Fault Location in Radial Distribution Network Based on Fault Current Profile and the Artificial Neural Network

Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the dis...

Full description

Saved in:
Bibliographic Details
Published inThe scientific bulletin of Electrical Engineering Faculty Vol. 20; no. 1; pp. 14 - 21
Main Authors Dashtdar, Majid, Dashtdar, Masoud
Format Journal Article
LanguageEnglish
Published Targoviste Sciendo 01.04.2020
De Gruyter Poland
Subjects
Online AccessGet full text
ISSN2286-2455
1843-6188
2286-2455
DOI10.2478/sbeef-2020-0103

Cover

Loading…
Abstract Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the distribution network. Rapid and accurate determination of fault location, repair and recovery, it has not prevented the distribution of energy. This will satisfy consumers and prevent the losses of electricity companies. In this paper, the artificial neural network and fault current profiles are used to determine the distance of the fault, determine the type of fault and detect the short circuit. This method provides the information needed to locate the fault by sampling the current before and after the fault occurs from the SCADA system. The effect of connectivity local resistance changes and the effect of load changes on fault location were evaluated. The results show that this method is more accurate than the voltage droop profile variation method in determining the fault distance and short circuit breakdown. If only the net fault current changes profile is used, the effect of the load changes in determining the short-circuit breakdown is much less.
AbstractList Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the distribution network. Rapid and accurate determination of fault location, repair and recovery, it has not prevented the distribution of energy. This will satisfy consumers and prevent the losses of electricity companies. In this paper, the artificial neural network and fault current profiles are used to determine the distance of the fault, determine the type of fault and detect the short circuit. This method provides the information needed to locate the fault by sampling the current before and after the fault occurs from the SCADA system. The effect of connectivity local resistance changes and the effect of load changes on fault location were evaluated. The results show that this method is more accurate than the voltage droop profile variation method in determining the fault distance and short circuit breakdown. If only the net fault current changes profile is used, the effect of the load changes in determining the short-circuit breakdown is much less.
Author Dashtdar, Masoud
Dashtdar, Majid
Author_xml – sequence: 1
  givenname: Majid
  surname: Dashtdar
  fullname: Dashtdar, Majid
  organization: Electrical Engineering Department, Bushehr Branch, Islamic Azad University, Bushehr, Iran
– sequence: 2
  givenname: Masoud
  surname: Dashtdar
  fullname: Dashtdar, Masoud
  email: Dashtdar.masoud@gmail.com
  organization: Electrical Engineering Department, Bushehr Branch, Islamic Azad University, Bushehr, Iran
BookMark eNp9kN9LwzAQx4NMcM49-xrwuS65tmkLvszpVBhT1PeSNIlm1nYmKWP_vf0hKII-3XHc53vH5xiNqrpSCJ1Scg5Rks6cUEoHQIAEhJLwAI0BUhZAFMejH_0Rmjq3IYQA0JBBNkbVkjelx6u64N7UFTYVfuTS8BJfGeetEU0_Xiu_q-0bvuROSdwOBmzRWKsqjx9srU2pMK8k9q8Kz6032hRdzFo1ti99wAk61Lx0avpVJ-hpef28uA1W9zd3i_kqKIDRKGAiY0IUkHKI00LQiBHKWKqiNNRMRkTwTDMVS8ikDjOd6YQJDjoWPJFchhN0NqRubf3RKOfzTd3Yqj2YhzROARISQbsVD1uFrZ2zSueF8b0Fb7kpc0ryzm3eu807t3nntuVmv7itNe_c7v8hLgZix0uvrFQvttm3zfdbf5BAKI3CTyoyk6Y
CitedBy_id crossref_primary_10_1007_s00500_022_07203_8
crossref_primary_10_1109_ACCESS_2024_3355484
Cites_doi 10.1016/j.epsr.2013.10.007
10.1016/j.epsr.2014.07.026
10.3103/S0146411620010022
10.1109/IEEESTD.2005.96207
10.1016/j.ijepes.2014.06.052
10.1109/TPWRD.2006.874581
10.1109/TPWRD.2012.2191422
10.1109/TPWRD.2010.2061873
10.1515/sbeef-2019-0013
10.1049/iet-gtd.2010.0446
10.1515/sbeef-2019-0019
10.1049/iet-gtd.2013.0633
10.1515/sbeef-2019-0017
10.1109/TPWRD.2011.2170773
10.1016/j.ijepes.2013.09.011
10.1109/TPWRD.2010.2050218
10.1109/ICEEE2.2018.8391345
10.1007/s00202-020-00974-z
10.1016/j.ijepes.2010.06.020
10.1049/cp.2013.0697
10.11648/j.ajece.20190301.14
10.1515/sbeef-2019-0016
ContentType Journal Article
Copyright 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.2478/sbeef-2020-0103
DatabaseName CrossRef
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central Database Suite (ProQuest)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2286-2455
EndPage 21
ExternalDocumentID 10_2478_sbeef_2020_0103
10_2478_sbeef_2020_010320114
GroupedDBID 9WM
AATOW
ABFKT
ADBLJ
AHGSO
ALMA_UNASSIGNED_HOLDINGS
EBS
QD8
SLJYH
AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2614-6b96bbc28a258cb14601668e483f6d40ba9f6e5d29df39f9f76ba2f5ba7dad3
IEDL.DBID BENPR
ISSN 2286-2455
1843-6188
IngestDate Mon Jun 30 13:05:37 EDT 2025
Thu Jul 03 08:21:13 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Thu Jul 10 10:30:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2614-6b96bbc28a258cb14601668e483f6d40ba9f6e5d29df39f9f76ba2f5ba7dad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3158227042?pq-origsite=%requestingapplication%
PQID 3158227042
PQPubID 6770845
PageCount 8
ParticipantIDs proquest_journals_3158227042
crossref_citationtrail_10_2478_sbeef_2020_0103
crossref_primary_10_2478_sbeef_2020_0103
walterdegruyter_journals_10_2478_sbeef_2020_010320114
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Targoviste
PublicationPlace_xml – name: Targoviste
PublicationTitle The scientific bulletin of Electrical Engineering Faculty
PublicationYear 2020
Publisher Sciendo
De Gruyter Poland
Publisher_xml – name: Sciendo
– name: De Gruyter Poland
References 2025061414021729222_j_sbeef-2020-0103_ref_017
2025061414021729222_j_sbeef-2020-0103_ref_018
2025061414021729222_j_sbeef-2020-0103_ref_019
2025061414021729222_j_sbeef-2020-0103_ref_013
2025061414021729222_j_sbeef-2020-0103_ref_014
2025061414021729222_j_sbeef-2020-0103_ref_015
2025061414021729222_j_sbeef-2020-0103_ref_016
2025061414021729222_j_sbeef-2020-0103_ref_010
2025061414021729222_j_sbeef-2020-0103_ref_011
2025061414021729222_j_sbeef-2020-0103_ref_012
2025061414021729222_j_sbeef-2020-0103_ref_006
2025061414021729222_j_sbeef-2020-0103_ref_007
2025061414021729222_j_sbeef-2020-0103_ref_008
2025061414021729222_j_sbeef-2020-0103_ref_009
2025061414021729222_j_sbeef-2020-0103_ref_002
2025061414021729222_j_sbeef-2020-0103_ref_024
2025061414021729222_j_sbeef-2020-0103_ref_003
2025061414021729222_j_sbeef-2020-0103_ref_025
2025061414021729222_j_sbeef-2020-0103_ref_004
2025061414021729222_j_sbeef-2020-0103_ref_026
2025061414021729222_j_sbeef-2020-0103_ref_005
2025061414021729222_j_sbeef-2020-0103_ref_020
2025061414021729222_j_sbeef-2020-0103_ref_021
2025061414021729222_j_sbeef-2020-0103_ref_022
2025061414021729222_j_sbeef-2020-0103_ref_001
2025061414021729222_j_sbeef-2020-0103_ref_023
References_xml – ident: 2025061414021729222_j_sbeef-2020-0103_ref_009
  doi: 10.1016/j.epsr.2013.10.007
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_008
  doi: 10.1016/j.epsr.2014.07.026
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_016
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_026
  doi: 10.3103/S0146411620010022
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_002
  doi: 10.1109/IEEESTD.2005.96207
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_014
  doi: 10.1016/j.ijepes.2014.06.052
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_004
  doi: 10.1109/TPWRD.2006.874581
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_010
  doi: 10.1109/TPWRD.2012.2191422
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_013
  doi: 10.1109/TPWRD.2010.2061873
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_022
  doi: 10.1515/sbeef-2019-0013
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_001
  doi: 10.1049/iet-gtd.2010.0446
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_020
  doi: 10.1515/sbeef-2019-0019
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_007
  doi: 10.1049/iet-gtd.2013.0633
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_021
  doi: 10.1515/sbeef-2019-0017
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_011
  doi: 10.1109/TPWRD.2011.2170773
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_006
  doi: 10.1016/j.ijepes.2013.09.011
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_015
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_005
  doi: 10.1109/TPWRD.2010.2050218
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_017
  doi: 10.1109/ICEEE2.2018.8391345
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_019
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_025
  doi: 10.1007/s00202-020-00974-z
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_003
  doi: 10.1016/j.ijepes.2010.06.020
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_012
  doi: 10.1049/cp.2013.0697
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_023
  doi: 10.11648/j.ajece.20190301.14
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_018
  doi: 10.11648/j.ajece.20190301.14
– ident: 2025061414021729222_j_sbeef-2020-0103_ref_024
  doi: 10.1515/sbeef-2019-0016
SSID ssj0002213629
ssib046624009
Score 2.1019123
Snippet Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14
SubjectTerms Artificial neural network
Electrical distribution network
Fault location
Net fault current profile
Neural networks
Title Fault Location in Radial Distribution Network Based on Fault Current Profile and the Artificial Neural Network
URI https://www.degruyter.com/doi/10.2478/sbeef-2020-0103
https://www.proquest.com/docview/3158227042
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh48eIltNptNcpJWrUW0Fh_gLexThJJW2yL-e2ezm1YEPQVCdhZmJjOzs8P3IXRCZGQYScIg5IkIaER1wKkhAY9MJKGAULSkb7sbsP4zvXmJX3zDberHKquYWAZqNZa2R96KwhhyWQI-dj55DyxrlL1d9RQaq6gOITgFD693rwbDh8qjKGN2RjJbdF0ICSFi25rY8pzAuSlNHd4PoUnamgqtDfgNsbNaFY1WlaqW9efGZ3mTrfTrx_xrVt2clgmpt4k2fCWJO870W2hFF9to_Qe-4A4qenw-muHbsevL4bcCP1gsghG-tHi5nuoKD9woOO5CRlMYXrhlHroJDx2tN-aFwlAuljs63AlsoT3KRylgFz32rp4u-oEnWAgkHJxowETGhJAk5SROpYCgCQUgSzVNwYCKtgXPDNOxIpkyUWYykzDBiYkFTxRX0R6qFeNC7yMcU8XbJjJhqDgVIciDsMBhC5lIJpOsgc4qTebSY49bCoxRDmcQq_q8VH1uVZ9b1TfQ6WLBxMFu_P1pszJN7v-_ab70lgaKf5lr-dUfEm1NRA_-F3uI1pyf2BmeJqrNPub6CMqTmThG9U7_-vH-2PviN9CV5Iw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dByQNCHujyKD63USwqxHSc5oKoUVktZVohSiVMjPyukVRbYXSH-Ez-ScRyzCIneOEWKnHE0nng-25PvA_hMNXOC5mmSylwlnHGbSO5oIpljGgGE4Y182_FQ9P_wX-fZ-QLcxX9hfFllnBObidqMtd8j32Zphrksxxj7fnmVeNUof7oaJTRCWBzZ2xtcsk12D_dxfL9Q2js4-9lPWlWBRONqgSdClUIpTQtJs0IrnCkQ9YjC8gLf2vAdJUsnbGZoaRwrXelyoSR1mZK5kYah1VewyBkChQ4s7h0MT05j_HIhfEVm-bDHQ2mK-cEjcK-qgqu0ogjsQpTnxfZEWeswSqmvDIuiXTExztHu8k1zbm7sv-vZ7TSe0zbpr7cCyy1uJT9CoK3Cgq3fwtIjNsN3UPfkbDQlg3HYBSQXNTn1zAcjsu_ZeVthLTIMhedkD_OnIXgjPNYSRZGTICJOZG0IgtOmx8ByQTyRSHNpDLyH3y_g-A_Qqce1_Qgk40buOObS1EiuUrSHk5DELnSuhc7LLnyLnqx0y3TuBTdGFa54vOurxvWVd33lXd-Frw8PXAaSj-ebbsShqdqvfVLNY7ML2ZPhmrd6xqJHYHzt_2a34HX_7HhQDQ6HR-vwJsSMrx7agM70emY3ERhN1ac2Hgn8fdkP4B5ECR-X
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kBdHD4hPXZw4evNS1adq0R1_r-lrFB3greYqwdEV3Ef-9k6TrC714KpRMAjPJ5Etm8g3AFlWJzSiPo1hwGbGEmUgwSyOR2EQhgNDMl2-76GXdO3Z6n95PQHv8Fsb7fe2jle0nbX2qMuN5-0UaY9Gk1KVROXbPSZ7i0aEBk3vd45vLj2sVSmN0yUUg8flN8vv-8wkqm68-PK3Nw_PobTgOh_pdpjMLzRoekr1gzzmYMNU8zHwhDVyAqiNG_SE5H4TLNvJYkWtHMNAnh44Et65fRXohv5vs4zalCf4IYjUfE7kKtbqJqDRBDOhHDGQSxPF1-I_vYBFuOke3B92orpoQKTwNsSiTRSalormgaa4kekJEdVluWI5W0WxXisJmJtW00DYpbGF5JgW1qRRcC50sQaMaVGYZSMq02LWJjWMtmIyxP1zrAodQXGWKFy3YGWuyVDWhuKtr0S_xYOFUX3rVl071pVN9C7Y_BJ4Cl8bfTdfGpinrRfVSJnGKcIajm2lB-sNcn63-6NEBHbbyT7lNmLo67JTnJ72zVZgOc8kl76xBY_g8MuuIS4Zyo56L77if4DU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Location+in+Radial+Distribution+Network+Based+on+Fault+Current+Profile+and+the+Artificial+Neural+Network&rft.jtitle=The+scientific+bulletin+of+Electrical+Engineering+Faculty&rft.au=Dashtdar%2C+Majid&rft.au=Dashtdar%2C+Masoud&rft.date=2020-04-01&rft.pub=De+Gruyter+Poland&rft.issn=1843-6188&rft.eissn=2286-2455&rft.volume=20&rft.issue=1&rft.spage=14&rft.epage=21&rft_id=info:doi/10.2478%2Fsbeef-2020-0103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2286-2455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2286-2455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2286-2455&client=summon