Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment

The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobser...

Full description

Saved in:
Bibliographic Details
Published inAdvances in statistical climatology, meteorology and oceanography Vol. 8; no. 2; pp. 249 - 271
Main Authors Lashgari, Katarina, Moberg, Anders, Brattström, Gudrun
Format Journal Article
LanguageEnglish
Published Gottingen Copernicus GmbH 2022
Copernicus Publications
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations.
AbstractList The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations.
The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations.
The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations.
Author Moberg, Anders
Lashgari, Katarina
Brattström, Gudrun
Author_xml – sequence: 1
  givenname: Katarina
  surname: Lashgari
  fullname: Lashgari, Katarina
– sequence: 2
  givenname: Anders
  orcidid: 0000-0002-5177-9347
  surname: Moberg
  fullname: Moberg, Anders
– sequence: 3
  givenname: Gudrun
  surname: Brattström
  fullname: Brattström, Gudrun
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214600$$DView record from Swedish Publication Index
BookMark eNpVUstuFDEQHKEgEULuHC1xZcCv8Yxzi0KASBFwiLhabY8defGMJ_aYZG_8A9_Dz_AleHcjBKcutaqqu-163hzNcbZN85LgNx2R_C1kM8V2aCmXLcWUPmmOKRO8Zd3QH_2DnzWnOW8wxmSghEt53Py6_A6hwOrjjKJD2U8lwGpHlGxe4pxtRmtEJvipdpGLyfj5Np8hQC7YB6-DRXmt8rx6AwG5BJO9j-kbKrkSkYmz86lqY9oiB6ZWBDOEbfa5grGKUzFrSVVr7x73mOJoQ9jJf__4ib5AWhE9Q5_KZNN-iH1YKprsvL5onjoI2Z4-1pPm5v3lzcXH9vrzh6uL8-vWUEFoC4L2HadSk1H3khNwBLATA2hKtOiFpgOAxh2XHR7FMDKGQZJe9jAKQRw7aa4OtmOEjVrqbEhbFcGrfSOmW1WX9CZY5WAcGDgKGjgHhjVnWBpBue0J7oWtXq8PXvneLkX_5_bOfz3fu-Wi6v8IjCv91YG-pHhXbF7VJpZUXzCrehOTjEpJKwsfWCbFnJN1f20JVruEqH1C1KBqQtQuIewPfbu28Q
CitedBy_id crossref_primary_10_5194_ascmo_8_225_2022
Cites_doi 10.1016/0033-5894(76)90020-X
10.1175/BAMS-D-14-00233.1
10.1002/wcc.149
10.5194/cp-11-1673-2015
10.1038/ngeo2040
10.5194/ascmo-1-29-2015
10.1038/ngeo1797
10.1017/CBO9781107415324.022
10.1002/9780470316665
10.5194/cp-11-425-2015
10.1093/biomet/52.3-4.591
10.1175/JCLI-D-11-00103.1
10.1002/9781118619179
10.1007/s003820050202
10.5194/gmd-10-4005-2017
10.5194/cp-8-1339-2012
10.1007/978-3-319-16507-3
10.1017/CBO9781316018682
10.5194/cp-3-355-2007
10.1207/s15328007sem1303_7
10.1137/130907550
10.1007/978-0-387-36699-9_188
10.1038/nclimate1456
10.1007/s00382-018-4356-3
10.5194/gmd-4-33-2011
10.5194/cp-3-499-2007
10.5194/cp-6-445-2010
10.1177/0959683608098952
10.1088/1748-9326/10/10/104010
10.1007/BF02294623
10.1002/wcc.75
10.5194/cp-8-1355-2012
10.1007/s00382-003-0313-9
10.1007/s00382-012-1526-6
10.5194/ascmo-8-225-2022
ContentType Journal Article
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QH
7TG
7TN
7UA
ABUWG
AFKRA
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H96
HCIFZ
KL.
L.G
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
DOA
DOI 10.5194/ascmo-8-249-2022
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Aqualine
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 2364-3587
EndPage 271
ExternalDocumentID oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e
oai_DiVA_org_su_214600
10_5194_ascmo_8_249_2022
GroupedDBID 2XV
5VS
8FE
8FH
AAFWJ
AAYXX
ADBBV
AFKRA
AFPKN
AFRAH
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1K
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
LK5
M7R
M~E
OK1
PCBAR
PIMPY
PROAC
RKB
7QH
7TG
7TN
7UA
ABUWG
AZQEC
C1K
DWQXO
F1W
H96
KL.
