A local fuzzy method based on “p-strong” community for detecting communities in networks

In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 6; pp. 589 - 595
Main Author 沈毅 任刚 刘洋 徐家丽
Format Journal Article
LanguageEnglish
Published 01.06.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
1741-4199
DOI10.1088/1674-1056/25/6/068901

Cover

Abstract In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.
AbstractList In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.
In this paper, we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks. In the method, a refined agglomeration rule is designed for agglomerating nodes into local communities, and the overlapping nodes are detected based on the idea of making each community strong. We propose a contribution coefficient to measure the contribution of an overlapping node to each of its belonging communities, and the fuzzy coefficients of the overlapping node can be obtained by normalizing the to all its belonging communities. The running time of our method is analyzed and varies linearly with network size. We investigate our method on the computer-generated networks and real networks. The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients. Furthermore, the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.
Author 沈毅 任刚 刘洋 徐家丽
AuthorAffiliation School of Transportation, Southeast University, Nanjing 210096, China College of Information Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
Author_xml – sequence: 1
  fullname: 沈毅 任刚 刘洋 徐家丽
BookMark eNo9kEtqwzAQQEVJoUnaIxREV924ljSSLC9D6A8C3bS7gpBtOXFrS4nlUJJVDtJeLiepQ0JWA8N7A_NGaOC8swjdUvJAiVIxlQmPKBEyZiKWMZEqJfQCDRkRKgIFfICGZ-YKjUL4IkRSwmCIPie49rmpcbnebje4sd3CFzgzwRbYO7zf_S6j0LXezfe7P5z7plm7qtvg0re4sJ3Nu8rNz_vKBlw57Gz349vvcI0uS1MHe3OaY_Tx9Pg-fYlmb8-v08ksypmkXQQlkJRRADClpAXIAoSArFCcW6GM5AAk4zIzTEBqmeRJqaRIcl6mmZUkhzG6P95dtn61tqHTTRVyW9fGWb8OmiomBAeuaI-KI5q3PoTWlnrZVo1pN5oSfaipD6X0oZRmQkt9rNl7dydv0bdY9U-fRdkTCQiWwj-pCXbk
Cites_doi 10.1038/nature03607
10.1103/PhysRevE.78.046110
10.7498/aps.64.218901
10.1103/PhysRevE.83.066114
10.1088/1742-5468/2008/05/P05001
10.1103/PhysRevE.80.016118
10.1073/pnas.0605965104
10.1016/j.physrep.2009.11.002
10.1016/j.physa.2013.08.063
10.1073/pnas.0400054101
10.1103/PhysRevE.70.025101
10.1088/1367-2630/11/3/033015
10.1103/PhysRevE.72.046108
10.1086/jar.33.4.3629752
10.1103/PhysRevE.69.026113
10.1016/j.physa.2013.08.028
10.1088/1742-5468/2011/02/P02017
10.1016/j.ins.2010.11.022
10.1038/nature03288
10.1103/PhysRevE.72.026132
10.1016/j.socnet.2008.03.001
10.1016/j.physa.2014.10.009
10.1016/j.physa.2006.07.023
10.1088/1674-1056/23/11/118903
10.1103/PhysRevE.77.016107
10.1088/1742-5468/2005/09/P09008
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7U5
8FD
H8D
L7M
DOI 10.1088/1674-1056/25/6/068901
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate A local fuzzy method based on “p-strong” community for detecting communities in networks
EISSN 2058-3834
1741-4199
EndPage 595
ExternalDocumentID 10_1088_1674_1056_25_6_068901
668973529
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7U5
8FD
AEINN
H8D
L7M
ID FETCH-LOGICAL-c261t-3f30921333af61d36d3553bd844e58a64330b46ba2539e2647f8657c4f9be60c3
ISSN 1674-1056
IngestDate Fri Sep 05 00:39:08 EDT 2025
Tue Jul 01 02:55:16 EDT 2025
Wed Feb 14 10:18:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-3f30921333af61d36d3553bd844e58a64330b46ba2539e2647f8657c4f9be60c3
Notes networks;local fuzzy method;overlapping communities;fuzzy coefficients
In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the method,a refined agglomeration rule is designed for agglomerating nodes into local communities,and the overlapping nodes are detected based on the idea of making each community strong.We propose a contribution coefficient bvcito measure the contribution of an overlapping node to each of its belonging communities,and the fuzzy coefficients of the overlapping node can be obtained by normalizing the bvci to all its belonging communities.The running time of our method is analyzed and varies linearly with network size.We investigate our method on the computergenerated networks and real networks.The testing results indicate that the accuracy of our method in detecting disjoint communities is higher than those of the existing local methods and our method is efficient for detecting the overlapping nodes with fuzzy coefficients.Furthermore,the local optimizing scheme used in our method allows us to partly solve the resolution problem of the global modularity.
Yi Shen,Gang Ren,Yang Liu,Jia-Li Xu
11-5639/O4
