Online multiple instance regression

The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 22; no. 9; pp. 656 - 661
Main Author 王志岗 赵增顺 张长水
Format Journal Article
LanguageEnglish
Published 01.09.2013
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets.
AbstractList The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets.
The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets.
Author 王志岗 赵增顺 张长水
AuthorAffiliation Department of Automation, Tsinghua University, State Key Laboratory of Intelligent Technologie and Systems, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China School of Control Science and Engineering, Shandong University, Jinan 250061, China
Author_xml – sequence: 1
  fullname: 王志岗 赵增顺 张长水
BookMark eNo9kEtrAjEUhUOxUGv7EwqWbrqZzs3Ne1mkLxDcuA9jesemjBlNxkX_fRXF1dl834Fzbtko9YkYe-DwwsHammsjKw5K14i1q8FZA3jFxgjKVsIKOWLjC3PDbkv5BdAcUIzZ0yJ1MdF0s--GuO1oGlMZmhRommmdqZTYpzt23TZdoftzTtjy_W05-6zmi4-v2eu8CqhhqIzlWqPQBr6lBrlSaKABcmi4bINB4ArbIKVz2mmLJijrINhAEFCuhJiw51PtNve7PZXBb2IJ1HVNon5fPDdKKGnBwQFVJzTkvpRMrd_muGnyn-fgj5_4415_3OsRvfOnTw7e49n76dN6F9P6IkrDlVGI4h_xg16D
Cites_doi 10.1016/S0004-3702(96)00034-3
10.1109/TPAMI.2006.248
10.1016/j.rse.2007.05.017
10.1088/1674-1056/19/11/110502
10.1109/TPAMI.2010.226
10.1088/1674-1056/18/6/014
ContentType Journal Article
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
DOI 10.1088/1674-1056/22/9/098702
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Physics
DocumentTitleAlternate Online multiple instance regression
EISSN 2058-3834
1741-4199
EndPage 661
ExternalDocumentID 10_1088_1674_1056_22_9_098702
47157522
GroupedDBID 02O
1JI
1WK
29B
2RA
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
92L
AAGCD
AAJIO
AAJKP
AALHV
AATNI
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFUIB
AFYNE
AHSEE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
BBWZM
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CQIGP
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
FA0
FEDTE
HAK
HVGLF
IJHAN
IOP
IZVLO
JCGBZ
KNG
KOT
M45
N5L
NT-
NT.
PJBAE
Q02
RIN
RNS
ROL
RPA
RW3
SY9
TCJ
TGP
UCJ
W28
~WA
-SA
-S~
AAYXX
ACARI
ADEQX
AERVB
AGQPQ
AOAED
ARNYC
CAJEA
CITATION
Q--
U1G
U5K
7SC
7U5
8FD
H8D
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c260t-7816623670d4604b5270a0e92714fc720152fc4499696827c5890c8ce0c24b33
ISSN 1674-1056
IngestDate Fri Jul 11 11:25:21 EDT 2025
Tue Jul 01 02:55:02 EDT 2025
Wed Feb 14 10:39:16 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c260t-7816623670d4604b5270a0e92714fc720152fc4499696827c5890c8ce0c24b33
Notes The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets.
mutiple instance, regression, online learning
11-5639/O4
Wang Zhi-Gang, Zhao Zeng-Shun, and Zhang Chang-Shui( a) Department of Automation, Tsinghua University, State Key Laboratory of Intelligent Technologie and Systems, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China b) College of Information and Electrical Engineenng, Shandong University of Science and Technology, Qingdao 266590, China c) School of Control Science and Engineering, Shandong University, Jinan 250061, China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1753548090
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1753548090
crossref_primary_10_1088_1674_1056_22_9_098702
chongqing_primary_47157522
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Chinese physics B
PublicationTitleAlternate Chinese Physics
PublicationYear 2013
References Zhou Z H (7) 2009
19
Dooly D R (13) 2003; 3
Cauwenberghs G (18) 2001
Fung G (6) 2007
Zeisl B (10)
1
Ray S (2) 2001
Parrella F (17) 2007
Chen Y X (4) 2004; 5
Sun Z H (16) 2010; 19
Andrews S (3) 2003
5
Wagstaff K L (14) 2007
8
Wagstaff K L (15) 2008
Li M (9) 2010
Zhou Z H (11) 2010; 2
Meng Q F (20) 2009; 18
Amar R A (12) 2001
References_xml – start-page: 291
  year: 2008
  ident: 15
– start-page: 444
  year: 2007
  ident: 14
– start-page: 425
  year: 2001
  ident: 2
– volume: 5
  start-page: 939
  year: 2004
  ident: 4
  publication-title: J. Mach. Learn. Res.
