A Novel Transfer Learning Technique for Detecting Breast Cancer Mammograms Using VGG16 Bottleneck Feature

Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause bre...

Full description

Saved in:
Bibliographic Details
Published inECS transactions Vol. 107; no. 1; pp. 733 - 746
Main Authors Prusty, Sashikanta, Dash, Sujit Kumar, Patnaik, Srikanta
Format Journal Article
LanguageEnglish
Published The Electrochemical Society, Inc 24.04.2022
Online AccessGet full text

Cover

Loading…
Abstract Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause breast cancer and b) malignant, the tumours are extremely dangerous and would form an abnormal cell that may cause cancer. One transfer learning model called VGG16 (Visual Geometry Group (16) has been implemented with a focus on breast cancer classification using mammography images taken from the MIAS dataset. Moreover, at the preprocessing step, all the breast images are enhanced by using CLAHE (Contrast Limited Adaptive Histogram Equalization) technique that specifically maintains adaptive techniques to remove the lines, letters, and other boxes irrelevant to the Breast Image. As the name suggests, this VGG16 has taken 13 convolutional layers and 3 fully connected layers to train the dataset. In the training period, this model could predict whether the breast images contain any type of cancerous cells or not. And finally, the model has successfully implemented and produced Network’s test score of 87.999 percent.
AbstractList Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause breast cancer and b) malignant, the tumours are extremely dangerous and would form an abnormal cell that may cause cancer. One transfer learning model called VGG16 (Visual Geometry Group (16) has been implemented with a focus on breast cancer classification using mammography images taken from the MIAS dataset. Moreover, at the preprocessing step, all the breast images are enhanced by using CLAHE (Contrast Limited Adaptive Histogram Equalization) technique that specifically maintains adaptive techniques to remove the lines, letters, and other boxes irrelevant to the Breast Image. As the name suggests, this VGG16 has taken 13 convolutional layers and 3 fully connected layers to train the dataset. In the training period, this model could predict whether the breast images contain any type of cancerous cells or not. And finally, the model has successfully implemented and produced Network’s test score of 87.999 percent.
Author Patnaik, Srikanta
Prusty, Sashikanta
Dash, Sujit Kumar
Author_xml – sequence: 1
  givenname: Sashikanta
  orcidid: 0000-0003-2306-5336
  surname: Prusty
  fullname: Prusty, Sashikanta
  organization: ITER, SOA(Deemed to be University), BHUBANESWAR
– sequence: 2
  givenname: Sujit Kumar
  orcidid: 0000-0002-4469-1363
  surname: Dash
  fullname: Dash, Sujit Kumar
  organization: ITER, SOA(DEEMED TO BE UNIVERSITY)
– sequence: 3
  givenname: Srikanta
  orcidid: 0000-0001-8297-0614
  surname: Patnaik
  fullname: Patnaik, Srikanta
  organization: ITER,SOA University
BookMark eNp1kDFPwzAQRi1UJNrCyuyJASnFTlI7GdtCC1KBpWW1HOdcUhK72C4S_56ElgXBdKe79066b4B6xhpA6JKSEaVpfkMJJ3REeJKA8uEE9WmeZBHjCe8d-3HG4jM08H5LCGsd3kfVBD_ZD6jxyknjNTi8BOlMZTZ4BerVVO97wNo6fAsBVOjmUwfSBzyTRrX4o2wau3Gy8Xjtu_XLYkEZntoQajCg3vAcZNg7OEenWtYeLo51iNbzu9XsPlo-Lx5mk2WkYkZCVMqCZJQxqolMdJnnkHHNJecyYwVLSZmmZRFTWuRUl7qMx5CpOI4JVzItFWfJEKWHu8pZ7x1ooaogQ2VNcLKqBSWii0t8xyV-4mq10S9t56pGus__heuDUNmd2Nq9M-1X_8NXf8DdqiMFFS0odqVOvgBsMYqX
CitedBy_id crossref_primary_10_1007_s12553_023_00772_0
crossref_primary_10_1016_j_bbe_2024_01_002
crossref_primary_10_1080_21681163_2023_2231551
crossref_primary_10_3233_JIFS_223265
crossref_primary_10_1016_j_engappai_2023_107630
crossref_primary_10_1007_s11227_024_06090_0
crossref_primary_10_1038_s41598_023_41362_4
crossref_primary_10_3389_fgene_2022_1097207
crossref_primary_10_1016_j_jrras_2024_101136
crossref_primary_10_3390_bdcc7010025
crossref_primary_10_1007_s12194_024_00842_6
crossref_primary_10_3390_info16030227
ContentType Journal Article
Copyright 2022 ECS - The Electrochemical Society
Copyright_xml – notice: 2022 ECS - The Electrochemical Society
DBID AAYXX
CITATION
DOI 10.1149/10701.0733ecst
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1938-6737
EndPage 746
ExternalDocumentID 10_1149_10701_0733ecst
10.1149/10701.0733ecst
GroupedDBID 0R~
29G
AATNI
ABDNZ
ABJNI
ACHIP
ADNWM
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ATQHT
CJUJL
EBS
EJD
IOP
JGOPE
KOT
MV1
N5L
NFQFE
REC
RHI
RNS
ROL
RPA
AAYXX
ADEQX
CITATION
ID FETCH-LOGICAL-c260t-dab081661f0a3fd99e87f7a77a86b640d44db211b91fdfd25e8c22207ca4dc763
IEDL.DBID IOP
ISSN 1938-5862
IngestDate Tue Jul 01 03:47:17 EDT 2025
Thu Apr 24 23:09:57 EDT 2025
Wed Aug 21 03:33:28 EDT 2024
Wed May 04 00:50:17 EDT 2022
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-dab081661f0a3fd99e87f7a77a86b640d44db211b91fdfd25e8c22207ca4dc763
ORCID 0000-0003-2306-5336
0000-0002-4469-1363
0000-0001-8297-0614
OpenAccessLink https://iopscience.iop.org/article/10.1149/10701.0733ecst/pdf
PageCount 14
ParticipantIDs crossref_citationtrail_10_1149_10701_0733ecst
crossref_primary_10_1149_10701_0733ecst
iop_journals_10_1149_10701_0733ecst
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220424
PublicationDateYYYYMMDD 2022-04-24
PublicationDate_xml – month: 04
  year: 2022
  text: 20220424
  day: 24
PublicationDecade 2020
PublicationTitle ECS transactions
PublicationTitleAlternate ECS Trans
PublicationYear 2022
Publisher The Electrochemical Society, Inc
Publisher_xml – name: The Electrochemical Society, Inc
SSID ssj0061147
Score 2.365997
Snippet Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 733
Title A Novel Transfer Learning Technique for Detecting Breast Cancer Mammograms Using VGG16 Bottleneck Feature
URI https://iopscience.iop.org/article/10.1149/10701.0733ecst
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjtixBBKnVG7iOvGxLUtBYjkAQlwir6gqaqs25cDXM5MFsQgJcYplvSTWzMSeicdvCDlSoZdSRT5IIs0Cbl0UaIG8t5oZJq1hXOF_yKtr0b3nl4_Nx0-lvnrDUTn116FZEAUXIiyJbSVcYyTajKPImUk2S-aiRAgsXnBxc1tNwgKQcbGhjAeLRFjyNf68_8t6NAvv_LS8nC2Rp2pgRVZJvz7NdN28feNs_NfIl8li6XTSVgFcITNusErmO1WttzXSa9Hr4at7ofnS5d2Ylryrz_SuInml4N7SE4ebDtjfxmz2jHbQasb0SoE9Y6LXhOZJCPTh_LwhaHuIFMkDZ_oUfc3p2K2T-7PTu043KIswBAZCnSywSmNtDtHwDFRqpXRJ7GMVxyoRWnBmObcaokgtG956GzZdYsDnYLFR3BqYvTZIbTAcuE1CmXNOGg8uSVNy5oy0EO1ZiHCgoYzRWySoVJGakqEcC2W8pMXpaZnmAkwrAW6R4w_8qODm-BV5CDpJy89z8ivq4AsK-xCSNlJApCPrt__0nB2yEOIhCcaDkO-SWjaeuj1wXTK9nxvpOy0A6Sc
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgSJRLoVBUaAuWQOK0qbPreONjCIRHIeUAFTfLT1QFJVGy6YFfz8yuFxUqJMRpLeuTdzXjtWfsmW8I2ddpkFJnIelkhiXc-SwxAnlvDbNMOsu4xnPIy4E4veHnt-3bGJtT5sKMJ3Hpb0KzIgquRBiJbSU8cyTazLPM21nxY-LCIllqZyJD6vyzX1f1QiwAnVeXyphcJNLI2fj_GM_2pEV47z9bTH-1qqM6K5kJMbJk2JwXpmkfXvA2vvvr18jHaHzSbgX-RBb8aJ186NU13zbIny4djP_6e1puYcFPaeRfvaPXNdkrBTOXHnm8fMD-Q4xqL2gPZ8-UXmqY1xjwNaNlMAL9fXLSEvRwjFTJI2-HFG3O-dR_Jjf94-veaRKLMSQWXJ4icdpgjQ7RCgxU66T0nTzkOs91RxjBmePcGfAmjWwFF1za9h0LtgfLrebOwiq2SRqj8ch_IZR576UNYJq0JWfeSgdenwNPBxraWrNFklodykamciyYca-qLGqpSiGqWohb5OAJP6k4Ol5F7oFeVPxNZ6-idp-hsA8hqqUAoUBl228aZ5csXx311cXZ4OdXspJi3gTjScq_kUYxnfvvYM0UZqecs4_SQO6L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Transfer+Learning+Technique+for+Detecting+Breast+Cancer+Mammograms+Using+VGG16+Bottleneck+Feature&rft.jtitle=ECS+transactions&rft.au=Prusty%2C+Sashikanta&rft.au=Dash%2C+Sujit+Kumar&rft.au=Patnaik%2C+Srikanta&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=733&rft.epage=746&rft_id=info:doi/10.1149%2F10701.0733ecst&rft.externalDocID=10.1149%2F10701.0733ecst
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon