Optimal group sequential multihypothesis tests for exponential families of distributions

This article deals with group sequential multihypothesis testing. We consider a model with a group-specific cost c ( m ) of obtaining a group of m observations (in particular, this includes the popular model c ( m ) = v + m , where v is a group overhead cost). In this way, an important characteristi...

Full description

Saved in:
Bibliographic Details
Published inSequential analysis Vol. 44; no. 2; pp. 227 - 251
Main Author Novikov, Andrey
Format Journal Article
LanguageEnglish
Published Taylor & Francis 03.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article deals with group sequential multihypothesis testing. We consider a model with a group-specific cost c ( m ) of obtaining a group of m observations (in particular, this includes the popular model c ( m ) = v + m , where v is a group overhead cost). In this way, an important characteristic of a group sequential testing is the corresponding expected sampling cost (ESC), depending on the value of the parameter. Our concern is construction of optimal group sequential tests taking, as a criterion of optimization, a weighted sum of the ESCs weighted over some values of the parameter. Based on predetermined group sizes m 1 , m 2 , ... , m N , where N is a maximum number of groups admitted to the analysis, we describe the structure of optimal group sequential tests. For observations following a distribution from a one-parameter exponential family, we develop computational algorithms for designing optimal plans and evaluating their performance characteristics. For a series of exponential families (normal, exponential, binomial, Poisson, negative binomial) we implement the algorithms in the R programming language. The program code is available in a public GitHub repository. Applications of the developed methods are presented in a series of practical examples. In particular, we evaluate the efficiency of the optimal group sequential tests for three hypotheses about the mean of a normal distribution with known variance. The effect of optimization over the group sizes is discussed. Various cost structures are considered, with or without overhead cost in the groups. A method of construction of two-sided group sequential tests for two hypotheses, based on the optimal tests for three hypotheses, is proposed. We exemplify the use of the method constructing two-sided tests for the binomial proportions with symmetric and nonsymmetric alternatives and compare its efficiency with some group sequential tests known in the literature. Also, we apply the method to construction of two-sided tests for the mean of a normal distribution and compare its efficiency with that of the "double triangular" by Whitehead.
AbstractList This article deals with group sequential multihypothesis testing. We consider a model with a group-specific cost c ( m ) of obtaining a group of m observations (in particular, this includes the popular model c ( m ) = v + m , where v is a group overhead cost). In this way, an important characteristic of a group sequential testing is the corresponding expected sampling cost (ESC), depending on the value of the parameter. Our concern is construction of optimal group sequential tests taking, as a criterion of optimization, a weighted sum of the ESCs weighted over some values of the parameter. Based on predetermined group sizes m 1 , m 2 , ... , m N , where N is a maximum number of groups admitted to the analysis, we describe the structure of optimal group sequential tests. For observations following a distribution from a one-parameter exponential family, we develop computational algorithms for designing optimal plans and evaluating their performance characteristics. For a series of exponential families (normal, exponential, binomial, Poisson, negative binomial) we implement the algorithms in the R programming language. The program code is available in a public GitHub repository. Applications of the developed methods are presented in a series of practical examples. In particular, we evaluate the efficiency of the optimal group sequential tests for three hypotheses about the mean of a normal distribution with known variance. The effect of optimization over the group sizes is discussed. Various cost structures are considered, with or without overhead cost in the groups. A method of construction of two-sided group sequential tests for two hypotheses, based on the optimal tests for three hypotheses, is proposed. We exemplify the use of the method constructing two-sided tests for the binomial proportions with symmetric and nonsymmetric alternatives and compare its efficiency with some group sequential tests known in the literature. Also, we apply the method to construction of two-sided tests for the mean of a normal distribution and compare its efficiency with that of the "double triangular" by Whitehead.
Author Novikov, Andrey
Author_xml – sequence: 1
  givenname: Andrey
  orcidid: 0000-0003-1034-8951
  surname: Novikov
  fullname: Novikov, Andrey
  organization: Unidad Iztapalapa, Metropolitan Autonomous University
BookMark eNp9kF9LwzAUxYMouE0_gtAv0JmkaZK-KcN_MNiLgm8hTRMXaZuam6L79rZsvvp04XDO4Z7fEp33obcI3RC8JljiWyyYYBXja4opW1NGpajkGVqQsqA5I4Kfo8XsyWfTJVoCfGJMJMFigd53Q_KdbrOPGMYhA_s12j75SejGNvn9YQhpb8FDliwkyFyImf0ZpgeOLqc733oLWXBZ4yFFX4_Jhx6u0IXTLdjr012ht8eH181zvt09vWzut7mhHKfcNEI4Y7DQnErCTWNkUWpdl6LitKqIltKV1OCy4MQ462pmibXa1IRpQ4qmWKHy2GtiAIjWqSFOg-JBEaxmPOoPj5rxqBOeKXd3zPl-2tTp7xDbRiV9aEN0UffGgyr-r_gFMKVxsg
Cites_doi 10.1080/01621459.1977.10479938
10.2307/2282392
10.1007/978-3-030-70578-7
10.1080/03610918.2024.2376883
10.1093/biomet/79.1.13
10.1201/9780367805326
10.1214/aos/1176343407
10.1080/07474946.2023.2215825
10.32614/CRAN.package.rootSolve
10.1080/07474946.2016.1238256
10.1080/07474949508836337
10.1080/03610918.2017.1343837
10.1093/comjnl/7.4.308
10.1214/aoms/1177707037
10.1007/978-1-4612-2736-6
10.1080/07474946.2018.1554887
10.2307/2533535
ContentType Journal Article
Copyright 2025 Taylor & Francis Group, LLC 2025
Copyright_xml – notice: 2025 Taylor & Francis Group, LLC 2025
DBID AAYXX
CITATION
DOI 10.1080/07474946.2024.2428798
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-4176
EndPage 251
ExternalDocumentID 10_1080_07474946_2024_2428798
2428798
Genre Research Article
GrantInformation_xml – fundername: National Researchers System (SNI) by CONACyT
GroupedDBID .7F
.QJ
0BK
0R~
123
30N
4.4
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
ADYSH
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMPGV
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
CITATION
DGEBU
NY~
TASJS
ID FETCH-LOGICAL-c260t-cd77fcc07a62816cdc835aab57962991a88f52c05361cfefb4e1eeacb14ac13d3
ISSN 0747-4946
IngestDate Tue Jul 29 02:13:41 EDT 2025
Wed May 21 12:33:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c260t-cd77fcc07a62816cdc835aab57962991a88f52c05361cfefb4e1eeacb14ac13d3
ORCID 0000-0003-1034-8951
PageCount 25
ParticipantIDs crossref_primary_10_1080_07474946_2024_2428798
informaworld_taylorfrancis_310_1080_07474946_2024_2428798
PublicationCentury 2000
PublicationDate 2025-04-03
PublicationDateYYYYMMDD 2025-04-03
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-03
  day: 03
PublicationDecade 2020
PublicationTitle Sequential analysis
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References Tartakovsky A. G. (e_1_3_3_21_1) 2015
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_19_1
e_1_3_3_14_1
Novikov A. (e_1_3_3_13_1) 2009; 45
e_1_3_3_16_1
e_1_3_3_15_1
e_1_3_3_3_1
e_1_3_3_10_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
e_1_3_3_12_1
e_1_3_3_23_1
e_1_3_3_4_1
e_1_3_3_11_1
e_1_3_3_22_1
References_xml – ident: e_1_3_3_3_1
  doi: 10.1080/01621459.1977.10479938
– ident: e_1_3_3_22_1
  doi: 10.2307/2282392
– ident: e_1_3_3_10_1
  doi: 10.1007/978-3-030-70578-7
– ident: e_1_3_3_18_1
– ident: e_1_3_3_16_1
  doi: 10.1080/03610918.2024.2376883
– ident: e_1_3_3_4_1
  doi: 10.1093/biomet/79.1.13
– ident: e_1_3_3_8_1
  doi: 10.1201/9780367805326
– ident: e_1_3_3_15_1
– ident: e_1_3_3_11_1
  doi: 10.1214/aos/1176343407
– ident: e_1_3_3_14_1
  doi: 10.1080/07474946.2023.2215825
– ident: e_1_3_3_17_1
– ident: e_1_3_3_20_1
  doi: 10.32614/CRAN.package.rootSolve
– ident: e_1_3_3_2_1
  doi: 10.1080/07474946.2016.1238256
– ident: e_1_3_3_5_1
  doi: 10.1080/07474949508836337
– ident: e_1_3_3_7_1
  doi: 10.1080/03610918.2017.1343837
– volume: 45
  start-page: 309
  issue: 2
  year: 2009
  ident: e_1_3_3_13_1
  article-title: Optimal Sequential Multiple Hypothesis Tests
  publication-title: Kybernetika
– volume-title: Sequential Analysis: Hypothesis Testing and Changepoint Detection
  year: 2015
  ident: e_1_3_3_21_1
– ident: e_1_3_3_12_1
  doi: 10.1093/comjnl/7.4.308
– ident: e_1_3_3_9_1
  doi: 10.1214/aoms/1177707037
– ident: e_1_3_3_19_1
  doi: 10.1007/978-1-4612-2736-6
– ident: e_1_3_3_6_1
  doi: 10.1080/07474946.2018.1554887
– ident: e_1_3_3_23_1
  doi: 10.2307/2533535
SSID ssj0018107
Score 2.319345
Snippet This article deals with group sequential multihypothesis testing. We consider a model with a group-specific cost c ( m ) of obtaining a group of m observations...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 227
SubjectTerms Multihypothesis testing
optimal group sequential tests
optimal stopping
sequential analysis
two-sided hypotheses
Title Optimal group sequential multihypothesis tests for exponential families of distributions
URI https://www.tandfonline.com/doi/abs/10.1080/07474946.2024.2428798
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58XPQgPvHNHrzJlu4mm8dRRBHBerCF3kJ2s4tFbIuNov56Zx9JUyvi4xJK2uyE-baTmcnMNwidFBB08DhNiIgFJ-aVI8nBUSZUMcv9UbSFCRRvOtFVL7zu8_50UqHtLilFS75_2VfyF1ThHOBqumR_gWy9KJyAz4AvHAFhOP4I41v4vz-Cjm1rxqmrii5NCtyWCd6_jU17lWEcAX-ynDh279fxaOh_ZZMbA8c6WxgCXT_7atL0WO-mq-aewKROII9eBg-jl7ou8q2ZQmDcVp4ENejduWkeDSME4QYJU58mVJWRZCSkbm5LZUUdi6PfLaxpEl3vv3-6MkcvO2e4faUjSDPCIG5nYYuZcM7NqP7Eie2_WUTLDKIDY96Cdqd-eZRQ1yVf3XrVuGUo1b8SMOOSzBDWNlyN7jpa8zECPnOAb6AFNdxEqzc1we5kC_U99NhCj6fQ40_QYws9BmG4AT2uoMcjjWeg30a9y4vu-RXxQzKIhFC0JLKIYy1lO84jltBIFhJ86jwXpscYXA2aJ4nmTIKtjajUSotQUQVPW0HDXNKgCHbQ0hCk7yKc8iRVXLOYp2GotUhgPVFQHueBSooo2EOtSk_Z2HGhZLSimPWKzYxiM6_YPZQ2tZmVdqNpt8ey4Ntr9_9x7QFamW7zQ7RUPj2rI_AdS3Fsd8oHgWRtHA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMDAG1GeHlgd6iROnBEhqgJtWVqpWxQ7tkBAW5FUAn49d3mgFgmW7j4nts_nO_u77wi5TCHoEGEkmQqVYPjkyBJwlBk3bsH9kbYUBoq9ftAZ-vcjMZrLhUFYJcbQtiSKKGw1bm68jK4hcVdI-u5HPiIMXN9x0euP5CpZE1EQoq57rf7PS4LkZco0iDCUqbN4_upm4XxaYC-dO3fa20TXf1zCTV6cWa4c_fWLzHG5Ie2QrcotpdelHu2SFTPeI5u9H07XbJ-MHsG6vEGjIhGElhhssA-vtAAlPn1OMZkre84oeK95RmFI1HxMJ-OqVXGVAnE5nViaIl1vVWkrOyDD9u3gpsOqugxMQ_STM52GodW6FSaBK3mgUw1uXJIoTGuF040nUlrhatjeAdfWWOUbbsDAK-4nmnupd0gaY_j6EaGRkJER1g1F5PvWKgn9qZSLMPGMTAOvSZx6NeJpSb8R85rVtJqyGKcsrqasSaL5NYvz4t7DlkVKYu9f2eMlZC_IemfQ68bdu_7DCdlwsUow4nu8U9LI32fmDFyXXJ0XuvkNtDPi1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELWgSAgO7Iiy-sDVpU7sxDkioGJr4UCl3qJ4EwhoI5JKwNczzlK1SHDp3ePE2yz2mzcInWoIOngYCSJDyYl7ciQJOMqEGq_g_tBt6QLFbi-47rPbAa_RhFkFq3QxtC2JIgpd7Q53qm2NiDtznO8sYg5g4LGW55z-SCyipcAlWrosjnZv8pAgaJkxDSLEydRJPH91M2OeZshLp8xOZx3J-odLtMlra5zLlvr-xeU414g20FrllOLzchdtogUz3EKr3Qmja7aNBg-gW96hUZEGgksENmiHN1xAEp-_UpfKlb1kGHzXPMMwImw-09GwalVcpEBUjkcWa0fWW9XZynZQv3P1dHFNqqoMREHskxOlw9Aq1Q6TwBM0UFqBE5ck0iW1gm2jiRCWewoOd0CVNVYyQw2od0lZoqiv_V3UGMLX9xCOuIgMt17II8aslQL6k5ryMPGN0IHfRK16MeK0JN-Iac1pWk1Z7KYsrqasiaLpJYvz4tbDliVKYv9f2f05ZE_Q8uNlJ76_6d0doBXPlQh24B7_EDXyj7E5Ar8ll8fFzvwBAbfhew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+group+sequential+multihypothesis+tests+for+exponential+families+of+distributions&rft.jtitle=Sequential+analysis&rft.au=Novikov%2C+Andrey&rft.date=2025-04-03&rft.pub=Taylor+%26+Francis&rft.issn=0747-4946&rft.eissn=1532-4176&rft.volume=44&rft.issue=2&rft.spage=227&rft.epage=251&rft_id=info:doi/10.1080%2F07474946.2024.2428798&rft.externalDocID=2428798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-4946&client=summon