– start-page: 409
  year: 2001
  ident: 18
– start-page: 1879
  ident: 10
– ident: 1
  doi: 10.1016/S0004-3702(96)00034-3
– volume: 2
  start-page: 2
  issn: 0165-1684
  year: 2010
  ident: 11
  publication-title: Signal Process
– ident: 5
  doi: 10.1109/TPAMI.2006.248
– year: 2007
  ident: 17
– start-page: 3
  year: 2001
  ident: 12
– ident: 19
  doi: 10.1016/j.rse.2007.05.017
– volume: 19
  start-page: 110502
  issn: 1674-1056
  year: 2010
  ident: 16
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/19/11/110502
– start-page: 577
  year: 2003
  ident: 3
– start-page: 425
  year: 2007
  ident: 6
– volume: 3
  start-page: 651
  year: 2003
  ident: 13
  publication-title: J. Mach. Learn. Res.
– start-page: 1395
  year: 2010
  ident: 9
– start-page: 1249
  year: 2009
  ident: 7
– ident: 8
  doi: 10.1109/TPAMI.2010.226
– volume: 18
  start-page: 2194
  issn: 1674-1056
  year: 2009
  ident: 20
  publication-title: Chin. Phys.
  doi: 10.1088/1674-1056/18/6/014
SSID ssj0061023
ssib054405859
ssib000804704
Score 1.9556805
Snippet The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem,...
SourceID proquest
crossref
chongqing
SourceType Aggregation Database
Index Database
Publisher
StartPage 656
SubjectTerms KNN
Labels
Mathematical models
Online
Regression
Training
回归模型
回归法
回归问题
在线
多实例
批处理
数据集
Title Online multiple instance regression
URI http://lib.cqvip.com/qk/85823A/201309/47157522.html
https://www.proquest.com/docview/1753548090
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa2DgN2GfbEkj3gYb2qkRXJko7D0K4YurZAXSzoRbBk5XFxtiW57NePtKzYBXrodjECKbEdkqY-UuZHQg5h0dTSTz2dcyOpcHUOz1wINDDjcsbqXAUscP5-Xpxei28zOUuNtrvqkq078n_urCv5H63CGOgVq2T_QbP7k8IAfAb9whE0DMd76TjyhPYvBa5arOexE8oivt_aDMEn9soOm9BlMzZ9w-UfXdL4ZrmiX6tuLYvZ5DaTehOaBb1a7prBRPxFW5yAU6th-gBbOZiUPoger1ACfLHs-KjjGMAM3B42QzfJ-cAczMDnMQPPPB-soDmNQ7S400eDX8N0QboulqQgCaxp95H6Uw2Zsc8v7Mn12Zktj2flQ_KIQ0jQFmteXA6gDBOqDy2lACSqEarFVblAigoMvtNlUzWX1pP92ITziZnEm0CujeW6WfwCBHEbs9xeslscUj4jT7sAIvscreE5eRCaF-TxZVTpS_Ip2kSWbCJLNpH1NvGKlCfH5ZdT2jXCoB7CzS1VuLnbUu3VomDCSa5YxYLhKhdzr0Ctks-9gOAVqY648lIb5rUPzHPhptPX5KBZN-ENyQDgqUp6KSsUkHBO6sLVha9knc-lUyMy3v9r-zPynVjALwDqOR-RoySG_Vz7DoPWFmVoUYaWc2tslOGIfEzCsuC1cCuqasJ6t7HID4tMg4aN7_Gdt-RJb7rvyMH29y68Byy4dR9aI_gL-VRQ9w
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+multiple+instance+regression&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Zhi-Gang&rft.au=Zhao%2C+Zeng-Shun&rft.au=Zhang%2C+Chang-Shui&rft.date=2013-09-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=9&rft.spage=098702&rft.epage=1-098702-6&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F9%2F098702&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg