A Novel Transfer Learning Technique for Detecting Breast Cancer Mammograms Using VGG16 Bottleneck Feature
Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause bre...
Saved in:
Published in | ECS transactions Vol. 107; no. 1; pp. 733 - 746 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
The Electrochemical Society, Inc
24.04.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause breast cancer and b) malignant, the tumours are extremely dangerous and would form an abnormal cell that may cause cancer. One transfer learning model called VGG16 (Visual Geometry Group (16) has been implemented with a focus on breast cancer classification using mammography images taken from the MIAS dataset. Moreover, at the preprocessing step, all the breast images are enhanced by using CLAHE (Contrast Limited Adaptive Histogram Equalization) technique that specifically maintains adaptive techniques to remove the lines, letters, and other boxes irrelevant to the Breast Image. As the name suggests, this VGG16 has taken 13 convolutional layers and 3 fully connected layers to train the dataset. In the training period, this model could predict whether the breast images contain any type of cancerous cells or not. And finally, the model has successfully implemented and produced Network’s test score of 87.999 percent. |
---|---|
AbstractList | Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as reported by ICMR, 2018 in India (1). Breast tumours are classified into two types as a) benign, which is not very harmful and would not cause breast cancer and b) malignant, the tumours are extremely dangerous and would form an abnormal cell that may cause cancer. One transfer learning model called VGG16 (Visual Geometry Group (16) has been implemented with a focus on breast cancer classification using mammography images taken from the MIAS dataset. Moreover, at the preprocessing step, all the breast images are enhanced by using CLAHE (Contrast Limited Adaptive Histogram Equalization) technique that specifically maintains adaptive techniques to remove the lines, letters, and other boxes irrelevant to the Breast Image. As the name suggests, this VGG16 has taken 13 convolutional layers and 3 fully connected layers to train the dataset. In the training period, this model could predict whether the breast images contain any type of cancerous cells or not. And finally, the model has successfully implemented and produced Network’s test score of 87.999 percent. |
Author | Patnaik, Srikanta Prusty, Sashikanta Dash, Sujit Kumar |
Author_xml | – sequence: 1 givenname: Sashikanta orcidid: 0000-0003-2306-5336 surname: Prusty fullname: Prusty, Sashikanta organization: ITER, SOA(Deemed to be University), BHUBANESWAR – sequence: 2 givenname: Sujit Kumar orcidid: 0000-0002-4469-1363 surname: Dash fullname: Dash, Sujit Kumar organization: ITER, SOA(DEEMED TO BE UNIVERSITY) – sequence: 3 givenname: Srikanta orcidid: 0000-0001-8297-0614 surname: Patnaik fullname: Patnaik, Srikanta organization: ITER,SOA University |
BookMark | eNp1kDFPwzAQRi1UJNrCyuyJASnFTlI7GdtCC1KBpWW1HOdcUhK72C4S_56ElgXBdKe79066b4B6xhpA6JKSEaVpfkMJJ3REeJKA8uEE9WmeZBHjCe8d-3HG4jM08H5LCGsd3kfVBD_ZD6jxyknjNTi8BOlMZTZ4BerVVO97wNo6fAsBVOjmUwfSBzyTRrX4o2wau3Gy8Xjtu_XLYkEZntoQajCg3vAcZNg7OEenWtYeLo51iNbzu9XsPlo-Lx5mk2WkYkZCVMqCZJQxqolMdJnnkHHNJecyYwVLSZmmZRFTWuRUl7qMx5CpOI4JVzItFWfJEKWHu8pZ7x1ooaogQ2VNcLKqBSWii0t8xyV-4mq10S9t56pGus__heuDUNmd2Nq9M-1X_8NXf8DdqiMFFS0odqVOvgBsMYqX |
CitedBy_id | crossref_primary_10_1007_s12553_023_00772_0 crossref_primary_10_1016_j_bbe_2024_01_002 crossref_primary_10_1080_21681163_2023_2231551 crossref_primary_10_3233_JIFS_223265 crossref_primary_10_1016_j_engappai_2023_107630 crossref_primary_10_1007_s11227_024_06090_0 crossref_primary_10_1038_s41598_023_41362_4 crossref_primary_10_3389_fgene_2022_1097207 crossref_primary_10_1016_j_jrras_2024_101136 crossref_primary_10_3390_bdcc7010025 crossref_primary_10_1007_s12194_024_00842_6 crossref_primary_10_3390_info16030227 |
ContentType | Journal Article |
Copyright | 2022 ECS - The Electrochemical Society |
Copyright_xml | – notice: 2022 ECS - The Electrochemical Society |
DBID | AAYXX CITATION |
DOI | 10.1149/10701.0733ecst |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1938-6737 |
EndPage | 746 |
ExternalDocumentID | 10_1149_10701_0733ecst 10.1149/10701.0733ecst |
GroupedDBID | 0R~ 29G AATNI ABDNZ ABJNI ACHIP ADNWM AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ATQHT CJUJL EBS EJD IOP JGOPE KOT MV1 N5L NFQFE REC RHI RNS ROL RPA AAYXX ADEQX CITATION |
ID | FETCH-LOGICAL-c260t-dab081661f0a3fd99e87f7a77a86b640d44db211b91fdfd25e8c22207ca4dc763 |
IEDL.DBID | IOP |
ISSN | 1938-5862 |
IngestDate | Tue Jul 01 03:47:17 EDT 2025 Thu Apr 24 23:09:57 EDT 2025 Wed Aug 21 03:33:28 EDT 2024 Wed May 04 00:50:17 EDT 2022 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c260t-dab081661f0a3fd99e87f7a77a86b640d44db211b91fdfd25e8c22207ca4dc763 |
ORCID | 0000-0003-2306-5336 0000-0002-4469-1363 0000-0001-8297-0614 |
OpenAccessLink | https://iopscience.iop.org/article/10.1149/10701.0733ecst/pdf |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1149_10701_0733ecst crossref_primary_10_1149_10701_0733ecst iop_journals_10_1149_10701_0733ecst |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220424 |
PublicationDateYYYYMMDD | 2022-04-24 |
PublicationDate_xml | – month: 04 year: 2022 text: 20220424 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | ECS transactions |
PublicationTitleAlternate | ECS Trans |
PublicationYear | 2022 |
Publisher | The Electrochemical Society, Inc |
Publisher_xml | – name: The Electrochemical Society, Inc |
SSID | ssj0061147 |
Score | 2.365997 |
Snippet | Breast cancer represents the highest percentage of cancers and the second most common cancer overall that affect women with 87,090 deaths approximately as... |
SourceID | crossref iop |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 733 |
Title | A Novel Transfer Learning Technique for Detecting Breast Cancer Mammograms Using VGG16 Bottleneck Feature |
URI | https://iopscience.iop.org/article/10.1149/10701.0733ecst |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHODCjtixBBKnVG7iOvGxLUtBYjkAQlwir6gqaqs25cDXM5MFsQgJcYplvSTWzMSeicdvCDlSoZdSRT5IIs0Cbl0UaIG8t5oZJq1hXOF_yKtr0b3nl4_Nx0-lvnrDUTn116FZEAUXIiyJbSVcYyTajKPImUk2S-aiRAgsXnBxc1tNwgKQcbGhjAeLRFjyNf68_8t6NAvv_LS8nC2Rp2pgRVZJvz7NdN28feNs_NfIl8li6XTSVgFcITNusErmO1WttzXSa9Hr4at7ofnS5d2Ylryrz_SuInml4N7SE4ebDtjfxmz2jHbQasb0SoE9Y6LXhOZJCPTh_LwhaHuIFMkDZ_oUfc3p2K2T-7PTu043KIswBAZCnSywSmNtDtHwDFRqpXRJ7GMVxyoRWnBmObcaokgtG956GzZdYsDnYLFR3BqYvTZIbTAcuE1CmXNOGg8uSVNy5oy0EO1ZiHCgoYzRWySoVJGakqEcC2W8pMXpaZnmAkwrAW6R4w_8qODm-BV5CDpJy89z8ivq4AsK-xCSNlJApCPrt__0nB2yEOIhCcaDkO-SWjaeuj1wXTK9nxvpOy0A6Sc |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYgSJRLoVBUaAuWQOK0qbPreONjCIRHIeUAFTfLT1QFJVGy6YFfz8yuFxUqJMRpLeuTdzXjtWfsmW8I2ddpkFJnIelkhiXc-SwxAnlvDbNMOsu4xnPIy4E4veHnt-3bGJtT5sKMJ3Hpb0KzIgquRBiJbSU8cyTazLPM21nxY-LCIllqZyJD6vyzX1f1QiwAnVeXyphcJNLI2fj_GM_2pEV47z9bTH-1qqM6K5kJMbJk2JwXpmkfXvA2vvvr18jHaHzSbgX-RBb8aJ186NU13zbIny4djP_6e1puYcFPaeRfvaPXNdkrBTOXHnm8fMD-Q4xqL2gPZ8-UXmqY1xjwNaNlMAL9fXLSEvRwjFTJI2-HFG3O-dR_Jjf94-veaRKLMSQWXJ4icdpgjQ7RCgxU66T0nTzkOs91RxjBmePcGfAmjWwFF1za9h0LtgfLrebOwiq2SRqj8ch_IZR576UNYJq0JWfeSgdenwNPBxraWrNFklodykamciyYca-qLGqpSiGqWohb5OAJP6k4Ol5F7oFeVPxNZ6-idp-hsA8hqqUAoUBl228aZ5csXx311cXZ4OdXspJi3gTjScq_kUYxnfvvYM0UZqecs4_SQO6L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Transfer+Learning+Technique+for+Detecting+Breast+Cancer+Mammograms+Using+VGG16+Bottleneck+Feature&rft.jtitle=ECS+transactions&rft.au=Prusty%2C+Sashikanta&rft.au=Dash%2C+Sujit+Kumar&rft.au=Patnaik%2C+Srikanta&rft.date=2022-04-24&rft.pub=The+Electrochemical+Society%2C+Inc&rft.issn=1938-5862&rft.eissn=1938-6737&rft.volume=107&rft.issue=1&rft.spage=733&rft.epage=746&rft_id=info:doi/10.1149%2F10701.0733ecst&rft.externalDocID=10.1149%2F10701.0733ecst |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1938-5862&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1938-5862&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1938-5862&client=summon |