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1825543481
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1825543481
crossref_primary_10_1088_1674_1056_25_6_068901
chongqing_primary_668973529
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2016
References 22
25
27
28
29
Gan L Y N (7) 2015; 24
Bagrow J P (10) 2008; 2008
Sun H L (24) 2015; 24
Lancichinetti A (1) 2009; 11
30
11
12
13
Danon L (6) 2005; 2005
15
16
Chen J R (8) 2014; 23
17
18
19
Gregory S (14) 2011; 2011
Chang Z C (26) 2015; 64
2
3
4
Liang Z W (23) 2014; 23
5
9
20
21
References_xml – ident: 12
  doi: 10.1038/nature03607
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 24
  publication-title: Chin. Phys.
– ident: 22
  doi: 10.1103/PhysRevE.78.046110
– volume: 64
  start-page: 0218901
  issn: 0372-736X
  year: 2015
  ident: 26
  publication-title: Acta Phys. Sin.
  doi: 10.7498/aps.64.218901
– ident: 17
  doi: 10.1103/PhysRevE.83.066114
– volume: 2008
  issn: 1742-5468
  year: 2008
  ident: 10
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2008/05/P05001
– ident: 20
  doi: 10.1103/PhysRevE.80.016118
– ident: 21
  doi: 10.1073/pnas.0605965104
– ident: 5
  doi: 10.1016/j.physrep.2009.11.002
– ident: 25
  doi: 10.1016/j.physa.2013.08.063
– ident: 11
  doi: 10.1073/pnas.0400054101
– ident: 30
  doi: 10.1103/PhysRevE.70.025101
– volume: 11
  issn: 1367-2630
  year: 2009
  ident: 1
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/3/033015
– ident: 13
  doi: 10.1103/PhysRevE.72.046108
– volume: 23
  issn: 1674-1056
  year: 2014
  ident: 23
  publication-title: Chin. Phys.
– ident: 28
  doi: 10.1086/jar.33.4.3629752
– ident: 4
  doi: 10.1103/PhysRevE.69.026113
– ident: 16
  doi: 10.1016/j.physa.2013.08.028
– volume: 2011
  issn: 1742-5468
  year: 2011
  ident: 14
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2011/02/P02017
– volume: 24
  issn: 1674-1056
  year: 2015
  ident: 7
  publication-title: Chin. Phys.
– ident: 18
  doi: 10.1016/j.ins.2010.11.022
– ident: 3
  doi: 10.1038/nature03288
– ident: 29
– ident: 9
  doi: 10.1103/PhysRevE.72.026132
– ident: 2
  doi: 10.1016/j.socnet.2008.03.001
– ident: 19
  doi: 10.1016/j.physa.2014.10.009
– ident: 15
  doi: 10.1016/j.physa.2006.07.023
– volume: 23
  start-page: 0118903
  issn: 1674-1056
  year: 2014
  ident: 8
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/23/11/118903
– ident: 27
  doi: 10.1103/PhysRevE.77.016107
– volume: 2005
  issn: 1742-5468
  year: 2005
  ident: 6
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2005/09/P09008
SSID ssj0061023
ssib054405859
ssib000804704
Score 2.0462153
Snippet In this paper,we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks.In the...
In this paper, we propose a local fuzzy method based on the idea of "p-strong" community to detect the disjoint and overlapping communities in networks. In the...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 589
SubjectTerms Agglomeration
Coefficients
Communities
Fuzzy
Modularity
Networks
Optimization
Test procedures
检测网络
模糊方法
模糊系数
社区
线性变化
网络规模
计算机网络
运行时间
Title A local fuzzy method based on “p-strong” community for detecting communities in networks
URI http://lib.cqvip.com/qk/85823A/201606/668973529.html
https://www.proquest.com/docview/1825543481
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BERIXxFOEAlokbpEbx_v0MSqPUvGoRCsFCcny2uvii1NwciCn_hD4c_0lzOx6HQcQolyiaBJPpJ0v855ZQp5xpVhi4I9UAH4inqs8MmXMMJFvKlVW4KNiHvLtO3lwwg_nYj6omOJ0ydLsFes_zpX8j1SBBnLFKdlLSLZnCgR4D_KFV5AwvP6TjGdjZ4rG1Wq9_tZdBj1Gu1RiDSD0MeyfRS0mvE8D4Tk2kuNYSNetWVqsJHTTt45euzatceN7xNuhB4sXbtvWdimRdnNr84duzuNj3RdxPOFV3llH7PupV-47A9LcUQ7rPHpTD3MQU7nplerUplQcFLpfER70qh9o7vAzVJJSp_7h39Q3qDzMJARuOK2Cqy9cial_antp9i_GrG8xdMV1rTNkliGzLBGZzDybq-RaopQr679-fxQst8Q1Fhigh98PE19aT3raJBETOfFscB_HZxDfF5DQtl-zbdadr3J8i9zsggw684i5Ta7Y5g65fuQldpd8mlGHG-pwQz1uqMMNXTT04vx7QMzF-Q_aY4UCVmiPFTrACq0bGrByj5y8fHG8fxB1t2xEBUTPy4hVLE6TKWMsr-S0ZLIEF5SZUnNuhc7BY2Wx4dLkiWCpBf9ZVVoKVfAqNVbGBbtPdppFYx8Qmko9ZYmFEDa33MbKlEYIY4xIOdMFMyOy259Xdua3qWQSjlJBGJCOyF44wf7Dv0pxRJ6Gc85AKWKlK2_sYtVmEDQLnJnW04eXZbpLbmwQ_ojsLL-u7GPwO5fmiQPLT7LYeak
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+local+fuzzy+method+based+on+%E2%80%9Cp-strong%E2%80%9D+community+for+detecting+communities+in+networks&rft.jtitle=Chinese+physics+B&rft.au=Shen%2C+Yi&rft.au=Ren%2C+Gang&rft.au=Liu%2C+Yang&rft.au=Xu%2C+Jia-Li&rft.date=2016-06-01&rft.issn=1674-1056&rft.volume=25&rft.issue=6&rft.spage=68901&rft_id=info:doi/10.1088%2F1674-1056%2F25%2F6%2F068901&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1674_1056_25_6_068901
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg