Fault Location in Radial Distribution Network Based on Fault Current Profile and the Artificial Neural Network
Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the dis...
Saved in:
Published in | The scientific bulletin of Electrical Engineering Faculty Vol. 20; no. 1; pp. 14 - 21 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Targoviste
Sciendo
01.04.2020
De Gruyter Poland |
Subjects | |
Online Access | Get full text |
ISSN | 2286-2455 1843-6188 2286-2455 |
DOI | 10.2478/sbeef-2020-0103 |
Cover
Loading…
Abstract | Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the distribution network. Rapid and accurate determination of fault location, repair and recovery, it has not prevented the distribution of energy. This will satisfy consumers and prevent the losses of electricity companies. In this paper, the artificial neural network and fault current profiles are used to determine the distance of the fault, determine the type of fault and detect the short circuit. This method provides the information needed to locate the fault by sampling the current before and after the fault occurs from the SCADA system. The effect of connectivity local resistance changes and the effect of load changes on fault location were evaluated. The results show that this method is more accurate than the voltage droop profile variation method in determining the fault distance and short circuit breakdown. If only the net fault current changes profile is used, the effect of the load changes in determining the short-circuit breakdown is much less. |
---|---|
AbstractList | Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of equipment. In principle, short circuit fault causes the existing protective equipment to operate and to no electricity the various parts of the distribution network. Rapid and accurate determination of fault location, repair and recovery, it has not prevented the distribution of energy. This will satisfy consumers and prevent the losses of electricity companies. In this paper, the artificial neural network and fault current profiles are used to determine the distance of the fault, determine the type of fault and detect the short circuit. This method provides the information needed to locate the fault by sampling the current before and after the fault occurs from the SCADA system. The effect of connectivity local resistance changes and the effect of load changes on fault location were evaluated. The results show that this method is more accurate than the voltage droop profile variation method in determining the fault distance and short circuit breakdown. If only the net fault current changes profile is used, the effect of the load changes in determining the short-circuit breakdown is much less. |
Author | Dashtdar, Masoud Dashtdar, Majid |
Author_xml | – sequence: 1 givenname: Majid surname: Dashtdar fullname: Dashtdar, Majid organization: Electrical Engineering Department, Bushehr Branch, Islamic Azad University, Bushehr, Iran – sequence: 2 givenname: Masoud surname: Dashtdar fullname: Dashtdar, Masoud email: Dashtdar.masoud@gmail.com organization: Electrical Engineering Department, Bushehr Branch, Islamic Azad University, Bushehr, Iran |
BookMark | eNp9kN9LwzAQx4NMcM49-xrwuS65tmkLvszpVBhT1PeSNIlm1nYmKWP_vf0hKII-3XHc53vH5xiNqrpSCJ1Scg5Rks6cUEoHQIAEhJLwAI0BUhZAFMejH_0Rmjq3IYQA0JBBNkbVkjelx6u64N7UFTYVfuTS8BJfGeetEU0_Xiu_q-0bvuROSdwOBmzRWKsqjx9srU2pMK8k9q8Kz6032hRdzFo1ti99wAk61Lx0avpVJ-hpef28uA1W9zd3i_kqKIDRKGAiY0IUkHKI00LQiBHKWKqiNNRMRkTwTDMVS8ikDjOd6YQJDjoWPJFchhN0NqRubf3RKOfzTd3Yqj2YhzROARISQbsVD1uFrZ2zSueF8b0Fb7kpc0ryzm3eu807t3nntuVmv7itNe_c7v8hLgZix0uvrFQvttm3zfdbf5BAKI3CTyoyk6Y |
CitedBy_id | crossref_primary_10_1007_s00500_022_07203_8 crossref_primary_10_1109_ACCESS_2024_3355484 |
Cites_doi | 10.1016/j.epsr.2013.10.007 10.1016/j.epsr.2014.07.026 10.3103/S0146411620010022 10.1109/IEEESTD.2005.96207 10.1016/j.ijepes.2014.06.052 10.1109/TPWRD.2006.874581 10.1109/TPWRD.2012.2191422 10.1109/TPWRD.2010.2061873 10.1515/sbeef-2019-0013 10.1049/iet-gtd.2010.0446 10.1515/sbeef-2019-0019 10.1049/iet-gtd.2013.0633 10.1515/sbeef-2019-0017 10.1109/TPWRD.2011.2170773 10.1016/j.ijepes.2013.09.011 10.1109/TPWRD.2010.2050218 10.1109/ICEEE2.2018.8391345 10.1007/s00202-020-00974-z 10.1016/j.ijepes.2010.06.020 10.1049/cp.2013.0697 10.11648/j.ajece.20190301.14 10.1515/sbeef-2019-0016 |
ContentType | Journal Article |
Copyright | 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
DOI | 10.2478/sbeef-2020-0103 |
DatabaseName | CrossRef ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central Database Suite (ProQuest) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2286-2455 |
EndPage | 21 |
ExternalDocumentID | 10_2478_sbeef_2020_0103 10_2478_sbeef_2020_010320114 |
GroupedDBID | 9WM AATOW ABFKT ADBLJ AHGSO ALMA_UNASSIGNED_HOLDINGS EBS QD8 SLJYH AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c2614-6b96bbc28a258cb14601668e483f6d40ba9f6e5d29df39f9f76ba2f5ba7dad3 |
IEDL.DBID | BENPR |
ISSN | 2286-2455 1843-6188 |
IngestDate | Mon Jun 30 13:05:37 EDT 2025 Thu Jul 03 08:21:13 EDT 2025 Thu Apr 24 23:08:52 EDT 2025 Thu Jul 10 10:30:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2614-6b96bbc28a258cb14601668e483f6d40ba9f6e5d29df39f9f76ba2f5ba7dad3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3158227042?pq-origsite=%requestingapplication% |
PQID | 3158227042 |
PQPubID | 6770845 |
PageCount | 8 |
ParticipantIDs | proquest_journals_3158227042 crossref_citationtrail_10_2478_sbeef_2020_0103 crossref_primary_10_2478_sbeef_2020_0103 walterdegruyter_journals_10_2478_sbeef_2020_010320114 |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Targoviste |
PublicationPlace_xml | – name: Targoviste |
PublicationTitle | The scientific bulletin of Electrical Engineering Faculty |
PublicationYear | 2020 |
Publisher | Sciendo De Gruyter Poland |
Publisher_xml | – name: Sciendo – name: De Gruyter Poland |
References | 2025061414021729222_j_sbeef-2020-0103_ref_017 2025061414021729222_j_sbeef-2020-0103_ref_018 2025061414021729222_j_sbeef-2020-0103_ref_019 2025061414021729222_j_sbeef-2020-0103_ref_013 2025061414021729222_j_sbeef-2020-0103_ref_014 2025061414021729222_j_sbeef-2020-0103_ref_015 2025061414021729222_j_sbeef-2020-0103_ref_016 2025061414021729222_j_sbeef-2020-0103_ref_010 2025061414021729222_j_sbeef-2020-0103_ref_011 2025061414021729222_j_sbeef-2020-0103_ref_012 2025061414021729222_j_sbeef-2020-0103_ref_006 2025061414021729222_j_sbeef-2020-0103_ref_007 2025061414021729222_j_sbeef-2020-0103_ref_008 2025061414021729222_j_sbeef-2020-0103_ref_009 2025061414021729222_j_sbeef-2020-0103_ref_002 2025061414021729222_j_sbeef-2020-0103_ref_024 2025061414021729222_j_sbeef-2020-0103_ref_003 2025061414021729222_j_sbeef-2020-0103_ref_025 2025061414021729222_j_sbeef-2020-0103_ref_004 2025061414021729222_j_sbeef-2020-0103_ref_026 2025061414021729222_j_sbeef-2020-0103_ref_005 2025061414021729222_j_sbeef-2020-0103_ref_020 2025061414021729222_j_sbeef-2020-0103_ref_021 2025061414021729222_j_sbeef-2020-0103_ref_022 2025061414021729222_j_sbeef-2020-0103_ref_001 2025061414021729222_j_sbeef-2020-0103_ref_023 |
References_xml | – ident: 2025061414021729222_j_sbeef-2020-0103_ref_009 doi: 10.1016/j.epsr.2013.10.007 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_008 doi: 10.1016/j.epsr.2014.07.026 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_016 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_026 doi: 10.3103/S0146411620010022 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_002 doi: 10.1109/IEEESTD.2005.96207 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_014 doi: 10.1016/j.ijepes.2014.06.052 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_004 doi: 10.1109/TPWRD.2006.874581 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_010 doi: 10.1109/TPWRD.2012.2191422 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_013 doi: 10.1109/TPWRD.2010.2061873 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_022 doi: 10.1515/sbeef-2019-0013 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_001 doi: 10.1049/iet-gtd.2010.0446 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_020 doi: 10.1515/sbeef-2019-0019 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_007 doi: 10.1049/iet-gtd.2013.0633 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_021 doi: 10.1515/sbeef-2019-0017 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_011 doi: 10.1109/TPWRD.2011.2170773 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_006 doi: 10.1016/j.ijepes.2013.09.011 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_015 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_005 doi: 10.1109/TPWRD.2010.2050218 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_017 doi: 10.1109/ICEEE2.2018.8391345 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_019 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_025 doi: 10.1007/s00202-020-00974-z – ident: 2025061414021729222_j_sbeef-2020-0103_ref_003 doi: 10.1016/j.ijepes.2010.06.020 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_012 doi: 10.1049/cp.2013.0697 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_023 doi: 10.11648/j.ajece.20190301.14 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_018 doi: 10.11648/j.ajece.20190301.14 – ident: 2025061414021729222_j_sbeef-2020-0103_ref_024 doi: 10.1515/sbeef-2019-0016 |
SSID | ssj0002213629 ssib046624009 |
Score | 2.1019123 |
Snippet | Electricity distribution systems are subject to a variety of faults such as permanent and transient short circuits due to the extent and multiplicity of... |
SourceID | proquest crossref walterdegruyter |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14 |
SubjectTerms | Artificial neural network Electrical distribution network Fault location Net fault current profile Neural networks |
Title | Fault Location in Radial Distribution Network Based on Fault Current Profile and the Artificial Neural Network |
URI | https://www.degruyter.com/doi/10.2478/sbeef-2020-0103 https://www.proquest.com/docview/3158227042 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60vehBfGK1yh48eIltNptNcpJWrUW0Fh_gLexThJJW2yL-e2ezm1YEPQVCdhZmJjOzs8P3IXRCZGQYScIg5IkIaER1wKkhAY9MJKGAULSkb7sbsP4zvXmJX3zDberHKquYWAZqNZa2R96KwhhyWQI-dj55DyxrlL1d9RQaq6gOITgFD693rwbDh8qjKGN2RjJbdF0ICSFi25rY8pzAuSlNHd4PoUnamgqtDfgNsbNaFY1WlaqW9efGZ3mTrfTrx_xrVt2clgmpt4k2fCWJO870W2hFF9to_Qe-4A4qenw-muHbsevL4bcCP1gsghG-tHi5nuoKD9woOO5CRlMYXrhlHroJDx2tN-aFwlAuljs63AlsoT3KRylgFz32rp4u-oEnWAgkHJxowETGhJAk5SROpYCgCQUgSzVNwYCKtgXPDNOxIpkyUWYykzDBiYkFTxRX0R6qFeNC7yMcU8XbJjJhqDgVIciDsMBhC5lIJpOsgc4qTebSY49bCoxRDmcQq_q8VH1uVZ9b1TfQ6WLBxMFu_P1pszJN7v-_ab70lgaKf5lr-dUfEm1NRA_-F3uI1pyf2BmeJqrNPub6CMqTmThG9U7_-vH-2PviN9CV5Iw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5dByQNCHujyKD63USwqxHSc5oKoUVktZVohSiVMjPyukVRbYXSH-Ez-ScRyzCIneOEWKnHE0nng-25PvA_hMNXOC5mmSylwlnHGbSO5oIpljGgGE4Y182_FQ9P_wX-fZ-QLcxX9hfFllnBObidqMtd8j32Zphrksxxj7fnmVeNUof7oaJTRCWBzZ2xtcsk12D_dxfL9Q2js4-9lPWlWBRONqgSdClUIpTQtJs0IrnCkQ9YjC8gLf2vAdJUsnbGZoaRwrXelyoSR1mZK5kYah1VewyBkChQ4s7h0MT05j_HIhfEVm-bDHQ2mK-cEjcK-qgqu0ogjsQpTnxfZEWeswSqmvDIuiXTExztHu8k1zbm7sv-vZ7TSe0zbpr7cCyy1uJT9CoK3Cgq3fwtIjNsN3UPfkbDQlg3HYBSQXNTn1zAcjsu_ZeVthLTIMhedkD_OnIXgjPNYSRZGTICJOZG0IgtOmx8ByQTyRSHNpDLyH3y_g-A_Qqce1_Qgk40buOObS1EiuUrSHk5DELnSuhc7LLnyLnqx0y3TuBTdGFa54vOurxvWVd33lXd-Frw8PXAaSj-ebbsShqdqvfVLNY7ML2ZPhmrd6xqJHYHzt_2a34HX_7HhQDQ6HR-vwJsSMrx7agM70emY3ERhN1ac2Hgn8fdkP4B5ECR-X |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB5kBdHD4hPXZw4evNS1adq0R1_r-lrFB3greYqwdEV3Ef-9k6TrC714KpRMAjPJ5Etm8g3AFlWJzSiPo1hwGbGEmUgwSyOR2EQhgNDMl2-76GXdO3Z6n95PQHv8Fsb7fe2jle0nbX2qMuN5-0UaY9Gk1KVROXbPSZ7i0aEBk3vd45vLj2sVSmN0yUUg8flN8vv-8wkqm68-PK3Nw_PobTgOh_pdpjMLzRoekr1gzzmYMNU8zHwhDVyAqiNG_SE5H4TLNvJYkWtHMNAnh44Et65fRXohv5vs4zalCf4IYjUfE7kKtbqJqDRBDOhHDGQSxPF1-I_vYBFuOke3B92orpoQKTwNsSiTRSalormgaa4kekJEdVluWI5W0WxXisJmJtW00DYpbGF5JgW1qRRcC50sQaMaVGYZSMq02LWJjWMtmIyxP1zrAodQXGWKFy3YGWuyVDWhuKtr0S_xYOFUX3rVl071pVN9C7Y_BJ4Cl8bfTdfGpinrRfVSJnGKcIajm2lB-sNcn63-6NEBHbbyT7lNmLo67JTnJ72zVZgOc8kl76xBY_g8MuuIS4Zyo56L77if4DU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fault+Location+in+Radial+Distribution+Network+Based+on+Fault+Current+Profile+and+the+Artificial+Neural+Network&rft.jtitle=The+scientific+bulletin+of+Electrical+Engineering+Faculty&rft.au=Dashtdar%2C+Majid&rft.au=Dashtdar%2C+Masoud&rft.date=2020-04-01&rft.pub=De+Gruyter+Poland&rft.issn=1843-6188&rft.eissn=2286-2455&rft.volume=20&rft.issue=1&rft.spage=14&rft.epage=21&rft_id=info:doi/10.2478%2Fsbeef-2020-0103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2286-2455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2286-2455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2286-2455&client=summon |