L.G
PQEST
PQQKQ
PQUKI
PRINS
ABAVF
ADTPV
AOWAS
D8T
DG7
IPNFZ
RIG
ZZAVC
ID FETCH-LOGICAL-c2612-a6275429b1db7941af1a0f68ab21b676b28aab054950d68d330a91797ad661f3
IEDL.DBID DOA
ISSN 2364-3587
2364-3579
IngestDate Tue Oct 22 15:16:18 EDT 2024
Sat Aug 24 00:38:45 EDT 2024
Thu Oct 10 15:45:15 EDT 2024
Fri Aug 23 03:26:47 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2612-a6275429b1db7941af1a0f68ab21b676b28aab054950d68d330a91797ad661f3
ORCID 0000-0002-5177-9347
OpenAccessLink https://doaj.org/article/fad83af2aba44a30b4309c624e71076e
PQID 2753932992
PQPubID 2037689
PageCount 23
ParticipantIDs doaj_primary_oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e
swepub_primary_oai_DiVA_org_su_214600
proquest_journals_2753932992
crossref_primary_10_5194_ascmo_8_249_2022
PublicationCentury 2000
PublicationDate 2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationPlace Gottingen
PublicationPlace_xml – name: Gottingen
PublicationTitle Advances in statistical climatology, meteorology and oceanography
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref42
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref23
  doi: 10.1016/0033-5894(76)90020-X
– ident: ref30
  doi: 10.1175/BAMS-D-14-00233.1
– ident: ref39
  doi: 10.1002/wcc.149
– ident: ref32
  doi: 10.5194/cp-11-1673-2015
– ident: ref7
– ident: ref37
  doi: 10.1038/ngeo2040
– ident: ref33
  doi: 10.5194/ascmo-1-29-2015
– ident: ref31
  doi: 10.1038/ngeo1797
– ident: ref2
  doi: 10.1017/CBO9781107415324.022
– ident: ref15
  doi: 10.1002/9780470316665
– ident: ref29
  doi: 10.5194/cp-11-425-2015
– ident: ref38
  doi: 10.1093/biomet/52.3-4.591
– ident: ref25
  doi: 10.1175/JCLI-D-11-00103.1
– ident: ref3
  doi: 10.1002/9781118619179
– ident: ref42
  doi: 10.1007/s003820050202
– ident: ref9
– ident: ref21
  doi: 10.5194/gmd-10-4005-2017
– ident: ref40
  doi: 10.5194/cp-8-1339-2012
– ident: ref44
  doi: 10.1007/978-3-319-16507-3
– ident: ref11
– ident: ref16
  doi: 10.1017/CBO9781316018682
– ident: ref17
– ident: ref34
– ident: ref6
  doi: 10.5194/cp-3-355-2007
– ident: ref13
  doi: 10.1207/s15328007sem1303_7
– ident: ref43
  doi: 10.1137/130907550
– ident: ref22
  doi: 10.1007/978-0-387-36699-9_188
– ident: ref4
  doi: 10.1038/nclimate1456
– ident: ref8
  doi: 10.1007/s00382-018-4356-3
– ident: ref28
– ident: ref36
  doi: 10.5194/gmd-4-33-2011
– ident: ref5
  doi: 10.5194/cp-3-499-2007
– ident: ref35
  doi: 10.5194/cp-6-445-2010
– ident: ref20
  doi: 10.1177/0959683608098952
– ident: ref27
  doi: 10.1088/1748-9326/10/10/104010
– ident: ref41
  doi: 10.1007/BF02294623
– ident: ref26
  doi: 10.1002/wcc.75
– ident: ref19
  doi: 10.5194/cp-8-1355-2012
– ident: ref1
  doi: 10.1007/s00382-003-0313-9
– ident: ref18
  doi: 10.1007/s00382-012-1526-6
– ident: ref24
  doi: 10.5194/ascmo-8-225-2022
– ident: ref10
– ident: ref12
– ident: ref14
SSID ssj0001821499
Score 2.2183056
Snippet The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature...
The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature...
SourceID doaj
swepub
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
StartPage 249
SubjectTerms Climate
Climate change
Climate models
Datasets
Experiments
Factor analysis
Frameworks
General circulation models
matematisk statistik
Mathematical models
Mathematical Statistics
Modelling
Multivariate statistical analysis
Noise levels
Numerical experiments
Performance evaluation
Precipitation
Sensitivity analysis
Simulation
Statistical analysis
Statistical methods
Statistical models
Structural equation modeling
Temperature
Temperature data
Temperature variations
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-GC-BQpBc0BkDhYTWxvNu4FtWWrCqmrChXUm2XHdrVSu2k37YEb_4Hfw5_hlzDjeLfshVsSJXGkN7bfjJ33GHunRaybSkXuKiu5sq3mrlGSS--sx_k9tEln9mRWH39TX87H57ng1udtlasxMQ3UvmupRr4rkFcj19BafLq-4eQaRaur2ULjIdsSmCmUI7Z1MJ2dfr2vsjR4PZlIklA6l-OJHtYqkbioXdu3Vx3HSFEao0WIjbkpSfhv8s5_tUTT_HP0hD3OxBH2B6Sfsgdh8YwVJ8h5u2UqjcMHOLycIwFNZ8_Z7-layBu6CP38ipy6goflsC029HDbQZseCYDctaWi-R5YiCSS6S4D0N9GScgZG46rXVxAW-UvAPPoOCe-2y1_wODaAzYrnOCBh0GZllQ9INzk70i-O_QDPPz5-QtOMWxB7MHsblg2whvXfgMv2NnR9OzwmGezBt6SChm3JHeMk5urvMM-XtlY2RLjwDpRuXpSO9FY65Ag6nHp68ZLWVpMFfXEeqQIUb5ko0W3CK8YhKClUjTQVEERYpjRKIt5W-WQSzWqYB9XKJnrQZLDYCpDiJqEqGkMImoI0YIdEIzr-0hMO13olhcm900TrW-kjcI6q5SVpVOy1G0tVED6NalDwXZWQWByD-_NfTwW7P0QGButfJ5_30-t9HeGzNPLcvv_r3nNHtEXD-WdHTZCkMIbJDy37m2O6r8tDQTe
  priority: 102
  providerName: ProQuest
Title Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
URI https://www.proquest.com/docview/2753932992
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214600
https://doaj.org/article/fad83af2aba44a30b4309c624e71076e
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXBB_IqFUs0BkDhYTWJvNu6tLVtVSF1VqKDerHFso5XaDWzaQ299B56Hl-FJmLGzq90TF25JlMh2vnHmm7HzjRDvTBXrptRRuhKV1Nga6RqtpPIOPfn30Cad2bNZffpVf74cX26U-uI9YVkeOL-4_Yi-URgrdKg1qsJpVZi2rnQg3zipQ_r6FmYjmErZlaYi6m9SZblaSzWemLxGSYRF72PfXneSLEQbspKq2vJJSbp_m29uaogmv3PyRDweCCMc5o4-FQ_C4pkYnRHX7ZYpJQ4f4PhqTsQznT0Xv6drAW_oIvTza67QFTws83bY0MNNB216JABx1paT5QeAEFkc010F4L-MkoAzNRxXu7eAt8h_B4qf45x5bre8g1ytB3BQNqEDD1mRltU8IPwc-pHq7fCP7_Dn_hec01uH6gBmt3m5iG5c1xl4IS5OphfHp3Io0iBbVh-TyDLH5NRc6R3N7RJjiQXhj64qXT2pXdUgOiKGZlz4uvFKFUghopmgJ2oQ1Uuxs-gW4ZWAEIzSmj8wZdCMGEUyGileKx1xqEaPxMcVSvZHluKwFMIwojYhahtLiFpGdCSOGMb1fSyinS6QadnBtOy_TGskdldGYIeZ3VsarSLOawy18T4bxlYrn-bfDlMr_a3loulF8fp_9OWNeMTjysmfXbFDUIa3RIdu3J54eDSdnX_ZSzPgL5DUDeA
link.rule.ids 230,315,783,787,867,888,2109,4031,21400,27935,27936,27937,33756,43817,74630
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcAFlS-xpcAcAImD1cT2ZuNeUFu2WqC7qtCCerPsxK5Wajftpj30xn_g9_Bn-CXMON4te-GWREkc6Y3tN2PnPcbeahGKMleBu9xKrmyluSuV5LJ2tsb53VdRZ3Y8KUbf1ZfT_mkquLVpW-VyTIwDdd1UVCPfFcirkWtoLT5eXnFyjaLV1WShcZ9tklQVJl-bB8PJybe7KkspMAXQ0WGuUFz2B7pbq0TionZtW100HCNFaYwWIdbmpijhv847_9USjfPP0RZ7lIgj7HdIP2b3_PwJ642R8zaLWBqH93B4PkMCGs-est_DlZA3NAHa2QU5dfkaFt22WN_CdQNVfMQDcteKiuZ7YCGQSKY790B_G0UhZ2w4LHdxAW2VPwPMo8OM-G6zuIXOtQdsUjjBgxo6ZVpS9QB_lb4j-u7QD_Dw5-cvOMGwBbEHk5tu2QhvXPkNPGPTo-H0cMSTWQOvSIWMW5I7xsnN5bXDPp7bkNsM48A6kbtiUDhRWuuQIOp-VhdlLWVmMVXUA1sjRQjyOduYN3P_goH3WipFA03uFSGGGY2ymLflDrlUqXrswxIlc9lJchhMZQhRExE1pUFEDSHaYwcE4-o-EtOOF5rFmUl90wRbl9IGYZ1VysrMKZnpqhDKI_0aFL7HdpZBYFIPb81dPPbYuy4w1lr5NPuxH1tpbwyZp2fZ9v9f84Y9GE3Hx-b48-TrS_aQvr4r9eywDQTMv0Lyc-1epwj_C7XmB9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLUglRAbxFNMKXAXgMRilBnbmRl3g_pIVB6NIlRQd5Y9Y1eR2kybaRfs-Ae-h5_hS7jX46Rkwy6JZuKRzrV97vWdcxh7o7gvqlz61OZGpNLUKrWVFKlorGlwf3d10Jk9nhZH3-Sn09Fp7H_qYlvlak0MC3XT1lQjH3Lk1cg1lOJDH9siZoeTD5dXKTlI0UlrtNO4y7ZKWYhswLb2x9PZ19uKS8UxHVDBba6QqRiVqj-3RBIjh6arL9oUo0YqjBzON_apIOe_yUH_1RUNe9HkIXsQSSTs9ag_Ynfc4jFLjpH_tstQJod3cHA-RzIavj1hv8drUW9oPXTzC3Ltcg0s-xZZ18F1C3W4xQHy2JoK6LtgwJNgpj13QG8eBVFnHNivOrqA2ubPAHNqPyfu2y5_QO_gAyaqneCHBnqVWlL4AHcVnyN48NDL8PDn5y-YYQgD34XpTX-EhBeuvQeespPJ-OTgKI3GDWlNimSpIelj3Ohs3lic77nxuckwJozluS3KwvLKGItkUY2ypqgaITKDaaMqTYN0wYtnbLBoF-45A-eUkJIWndxJQgyzG2kwh8st8qpKJuz9CiV92ctzaExrCFEdENWVRkQ1IZqwfYJxfR0Ja4cf2uWZjvNUe9NUwnhurJHSiMxKkam64NIhFSsLl7CdVRDoONs7fRubCXvbB8bGKIfz73thlO5Gk5F6lm3__29es3sY3PrLx-nnF-w-PXxf9dlhA8TLvUQedG1fxQD_C8S8DAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+simulated+responses+to+climate+forcings%3A+a+flexible+statistical+framework+using+confirmatory+factor+analysis+and+structural+equation+modelling+%E2%80%93+Part+2%3A+Numerical+experiment&rft.jtitle=Advances+in+statistical+climatology%2C+meteorology+and+oceanography&rft.au=K.+Lashgari&rft.au=K.+Lashgari&rft.au=K.+Lashgari&rft.au=A.+Moberg&rft.date=2022&rft.pub=Copernicus+Publications&rft.issn=2364-3579&rft.eissn=2364-3587&rft.volume=8&rft.spage=249&rft.epage=271&rft_id=info:doi/10.5194%2Fascmo-8-249-2022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-3587&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-3587&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-3587&client=summon