Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment
The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobser...
Saved in:
Published in | Advances in statistical climatology, meteorology and oceanography Vol. 8; no. 2; pp. 249 - 271 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Gottingen
Copernicus GmbH
2022
Copernicus Publications |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The performance of a new statistical framework, developed for
the evaluation of simulated temperature responses to climate forcings against
temperature reconstructions derived from climate proxy data for the last millennium, is evaluated
in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced
with output data from a selected simulation with a climate model. Being an extension of the statistical
model used in many detection and attribution (D&A) studies,
the framework under study involves two main types of statistical models, each of which is based
on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models
and structural equation modelling (SEM) models.
Within the present pseudo-proxy experiment, each statistical model was fitted
to seven continental-scale regional data sets. In addition, their performance for each defined
region was compared to the performance of the corresponding statistical model used in D&A studies. The results of
this experiment indicated that the SEM specification is the most appropriate one for describing
the underlying latent structure of the simulated temperature data in question.
The conclusions of the experiment have been confirmed in a cross-validation study, presuming
the availability of several simulation data sets within each studied region. Since the experiment is
performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final
regional models, await further investigation to thoroughly test their performance for realistic levels of
added noise, similar to what is found in real proxy data for past temperature variations. |
---|---|
AbstractList | The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations. The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations. The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature reconstructions derived from climate proxy data for the last millennium, is evaluated in a so-called pseudo-proxy experiment, where the true unobservable temperature is replaced with output data from a selected simulation with a climate model. Being an extension of the statistical model used in many detection and attribution (D&A) studies, the framework under study involves two main types of statistical models, each of which is based on the concept of latent (unobservable) variables: confirmatory factor analysis (CFA) models and structural equation modelling (SEM) models. Within the present pseudo-proxy experiment, each statistical model was fitted to seven continental-scale regional data sets. In addition, their performance for each defined region was compared to the performance of the corresponding statistical model used in D&A studies. The results of this experiment indicated that the SEM specification is the most appropriate one for describing the underlying latent structure of the simulated temperature data in question. The conclusions of the experiment have been confirmed in a cross-validation study, presuming the availability of several simulation data sets within each studied region. Since the experiment is performed only for zero noise level in the pseudo-proxy data, all statistical models, chosen as final regional models, await further investigation to thoroughly test their performance for realistic levels of added noise, similar to what is found in real proxy data for past temperature variations. |
Author | Moberg, Anders Lashgari, Katarina Brattström, Gudrun |
Author_xml | – sequence: 1 givenname: Katarina surname: Lashgari fullname: Lashgari, Katarina – sequence: 2 givenname: Anders orcidid: 0000-0002-5177-9347 surname: Moberg fullname: Moberg, Anders – sequence: 3 givenname: Gudrun surname: Brattström fullname: Brattström, Gudrun |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214600$$DView record from Swedish Publication Index |
BookMark | eNpVUstuFDEQHKEgEULuHC1xZcCv8Yxzi0KASBFwiLhabY8defGMJ_aYZG_8A9_Dz_AleHcjBKcutaqqu-163hzNcbZN85LgNx2R_C1kM8V2aCmXLcWUPmmOKRO8Zd3QH_2DnzWnOW8wxmSghEt53Py6_A6hwOrjjKJD2U8lwGpHlGxe4pxtRmtEJvipdpGLyfj5Np8hQC7YB6-DRXmt8rx6AwG5BJO9j-kbKrkSkYmz86lqY9oiB6ZWBDOEbfa5grGKUzFrSVVr7x73mOJoQ9jJf__4ib5AWhE9Q5_KZNN-iH1YKprsvL5onjoI2Z4-1pPm5v3lzcXH9vrzh6uL8-vWUEFoC4L2HadSk1H3khNwBLATA2hKtOiFpgOAxh2XHR7FMDKGQZJe9jAKQRw7aa4OtmOEjVrqbEhbFcGrfSOmW1WX9CZY5WAcGDgKGjgHhjVnWBpBue0J7oWtXq8PXvneLkX_5_bOfz3fu-Wi6v8IjCv91YG-pHhXbF7VJpZUXzCrehOTjEpJKwsfWCbFnJN1f20JVruEqH1C1KBqQtQuIewPfbu28Q |
CitedBy_id | crossref_primary_10_5194_ascmo_8_225_2022 |
Cites_doi | 10.1016/0033-5894(76)90020-X 10.1175/BAMS-D-14-00233.1 10.1002/wcc.149 10.5194/cp-11-1673-2015 10.1038/ngeo2040 10.5194/ascmo-1-29-2015 10.1038/ngeo1797 10.1017/CBO9781107415324.022 10.1002/9780470316665 10.5194/cp-11-425-2015 10.1093/biomet/52.3-4.591 10.1175/JCLI-D-11-00103.1 10.1002/9781118619179 10.1007/s003820050202 10.5194/gmd-10-4005-2017 10.5194/cp-8-1339-2012 10.1007/978-3-319-16507-3 10.1017/CBO9781316018682 10.5194/cp-3-355-2007 10.1207/s15328007sem1303_7 10.1137/130907550 10.1007/978-0-387-36699-9_188 10.1038/nclimate1456 10.1007/s00382-018-4356-3 10.5194/gmd-4-33-2011 10.5194/cp-3-499-2007 10.5194/cp-6-445-2010 10.1177/0959683608098952 10.1088/1748-9326/10/10/104010 10.1007/BF02294623 10.1002/wcc.75 10.5194/cp-8-1355-2012 10.1007/s00382-003-0313-9 10.1007/s00382-012-1526-6 10.5194/ascmo-8-225-2022 |
ContentType | Journal Article |
Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QH 7TG 7TN 7UA ABUWG AFKRA AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W H96 HCIFZ KL. L.G PCBAR PIMPY PQEST PQQKQ PQUKI PRINS ABAVF ADTPV AOWAS D8T DG7 ZZAVC DOA |
DOI | 10.5194/ascmo-8-249-2022 |
DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Database Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SWEPUB Stockholms universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Stockholms universitet SwePub Articles full text DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Essentials ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Aqualine ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
EISSN | 2364-3587 |
EndPage | 271 |
ExternalDocumentID | oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e oai_DiVA_org_su_214600 10_5194_ascmo_8_249_2022 |
GroupedDBID | 2XV 5VS 8FE 8FH AAFWJ AAYXX ADBBV AFKRA AFPKN AFRAH AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BHPHI BKSAR CCPQU CITATION D1K GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- LK5 M7R M~E OK1 PCBAR PIMPY PROAC RKB 7QH 7TG 7TN 7UA ABUWG AZQEC C1K DWQXO F1W H96 KL. L.G PQEST PQQKQ PQUKI PRINS ABAVF ADTPV AOWAS D8T DG7 IPNFZ RIG ZZAVC |
ID | FETCH-LOGICAL-c2612-a6275429b1db7941af1a0f68ab21b676b28aab054950d68d330a91797ad661f3 |
IEDL.DBID | DOA |
ISSN | 2364-3587 2364-3579 |
IngestDate | Tue Oct 22 15:16:18 EDT 2024 Sat Aug 24 00:38:45 EDT 2024 Thu Oct 10 15:45:15 EDT 2024 Fri Aug 23 03:26:47 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2612-a6275429b1db7941af1a0f68ab21b676b28aab054950d68d330a91797ad661f3 |
ORCID | 0000-0002-5177-9347 |
OpenAccessLink | https://doaj.org/article/fad83af2aba44a30b4309c624e71076e |
PQID | 2753932992 |
PQPubID | 2037689 |
PageCount | 23 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e swepub_primary_oai_DiVA_org_su_214600 proquest_journals_2753932992 crossref_primary_10_5194_ascmo_8_249_2022 |
PublicationCentury | 2000 |
PublicationDate | 2022 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 2022 |
PublicationDecade | 2020 |
PublicationPlace | Gottingen |
PublicationPlace_xml | – name: Gottingen |
PublicationTitle | Advances in statistical climatology, meteorology and oceanography |
PublicationYear | 2022 |
Publisher | Copernicus GmbH Copernicus Publications |
Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref44 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref23 doi: 10.1016/0033-5894(76)90020-X – ident: ref30 doi: 10.1175/BAMS-D-14-00233.1 – ident: ref39 doi: 10.1002/wcc.149 – ident: ref32 doi: 10.5194/cp-11-1673-2015 – ident: ref7 – ident: ref37 doi: 10.1038/ngeo2040 – ident: ref33 doi: 10.5194/ascmo-1-29-2015 – ident: ref31 doi: 10.1038/ngeo1797 – ident: ref2 doi: 10.1017/CBO9781107415324.022 – ident: ref15 doi: 10.1002/9780470316665 – ident: ref29 doi: 10.5194/cp-11-425-2015 – ident: ref38 doi: 10.1093/biomet/52.3-4.591 – ident: ref25 doi: 10.1175/JCLI-D-11-00103.1 – ident: ref3 doi: 10.1002/9781118619179 – ident: ref42 doi: 10.1007/s003820050202 – ident: ref9 – ident: ref21 doi: 10.5194/gmd-10-4005-2017 – ident: ref40 doi: 10.5194/cp-8-1339-2012 – ident: ref44 doi: 10.1007/978-3-319-16507-3 – ident: ref11 – ident: ref16 doi: 10.1017/CBO9781316018682 – ident: ref17 – ident: ref34 – ident: ref6 doi: 10.5194/cp-3-355-2007 – ident: ref13 doi: 10.1207/s15328007sem1303_7 – ident: ref43 doi: 10.1137/130907550 – ident: ref22 doi: 10.1007/978-0-387-36699-9_188 – ident: ref4 doi: 10.1038/nclimate1456 – ident: ref8 doi: 10.1007/s00382-018-4356-3 – ident: ref28 – ident: ref36 doi: 10.5194/gmd-4-33-2011 – ident: ref5 doi: 10.5194/cp-3-499-2007 – ident: ref35 doi: 10.5194/cp-6-445-2010 – ident: ref20 doi: 10.1177/0959683608098952 – ident: ref27 doi: 10.1088/1748-9326/10/10/104010 – ident: ref41 doi: 10.1007/BF02294623 – ident: ref26 doi: 10.1002/wcc.75 – ident: ref19 doi: 10.5194/cp-8-1355-2012 – ident: ref1 doi: 10.1007/s00382-003-0313-9 – ident: ref18 doi: 10.1007/s00382-012-1526-6 – ident: ref24 doi: 10.5194/ascmo-8-225-2022 – ident: ref10 – ident: ref12 – ident: ref14 |
SSID | ssj0001821499 |
Score | 2.2183056 |
Snippet | The performance of a new statistical framework, developed for
the evaluation of simulated temperature responses to climate forcings against
temperature... The performance of a new statistical framework, developed for the evaluation of simulated temperature responses to climate forcings against temperature... |
SourceID | doaj swepub proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database |
StartPage | 249 |
SubjectTerms | Climate Climate change Climate models Datasets Experiments Factor analysis Frameworks General circulation models matematisk statistik Mathematical models Mathematical Statistics Modelling Multivariate statistical analysis Noise levels Numerical experiments Performance evaluation Precipitation Sensitivity analysis Simulation Statistical analysis Statistical methods Statistical models Structural equation modeling Temperature Temperature data Temperature variations Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELVge-GC-BQpBc0BkDhYTWxvNu4FtWWrCqmrChXUm2XHdrVSu2k37YEb_4Hfw5_hlzDjeLfshVsSJXGkN7bfjJ33GHunRaybSkXuKiu5sq3mrlGSS--sx_k9tEln9mRWH39TX87H57ng1udtlasxMQ3UvmupRr4rkFcj19BafLq-4eQaRaur2ULjIdsSmCmUI7Z1MJ2dfr2vsjR4PZlIklA6l-OJHtYqkbioXdu3Vx3HSFEao0WIjbkpSfhv8s5_tUTT_HP0hD3OxBH2B6Sfsgdh8YwVJ8h5u2UqjcMHOLycIwFNZ8_Z7-layBu6CP38ipy6goflsC029HDbQZseCYDctaWi-R5YiCSS6S4D0N9GScgZG46rXVxAW-UvAPPoOCe-2y1_wODaAzYrnOCBh0GZllQ9INzk70i-O_QDPPz5-QtOMWxB7MHsblg2whvXfgMv2NnR9OzwmGezBt6SChm3JHeMk5urvMM-XtlY2RLjwDpRuXpSO9FY65Ag6nHp68ZLWVpMFfXEeqQIUb5ko0W3CK8YhKClUjTQVEERYpjRKIt5W-WQSzWqYB9XKJnrQZLDYCpDiJqEqGkMImoI0YIdEIzr-0hMO13olhcm900TrW-kjcI6q5SVpVOy1G0tVED6NalDwXZWQWByD-_NfTwW7P0QGButfJ5_30-t9HeGzNPLcvv_r3nNHtEXD-WdHTZCkMIbJDy37m2O6r8tDQTe priority: 102 providerName: ProQuest |
Title | Evaluation of simulated responses to climate forcings: a flexible statistical framework using confirmatory factor analysis and structural equation modelling – Part 2: Numerical experiment |
URI | https://www.proquest.com/docview/2753932992 https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-214600 https://doaj.org/article/fad83af2aba44a30b4309c624e71076e |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQuXBB_IqFUs0BkDhYTWJvNu6tLVtVSF1VqKDerHFso5XaDWzaQ299B56Hl-FJmLGzq90TF25JlMh2vnHmm7HzjRDvTBXrptRRuhKV1Nga6RqtpPIOPfn30Cad2bNZffpVf74cX26U-uI9YVkeOL-4_Yi-URgrdKg1qsJpVZi2rnQg3zipQ_r6FmYjmErZlaYi6m9SZblaSzWemLxGSYRF72PfXneSLEQbspKq2vJJSbp_m29uaogmv3PyRDweCCMc5o4-FQ_C4pkYnRHX7ZYpJQ4f4PhqTsQznT0Xv6drAW_oIvTza67QFTws83bY0MNNB216JABx1paT5QeAEFkc010F4L-MkoAzNRxXu7eAt8h_B4qf45x5bre8g1ytB3BQNqEDD1mRltU8IPwc-pHq7fCP7_Dn_hec01uH6gBmt3m5iG5c1xl4IS5OphfHp3Io0iBbVh-TyDLH5NRc6R3N7RJjiQXhj64qXT2pXdUgOiKGZlz4uvFKFUghopmgJ2oQ1Uuxs-gW4ZWAEIzSmj8wZdCMGEUyGileKx1xqEaPxMcVSvZHluKwFMIwojYhahtLiFpGdCSOGMb1fSyinS6QadnBtOy_TGskdldGYIeZ3VsarSLOawy18T4bxlYrn-bfDlMr_a3loulF8fp_9OWNeMTjysmfXbFDUIa3RIdu3J54eDSdnX_ZSzPgL5DUDeA |
link.rule.ids | 230,315,783,787,867,888,2109,4031,21400,27935,27936,27937,33756,43817,74630 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwELWgPcAFlS-xpcAcAImD1cT2ZuNeUFu2WqC7qtCCerPsxK5Wajftpj30xn_g9_Bn-CXMON4te-GWREkc6Y3tN2PnPcbeahGKMleBu9xKrmyluSuV5LJ2tsb53VdRZ3Y8KUbf1ZfT_mkquLVpW-VyTIwDdd1UVCPfFcirkWtoLT5eXnFyjaLV1WShcZ9tklQVJl-bB8PJybe7KkspMAXQ0WGuUFz2B7pbq0TionZtW100HCNFaYwWIdbmpijhv847_9USjfPP0RZ7lIgj7HdIP2b3_PwJ642R8zaLWBqH93B4PkMCGs-est_DlZA3NAHa2QU5dfkaFt22WN_CdQNVfMQDcteKiuZ7YCGQSKY790B_G0UhZ2w4LHdxAW2VPwPMo8OM-G6zuIXOtQdsUjjBgxo6ZVpS9QB_lb4j-u7QD_Dw5-cvOMGwBbEHk5tu2QhvXPkNPGPTo-H0cMSTWQOvSIWMW5I7xsnN5bXDPp7bkNsM48A6kbtiUDhRWuuQIOp-VhdlLWVmMVXUA1sjRQjyOduYN3P_goH3WipFA03uFSGGGY2ymLflDrlUqXrswxIlc9lJchhMZQhRExE1pUFEDSHaYwcE4-o-EtOOF5rFmUl90wRbl9IGYZ1VysrMKZnpqhDKI_0aFL7HdpZBYFIPb81dPPbYuy4w1lr5NPuxH1tpbwyZp2fZ9v9f84Y9GE3Hx-b48-TrS_aQvr4r9eywDQTMv0Lyc-1epwj_C7XmB9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLUglRAbxFNMKXAXgMRilBnbmRl3g_pIVB6NIlRQd5Y9Y1eR2kybaRfs-Ae-h5_hS7jX46Rkwy6JZuKRzrV97vWdcxh7o7gvqlz61OZGpNLUKrWVFKlorGlwf3d10Jk9nhZH3-Sn09Fp7H_qYlvlak0MC3XT1lQjH3Lk1cg1lOJDH9siZoeTD5dXKTlI0UlrtNO4y7ZKWYhswLb2x9PZ19uKS8UxHVDBba6QqRiVqj-3RBIjh6arL9oUo0YqjBzON_apIOe_yUH_1RUNe9HkIXsQSSTs9ag_Ynfc4jFLjpH_tstQJod3cHA-RzIavj1hv8drUW9oPXTzC3Ltcg0s-xZZ18F1C3W4xQHy2JoK6LtgwJNgpj13QG8eBVFnHNivOrqA2ubPAHNqPyfu2y5_QO_gAyaqneCHBnqVWlL4AHcVnyN48NDL8PDn5y-YYQgD34XpTX-EhBeuvQeespPJ-OTgKI3GDWlNimSpIelj3Ohs3lic77nxuckwJozluS3KwvLKGItkUY2ypqgaITKDaaMqTYN0wYtnbLBoF-45A-eUkJIWndxJQgyzG2kwh8st8qpKJuz9CiV92ctzaExrCFEdENWVRkQ1IZqwfYJxfR0Ja4cf2uWZjvNUe9NUwnhurJHSiMxKkam64NIhFSsLl7CdVRDoONs7fRubCXvbB8bGKIfz73thlO5Gk5F6lm3__29es3sY3PrLx-nnF-w-PXxf9dlhA8TLvUQedG1fxQD_C8S8DAY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluation+of+simulated+responses+to+climate+forcings%3A+a+flexible+statistical+framework+using+confirmatory+factor+analysis+and+structural+equation+modelling+%E2%80%93+Part+2%3A+Numerical+experiment&rft.jtitle=Advances+in+statistical+climatology%2C+meteorology+and+oceanography&rft.au=K.+Lashgari&rft.au=K.+Lashgari&rft.au=K.+Lashgari&rft.au=A.+Moberg&rft.date=2022&rft.pub=Copernicus+Publications&rft.issn=2364-3579&rft.eissn=2364-3587&rft.volume=8&rft.spage=249&rft.epage=271&rft_id=info:doi/10.5194%2Fascmo-8-249-2022&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_fad83af2aba44a30b4309c624e71076e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2364-3587&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2364-3587&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2364-3587&client=summon |