dIPvO6Qu4fcBgz3RzgfMNKGNR0ynG3LloMt4-6tz8vH0-L56KdZvz6-r5bqwQvOhkFIDOFljbVs-TpaIALKCjVIbRIdOOWeFQxBKyNopWTeLRshm0QotKsGrOdGXXptizgmd6ZPfQzoZzswZitmZPyjmDMVcoIzBh0sQx3VHj8lk68cj2Prxw2Da6P-r-AFGAXRE
Cites_doi 10.1016/j.apacoust.2009.08.007
10.1016/j.oceaneng.2022.113202
10.1016/j.procs.2021.05.061
10.1109/48.725238
10.3390/s19224866
10.1109/TASLP.2023.3285241
10.1016/j.displa.2022.102192
10.1109/29.52700
10.1016/j.apacoust.2020.107609
10.1109/JSEN.2024.3424500
10.1109/TNNLS.2024.3376563
10.1109/ICME57554.2024.10687605
10.1109/JAS.2022.105743
10.1121/1.3567084
10.1109/TMI.2019.2959609
10.1109/TAES.2003.1207256
10.1016/j.patcog.2012.11.009
10.1109/TPAMI.2016.2644615
10.1121/10.0002172
10.1109/LSP.2019.2939049
10.1109/ICCE59016.2024.10444246
10.1016/j.apacoust.2024.110375
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.111601
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_111601
S0952197625016033
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
RIG
SBC
SET
SSH
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-446aaf48e8cd10254eeaa43ab55beefef5ffc2fea25248f5489792497d2623213
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Wed Jul 16 16:48:29 EDT 2025
Sat Aug 09 17:30:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Diffusion models
Passive detection technology
Frequency lines detection
Low signal-to-noise ratios
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-446aaf48e8cd10254eeaa43ab55beefef5ffc2fea25248f5489792497d2623213
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_111601
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_111601
PublicationCentury 2000
PublicationDate 2025-11-01
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Streit, Barrett (b35) 1990; 38
Gao, Sun, Chen (b6) 2021
Song, J., Meng, C., Ermon, S., 2021. Denoising diffusion implicit models. In: International Conference on Learning Representations.
Abel, Lee, Lowell (b1) 1992; vol. 2
Lampert, O’Keefe (b16) 2013; 46
Zhou, Shi, Xiang, Kang, Latecki (b41) 2025; 36
Zhao, Li (b40) 2022
Kim, G., Han, D.K., Ko, H., 2024. Sound source localization using complex-valued deep neural networks. In: 2024 IEEE International Conference on Consumer Electronics. ICCE, pp. 1–4.
Ho, Jain, Abbeel (b9) 2020
Mayer, Soares, Cruz, Arantes (b26) 2023
Richter, Welker, Lemercier, Lay, Gerkmann (b30) 2023; 31
Yin, Li, Wang, Yang (b38) 2021
Han, Zhou, Xie, Zheng, Zhang (b8) 2022; 73
Ronneberger, Fischer, Brox (b32) 2015
Chen, K., Huang, Z., Lu, K., Yan, Y., 2024. Cosdiff: Code-switching tts model based on a multi-task ddim. In: 2024 IEEE International Conference on Multimedia and Expo. ICME, pp. 1–6.
Lu, Song, Hu, Li (b22) 2020
Paris, Jauffret (b29) 2003; 39
Lee, Hasegawa, Gao (b17) 2022; 9
McIntyre, Ashley (b27) 1990; vol. 5
Chapman, Price (b4) 2011; 129
Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, (2014) 14-16, Conference Track Proceedings.
Zhou, Siddiquee, Tajbakhsh, Liang (b42) 2020; 39
Lourens, Prcez (b21) 1998; 23
Neven, Brabandere, Georgoulis, Proesmans, Gool (b28) 2018
Han, Li, Liu, Ma (b7) 2020; 148
Zhang, Xiao (b39) 2021; 188
Luo, Shen (b24) 2021; 172
Liu, Wang, Fan, Wang, Tang, Qu (b20) 2024
Luo, Shen (b23) 2019; 19
Martino, Haton, Laporte (b25) 1993; vol.1
Rombach, Blattmann, Lorenz, Esser, Ommer (b31) 2022
Lampert, O’Keefe (b15) 2010; 71
Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b33) 2015
Xia, Zhang, Wang, Wang, Wu, Tian, Yang, Gool (b37) 2023
.
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b36) 2017
Bansal, Borgnia, Chu, Li, Kazemi, Huang, Goldblum, Geiping, Goldstein (b3) 2023
Huang, Zou, Wu, Wang, Ye (b10) 2025; 229
Jiang, Li, Rangaswamy (b12) 2019; 26
Li, Guo, Wang (b18) 2023; 15
Badrinarayanan, Kendall, Cipolla (b2) 2017; 39
Huy, Sadjoli, Azam, Elhadidi, Cai, Seet (b11) 2023; 267
Lin, Gao, Zhu, Zhang, Huang (b19) 2024; 24
Zhuang, Liu, Luo, Li (b43) 2024
Luo (10.1016/j.engappai.2025.111601_b23) 2019; 19
Lu (10.1016/j.engappai.2025.111601_b22) 2020
Neven (10.1016/j.engappai.2025.111601_b28) 2018
Paris (10.1016/j.engappai.2025.111601_b29) 2003; 39
Chapman (10.1016/j.engappai.2025.111601_b4) 2011; 129
Bansal (10.1016/j.engappai.2025.111601_b3) 2023
Gao (10.1016/j.engappai.2025.111601_b6) 2021
Lourens (10.1016/j.engappai.2025.111601_b21) 1998; 23
Jiang (10.1016/j.engappai.2025.111601_b12) 2019; 26
Zhao (10.1016/j.engappai.2025.111601_b40) 2022
Lampert (10.1016/j.engappai.2025.111601_b16) 2013; 46
Lee (10.1016/j.engappai.2025.111601_b17) 2022; 9
Lin (10.1016/j.engappai.2025.111601_b19) 2024; 24
Zhou (10.1016/j.engappai.2025.111601_b41) 2025; 36
10.1016/j.engappai.2025.111601_b5
Ronneberger (10.1016/j.engappai.2025.111601_b32) 2015
Abel (10.1016/j.engappai.2025.111601_b1) 1992; vol. 2
Mayer (10.1016/j.engappai.2025.111601_b26) 2023
Xia (10.1016/j.engappai.2025.111601_b37) 2023
Zhou (10.1016/j.engappai.2025.111601_b42) 2020; 39
Richter (10.1016/j.engappai.2025.111601_b30) 2023; 31
Yin (10.1016/j.engappai.2025.111601_b38) 2021
Huy (10.1016/j.engappai.2025.111601_b11) 2023; 267
Lampert (10.1016/j.engappai.2025.111601_b15) 2010; 71
Han (10.1016/j.engappai.2025.111601_b8) 2022; 73
Liu (10.1016/j.engappai.2025.111601_b20) 2024
Zhuang (10.1016/j.engappai.2025.111601_b43) 2024
Sohl-Dickstein (10.1016/j.engappai.2025.111601_b33) 2015
10.1016/j.engappai.2025.111601_b14
McIntyre (10.1016/j.engappai.2025.111601_b27) 1990; vol. 5
Streit (10.1016/j.engappai.2025.111601_b35) 1990; 38
Zhang (10.1016/j.engappai.2025.111601_b39) 2021; 188
Han (10.1016/j.engappai.2025.111601_b7) 2020; 148
Luo (10.1016/j.engappai.2025.111601_b24) 2021; 172
10.1016/j.engappai.2025.111601_b34
Huang (10.1016/j.engappai.2025.111601_b10) 2025; 229
10.1016/j.engappai.2025.111601_b13
Martino (10.1016/j.engappai.2025.111601_b25) 1993; vol.1
Vaswani (10.1016/j.engappai.2025.111601_b36) 2017
Li (10.1016/j.engappai.2025.111601_b18) 2023; 15
Rombach (10.1016/j.engappai.2025.111601_b31) 2022
Ho (10.1016/j.engappai.2025.111601_b9) 2020
Badrinarayanan (10.1016/j.engappai.2025.111601_b2) 2017; 39
References_xml – start-page: 2256
  year: 2015
  end-page: 2265
  ident: b33
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
  publication-title: Proceedings of the 32nd International Conference on Machine Learning
– start-page: 1096
  year: 2024
  end-page: 1099
  ident: b43
  article-title: A method to extract the time-frequency feature of underwater acoustic signals
  publication-title: 2024 4th International Conference on Neural Networks, Information and Communication Engineering
– volume: 39
  start-page: 1856
  year: 2020
  end-page: 1867
  ident: b42
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 267
  year: 2023
  ident: b11
  article-title: Object perception in underwater environments: a survey on sensors and sensing methodologies
  publication-title: Ocean Eng.
– year: 2020
  ident: b9
  article-title: Denoising diffusion probabilistic models
  publication-title: Proceedings of the 34th International Conference on Neural Information Processing Systems
– start-page: 25
  year: 2022
  end-page: 31
  ident: b40
  article-title: A novel method for extracting frequency line on lofargram based on feature function
  publication-title: Proceedings of the 2022 4th International Conference on Image, Video and Signal Processing, Association for Computing Machinery
– volume: 71
  start-page: 87
  year: 2010
  end-page: 100
  ident: b15
  article-title: A survey of spectrogram track detection algorithms
  publication-title: Appl. Acoust.
– start-page: 2773
  year: 2024
  end-page: 2783
  ident: b20
  article-title: Residual denoising diffusion models
  publication-title: 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: vol.1
  start-page: 317
  year: 1993
  end-page: 320
  ident: b25
  article-title: Lofargram line tracking by multistage decision process
  publication-title: 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing
– volume: 129
  start-page: EL161
  year: 2011
  end-page: EL165
  ident: b4
  article-title: Low frequency deep ocean ambient noise trend in the northeast pacific ocean
  publication-title: J. Acoust. Soc. Am.
– year: 2023
  ident: b3
  article-title: Cold diffusion: Inverting arbitrary image transforms without noise
– volume: 148
  start-page: 2182
  year: 2020
  end-page: 2194
  ident: b7
  article-title: Deeplofargram: A deep learning based fluctuating dim frequency line detection and recovery
  publication-title: J. Acoust. Soc. Am.
– reference: Song, J., Meng, C., Ermon, S., 2021. Denoising diffusion implicit models. In: International Conference on Learning Representations.
– volume: vol. 2
  start-page: 561
  year: 1992
  end-page: 564
  ident: b1
  article-title: An image processing approach to frequency tracking (application to sonar data)
  publication-title: [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing
– start-page: 286
  year: 2018
  end-page: 291
  ident: b28
  article-title: Towards end-to-end lane detection: an instance segmentation approach
  publication-title: 2018 IEEE Intelligent Vehicles Symposium
– start-page: 4613
  year: 2021
  end-page: 4616
  ident: b38
  article-title: Automatic underwater acoustic target tracking by using image processing methods with jamming targets
  publication-title: 2021 China Automation Congress
– volume: 38
  start-page: 586
  year: 1990
  end-page: 598
  ident: b35
  article-title: Frequency line tracking using hidden markov models
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– start-page: 685
  year: 2021
  end-page: 688
  ident: b6
  article-title: Frequency line extractor using hidden markov models
  publication-title: 2021 OES China Ocean Acoustics
– volume: 229
  year: 2025
  ident: b10
  article-title: The effect of time-varying characteristics of shallow-sea waveguides on low-frequency acoustic signal transmission
  publication-title: Appl. Acoust.
– volume: 15
  year: 2023
  ident: b18
  article-title: Joint detection and reconstruction of weak spectral lines under non-gaussian impulsive noise with deep learning
  publication-title: Remote. Sens.
– reference: Kingma, D.P., Welling, M., 2014. Auto-Encoding Variational Bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, (2014) 14-16, Conference Track Proceedings.
– volume: 19
  year: 2019
  ident: b23
  article-title: A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals
  publication-title: Sensors
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b2
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 6000
  year: 2017
  end-page: 6010
  ident: b36
  article-title: Attention is all you need
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 23
  start-page: 448
  year: 1998
  end-page: 453
  ident: b21
  article-title: Passive sonar ml estimator for ship propeller speed
  publication-title: IEEE J. Ocean. Eng.
– volume: vol. 5
  start-page: 2899
  year: 1990
  end-page: 2902
  ident: b27
  article-title: A comparison of five algorithms for tracking frequency and frequency rate-of-change
  publication-title: International Conference on Acoustics, Speech, and Signal Processing
– start-page: 1
  year: 2023
  end-page: 5
  ident: b26
  article-title: On the computational complexities of complex-valued neural networks
  publication-title: 2023 IEEE Latin-American Conference on Communications
– volume: 24
  start-page: 26199
  year: 2024
  end-page: 26210
  ident: b19
  article-title: An underwater acoustic target recognition method based on iterative short-time fourier transform
  publication-title: IEEE Sensors J.
– reference: Kim, G., Han, D.K., Ko, H., 2024. Sound source localization using complex-valued deep neural networks. In: 2024 IEEE International Conference on Consumer Electronics. ICCE, pp. 1–4.
– reference: Chen, K., Huang, Z., Lu, K., Yan, Y., 2024. Cosdiff: Code-switching tts model based on a multi-task ddim. In: 2024 IEEE International Conference on Multimedia and Expo. ICME, pp. 1–6.
– volume: 9
  start-page: 1406
  year: 2022
  end-page: 1426
  ident: b17
  article-title: Complex-valued neural networks: A comprehensive survey
  publication-title: IEEE/ CAA J. Autom. Sin.
– start-page: 10674
  year: 2022
  end-page: 10685
  ident: b31
  article-title: High-resolution image synthesis with latent diffusion models
  publication-title: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
– volume: 31
  start-page: 2351
  year: 2023
  end-page: 2364
  ident: b30
  article-title: Speech enhancement and dereverberation with diffusion-based generative models
  publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process.
– reference: .
– volume: 188
  start-page: 130
  year: 2021
  end-page: 136
  ident: b39
  article-title: Overview of data acquisition technology in underwater acoustic detection
  publication-title: Procedia Comput. Sci.
– volume: 46
  start-page: 1396
  year: 2013
  end-page: 1408
  ident: b16
  article-title: On the detection of tracks in spectrogram images
  publication-title: Pattern Recognit.
– volume: 26
  start-page: 1573
  year: 2019
  end-page: 1577
  ident: b12
  article-title: Deep learning denoising based line spectral estimation
  publication-title: IEEE Signal Process. Lett.
– volume: 39
  start-page: 439
  year: 2003
  end-page: 449
  ident: b29
  article-title: Frequency line tracking using hmm-based schemes [passive sonar]
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
– start-page: 13049
  year: 2023
  end-page: 13059
  ident: b37
  article-title: Diffir: Efficient diffusion model for image restoration
  publication-title: IEEE/CVF International Conference on Computer Vision, ICCV 2023
– volume: 36
  start-page: 4504
  year: 2025
  end-page: 4518
  ident: b41
  article-title: Dpnet: Dual-path network for real-time object detection with lightweight attention
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 172
  year: 2021
  ident: b24
  article-title: A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals
  publication-title: Appl. Acoust.
– start-page: 778
  year: 2020
  end-page: 784
  ident: b22
  article-title: Fundamental frequency detection of underwater acoustic target using demon spectrum and cnn network
  publication-title: 2020 3rd International Conference on Unmanned Systems
– volume: 73
  year: 2022
  ident: b8
  article-title: Multi-level u-net network for image super-resolution reconstruction
  publication-title: Displays
– start-page: 234
  year: 2015
  end-page: 241
  ident: b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015
– start-page: 685
  year: 2021
  ident: 10.1016/j.engappai.2025.111601_b6
  article-title: Frequency line extractor using hidden markov models
– volume: 71
  start-page: 87
  year: 2010
  ident: 10.1016/j.engappai.2025.111601_b15
  article-title: A survey of spectrogram track detection algorithms
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2009.08.007
– start-page: 2773
  year: 2024
  ident: 10.1016/j.engappai.2025.111601_b20
  article-title: Residual denoising diffusion models
– start-page: 10674
  year: 2022
  ident: 10.1016/j.engappai.2025.111601_b31
  article-title: High-resolution image synthesis with latent diffusion models
– start-page: 6000
  year: 2017
  ident: 10.1016/j.engappai.2025.111601_b36
  article-title: Attention is all you need
– volume: 267
  year: 2023
  ident: 10.1016/j.engappai.2025.111601_b11
  article-title: Object perception in underwater environments: a survey on sensors and sensing methodologies
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.113202
– year: 2023
  ident: 10.1016/j.engappai.2025.111601_b3
– ident: 10.1016/j.engappai.2025.111601_b34
– volume: 188
  start-page: 130
  year: 2021
  ident: 10.1016/j.engappai.2025.111601_b39
  article-title: Overview of data acquisition technology in underwater acoustic detection
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2021.05.061
– volume: 23
  start-page: 448
  year: 1998
  ident: 10.1016/j.engappai.2025.111601_b21
  article-title: Passive sonar ml estimator for ship propeller speed
  publication-title: IEEE J. Ocean. Eng.
  doi: 10.1109/48.725238
– volume: 19
  year: 2019
  ident: 10.1016/j.engappai.2025.111601_b23
  article-title: A sensing and tracking algorithm for multiple frequency line components in underwater acoustic signals
  publication-title: Sensors
  doi: 10.3390/s19224866
– volume: 31
  start-page: 2351
  year: 2023
  ident: 10.1016/j.engappai.2025.111601_b30
  article-title: Speech enhancement and dereverberation with diffusion-based generative models
  publication-title: IEEE/ ACM Trans. Audio, Speech, Lang. Process.
  doi: 10.1109/TASLP.2023.3285241
– volume: 73
  year: 2022
  ident: 10.1016/j.engappai.2025.111601_b8
  article-title: Multi-level u-net network for image super-resolution reconstruction
  publication-title: Displays
  doi: 10.1016/j.displa.2022.102192
– volume: 38
  start-page: 586
  year: 1990
  ident: 10.1016/j.engappai.2025.111601_b35
  article-title: Frequency line tracking using hidden markov models
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/29.52700
– volume: vol. 2
  start-page: 561
  year: 1992
  ident: 10.1016/j.engappai.2025.111601_b1
  article-title: An image processing approach to frequency tracking (application to sonar data)
– start-page: 13049
  year: 2023
  ident: 10.1016/j.engappai.2025.111601_b37
  article-title: Diffir: Efficient diffusion model for image restoration
– volume: 172
  year: 2021
  ident: 10.1016/j.engappai.2025.111601_b24
  article-title: A space-frequency joint detection and tracking method for line-spectrum components of underwater acoustic signals
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2020.107609
– volume: vol.1
  start-page: 317
  year: 1993
  ident: 10.1016/j.engappai.2025.111601_b25
  article-title: Lofargram line tracking by multistage decision process
– start-page: 1
  year: 2023
  ident: 10.1016/j.engappai.2025.111601_b26
  article-title: On the computational complexities of complex-valued neural networks
– volume: 24
  start-page: 26199
  year: 2024
  ident: 10.1016/j.engappai.2025.111601_b19
  article-title: An underwater acoustic target recognition method based on iterative short-time fourier transform
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2024.3424500
– start-page: 1096
  year: 2024
  ident: 10.1016/j.engappai.2025.111601_b43
  article-title: A method to extract the time-frequency feature of underwater acoustic signals
– year: 2020
  ident: 10.1016/j.engappai.2025.111601_b9
  article-title: Denoising diffusion probabilistic models
– volume: 36
  start-page: 4504
  year: 2025
  ident: 10.1016/j.engappai.2025.111601_b41
  article-title: Dpnet: Dual-path network for real-time object detection with lightweight attention
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2024.3376563
– ident: 10.1016/j.engappai.2025.111601_b14
– ident: 10.1016/j.engappai.2025.111601_b5
  doi: 10.1109/ICME57554.2024.10687605
– start-page: 4613
  year: 2021
  ident: 10.1016/j.engappai.2025.111601_b38
  article-title: Automatic underwater acoustic target tracking by using image processing methods with jamming targets
– volume: 9
  start-page: 1406
  year: 2022
  ident: 10.1016/j.engappai.2025.111601_b17
  article-title: Complex-valued neural networks: A comprehensive survey
  publication-title: IEEE/ CAA J. Autom. Sin.
  doi: 10.1109/JAS.2022.105743
– volume: 129
  start-page: EL161
  year: 2011
  ident: 10.1016/j.engappai.2025.111601_b4
  article-title: Low frequency deep ocean ambient noise trend in the northeast pacific ocean
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3567084
– start-page: 234
  year: 2015
  ident: 10.1016/j.engappai.2025.111601_b32
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 39
  start-page: 1856
  year: 2020
  ident: 10.1016/j.engappai.2025.111601_b42
  article-title: Unet++: Redesigning skip connections to exploit multiscale features in image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2959609
– volume: 39
  start-page: 439
  year: 2003
  ident: 10.1016/j.engappai.2025.111601_b29
  article-title: Frequency line tracking using hmm-based schemes [passive sonar]
  publication-title: IEEE Trans. Aerosp. Electron. Syst.
  doi: 10.1109/TAES.2003.1207256
– volume: 46
  start-page: 1396
  year: 2013
  ident: 10.1016/j.engappai.2025.111601_b16
  article-title: On the detection of tracks in spectrogram images
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.11.009
– start-page: 25
  year: 2022
  ident: 10.1016/j.engappai.2025.111601_b40
  article-title: A novel method for extracting frequency line on lofargram based on feature function
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.engappai.2025.111601_b2
  article-title: Segnet: A deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– volume: 15
  year: 2023
  ident: 10.1016/j.engappai.2025.111601_b18
  article-title: Joint detection and reconstruction of weak spectral lines under non-gaussian impulsive noise with deep learning
  publication-title: Remote. Sens.
– volume: 148
  start-page: 2182
  year: 2020
  ident: 10.1016/j.engappai.2025.111601_b7
  article-title: Deeplofargram: A deep learning based fluctuating dim frequency line detection and recovery
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0002172
– volume: 26
  start-page: 1573
  year: 2019
  ident: 10.1016/j.engappai.2025.111601_b12
  article-title: Deep learning denoising based line spectral estimation
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2019.2939049
– ident: 10.1016/j.engappai.2025.111601_b13
  doi: 10.1109/ICCE59016.2024.10444246
– volume: 229
  year: 2025
  ident: 10.1016/j.engappai.2025.111601_b10
  article-title: The effect of time-varying characteristics of shallow-sea waveguides on low-frequency acoustic signal transmission
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2024.110375
– start-page: 778
  year: 2020
  ident: 10.1016/j.engappai.2025.111601_b22
  article-title: Fundamental frequency detection of underwater acoustic target using demon spectrum and cnn network
– volume: vol. 5
  start-page: 2899
  year: 1990
  ident: 10.1016/j.engappai.2025.111601_b27
  article-title: A comparison of five algorithms for tracking frequency and frequency rate-of-change
– start-page: 286
  year: 2018
  ident: 10.1016/j.engappai.2025.111601_b28
  article-title: Towards end-to-end lane detection: an instance segmentation approach
– start-page: 2256
  year: 2015
  ident: 10.1016/j.engappai.2025.111601_b33
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
SSID ssj0003846
Score 2.437651
Snippet Passive detection technology constitutes a crucial research direction in underwater acoustic target detection. It has been the subject of ongoing...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 111601
SubjectTerms Deep learning
Diffusion models
Frequency lines detection
Low signal-to-noise ratios
Passive detection technology
Title A deep learning based iterative denoising algorithm for multiple frequency lines recovery
URI https://dx.doi.org/10.1016/j.engappai.2025.111601
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRjwrD6xuG8dO0rGqqAqVOgAVZYrcxC6pII3aMHTht3PX2KKIgYEp0sWWovP57vuiexBywxMDgc4zLNTSZ0JHbRYZHjIT-YEJlEAJZluMgsFY3E_kpEZ6rhYG0yqt7698-sZbW0nLarNVZFnrEcABXDe4zHIzKxk7fgoRopU3P7_TPPyoKtaBxQxXb1UJz5s6n6miUBnwRC7RewR2OMyvALUVdPoHZM-iRdqtPuiQ1HR-RPYtcqT2Xq5A5IYzONkxeenSVOuC2rEQM4rxKqVVF2VwcfA2X2T4p4Cqt9limZWv7xQQLHUphtQsqzTrNUUouqLIncHw1ydk3L996g2YnaPAEuBHJQPGp5QRkY6S1MPqd62VEr6aSjnV2mgjjUm40YpLLiIDHKYTIi0LUw7giHv-Kanni1yfEZqkPgT8FEiK9AV2_xOBFkBsVWTCpO13zknLKS8uqnYZscsjm8dO3TGqO67UfU46Tsfxj4OPwaf_sffiH3svyS5gH4llhZ53Rerl8kNfA74op42NATXITvduOBjhc_jwPPwCtrzR3g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGWDhjShPD6xu2thO3LGqqAqULrRSmSI3sUsqSKM2DF347ZwbWxQxMLCebcm6-O6-L7oHQrd-rCHQNTUJFaeEKdEgQvsh0YIGOpDMSEy2xSDojdjDmI8rqONqYUxapfX9pU9fe2sr8aw2vTxNvWcAB2BuYMx8PSuZbqFtBuZrxhjUP7_zPKgoq3VgNzHbN8qEZ3WVTWWeyxSIos-N-wjsdJhfEWoj6nQP0J6Fi7hd3ugQVVR2hPYtdMTWMJcgctMZnOwYvbRxolSO7VyIKTYBK8FlG2XwcbCazVPzqwDLt-l8kRav7xggLHY5hlgvyjzrFTZYdIkNeYaXvzpBo-7dsNMjdpACiYEgFQQon5SaCSXipGnK35WSklE54XyilFaaax37Wkmf-0xoIDGt0PCyMPEBHflNeoqq2TxTZwjHCYWInwBL4ZSZ9n8sUAyYrRQ6jBu0VUOeU16Ul_0yIpdINoucuiOj7qhUdw21nI6jH18-Aqf-x9nzf5y9QTu94VM_6t8PHi_QrlkpawwvUbVYfKgrABvF5Hr9mL4AHe3RyQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+deep+learning+based+iterative+denoising+algorithm+for+multiple+frequency+lines+recovery&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Shen%2C+Qifan&rft.au=Luo%2C+Xinwei&rft.au=Chen%2C+Long&rft.date=2025-11-01&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=159&rft_id=info:doi/10.1016%2Fj.engappai.2025.111601&rft.externalDocID=S0952197625016033
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon