Online multiple instance regression
The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice...
Saved in:
Published in | Chinese physics B Vol. 22; no. 9; pp. 656 - 661 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.09.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets. |
---|---|
AbstractList | The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets. The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets. |
Author | 王志岗 赵增顺 张长水 |
AuthorAffiliation | Department of Automation, Tsinghua University, State Key Laboratory of Intelligent Technologie and Systems, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China College of Information and Electrical Engineering, Shandong University of Science and Technology, Qingdao 266590, China School of Control Science and Engineering, Shandong University, Jinan 250061, China |
Author_xml | – sequence: 1 fullname: 王志岗 赵增顺 张长水 |
BookMark | eNo9kEtrAjEUhUOxUGv7EwqWbrqZzs3Ne1mkLxDcuA9jesemjBlNxkX_fRXF1dl834Fzbtko9YkYe-DwwsHammsjKw5K14i1q8FZA3jFxgjKVsIKOWLjC3PDbkv5BdAcUIzZ0yJ1MdF0s--GuO1oGlMZmhRommmdqZTYpzt23TZdoftzTtjy_W05-6zmi4-v2eu8CqhhqIzlWqPQBr6lBrlSaKABcmi4bINB4ArbIKVz2mmLJijrINhAEFCuhJiw51PtNve7PZXBb2IJ1HVNon5fPDdKKGnBwQFVJzTkvpRMrd_muGnyn-fgj5_4415_3OsRvfOnTw7e49n76dN6F9P6IkrDlVGI4h_xg16D |
Cites_doi | 10.1016/S0004-3702(96)00034-3 10.1109/TPAMI.2006.248 10.1016/j.rse.2007.05.017 10.1088/1674-1056/19/11/110502 10.1109/TPAMI.2010.226 10.1088/1674-1056/18/6/014 |
ContentType | Journal Article |
DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
DOI | 10.1088/1674-1056/22/9/098702 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
DocumentTitleAlternate | Online multiple instance regression |
EISSN | 2058-3834 1741-4199 |
EndPage | 661 |
ExternalDocumentID | 10_1088_1674_1056_22_9_098702 47157522 |
GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7SC 7U5 8FD H8D JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c260t-7816623670d4604b5270a0e92714fc720152fc4499696827c5890c8ce0c24b33 |
ISSN | 1674-1056 |
IngestDate | Fri Jul 11 11:25:21 EDT 2025 Tue Jul 01 02:55:02 EDT 2025 Wed Feb 14 10:39:16 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c260t-7816623670d4604b5270a0e92714fc720152fc4499696827c5890c8ce0c24b33 |
Notes | The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem, such as Salience, Citation KNN, and MI-ClusterRegress. All of these solutions work in batch mode during the training step. However, in practice, examples usually arrive in sequence. Therefore, the training step cannot be accomplished once. In this paper, an online multiple instance regression method "OnlineMIR" is proposed. OnlineMIR can not only predict the label of a new bag, but also update the current regression model with the latest arrived bag. The experimental results show that OnlineMIR achieves good performances on both synthetic and real data sets. mutiple instance, regression, online learning 11-5639/O4 Wang Zhi-Gang, Zhao Zeng-Shun, and Zhang Chang-Shui( a) Department of Automation, Tsinghua University, State Key Laboratory of Intelligent Technologie and Systems, Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China b) College of Information and Electrical Engineenng, Shandong University of Science and Technology, Qingdao 266590, China c) School of Control Science and Engineering, Shandong University, Jinan 250061, China ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1753548090 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1753548090 crossref_primary_10_1088_1674_1056_22_9_098702 chongqing_primary_47157522 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chinese Physics |
PublicationYear | 2013 |
References | Zhou Z H (7) 2009 19 Dooly D R (13) 2003; 3 Cauwenberghs G (18) 2001 Fung G (6) 2007 Zeisl B (10) 1 Ray S (2) 2001 Parrella F (17) 2007 Chen Y X (4) 2004; 5 Sun Z H (16) 2010; 19 Andrews S (3) 2003 5 Wagstaff K L (14) 2007 8 Wagstaff K L (15) 2008 Li M (9) 2010 Zhou Z H (11) 2010; 2 Meng Q F (20) 2009; 18 Amar R A (12) 2001 |
References_xml | – start-page: 291 year: 2008 ident: 15 – start-page: 444 year: 2007 ident: 14 – start-page: 425 year: 2001 ident: 2 – volume: 5 start-page: 939 year: 2004 ident: 4 publication-title: J. Mach. Learn. Res. – start-page: 409 year: 2001 ident: 18 – start-page: 1879 ident: 10 – ident: 1 doi: 10.1016/S0004-3702(96)00034-3 – volume: 2 start-page: 2 issn: 0165-1684 year: 2010 ident: 11 publication-title: Signal Process – ident: 5 doi: 10.1109/TPAMI.2006.248 – year: 2007 ident: 17 – start-page: 3 year: 2001 ident: 12 – ident: 19 doi: 10.1016/j.rse.2007.05.017 – volume: 19 start-page: 110502 issn: 1674-1056 year: 2010 ident: 16 publication-title: Chin. Phys. doi: 10.1088/1674-1056/19/11/110502 – start-page: 577 year: 2003 ident: 3 – start-page: 425 year: 2007 ident: 6 – volume: 3 start-page: 651 year: 2003 ident: 13 publication-title: J. Mach. Learn. Res. – start-page: 1395 year: 2010 ident: 9 – start-page: 1249 year: 2009 ident: 7 – ident: 8 doi: 10.1109/TPAMI.2010.226 – volume: 18 start-page: 2194 issn: 1674-1056 year: 2009 ident: 20 publication-title: Chin. Phys. doi: 10.1088/1674-1056/18/6/014 |
SSID | ssj0061023 ssib054405859 ssib000804704 |
Score | 1.9556805 |
Snippet | The multiple instance regression problem has become a hot research topic recently. There are several approaches to the multiple instance regression problem,... |
SourceID | proquest crossref chongqing |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 656 |
SubjectTerms | KNN Labels Mathematical models Online Regression Training 回归模型 回归法 回归问题 在线 多实例 批处理 数据集 |
Title | Online multiple instance regression |
URI | http://lib.cqvip.com/qk/85823A/201309/47157522.html https://www.proquest.com/docview/1753548090 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBa2DgN2GfbEkj3gYb2qkRXJko7D0K4YurZAXSzoRbBk5XFxtiW57NePtKzYBXrodjECKbEdkqY-UuZHQg5h0dTSTz2dcyOpcHUOz1wINDDjcsbqXAUscP5-Xpxei28zOUuNtrvqkq078n_urCv5H63CGOgVq2T_QbP7k8IAfAb9whE0DMd76TjyhPYvBa5arOexE8oivt_aDMEn9soOm9BlMzZ9w-UfXdL4ZrmiX6tuLYvZ5DaTehOaBb1a7prBRPxFW5yAU6th-gBbOZiUPoger1ACfLHs-KjjGMAM3B42QzfJ-cAczMDnMQPPPB-soDmNQ7S400eDX8N0QboulqQgCaxp95H6Uw2Zsc8v7Mn12Zktj2flQ_KIQ0jQFmteXA6gDBOqDy2lACSqEarFVblAigoMvtNlUzWX1pP92ITziZnEm0CujeW6WfwCBHEbs9xeslscUj4jT7sAIvscreE5eRCaF-TxZVTpS_Ip2kSWbCJLNpH1NvGKlCfH5ZdT2jXCoB7CzS1VuLnbUu3VomDCSa5YxYLhKhdzr0Ctks-9gOAVqY648lIb5rUPzHPhptPX5KBZN-ENyQDgqUp6KSsUkHBO6sLVha9knc-lUyMy3v9r-zPynVjALwDqOR-RoySG_Vz7DoPWFmVoUYaWc2tslOGIfEzCsuC1cCuqasJ6t7HID4tMg4aN7_Gdt-RJb7rvyMH29y68Byy4dR9aI_gL-VRQ9w |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+multiple+instance+regression&rft.jtitle=Chinese+physics+B&rft.au=Wang%2C+Zhi-Gang&rft.au=Zhao%2C+Zeng-Shun&rft.au=Zhang%2C+Chang-Shui&rft.date=2013-09-01&rft.issn=1674-1056&rft.eissn=1741-4199&rft.volume=22&rft.issue=9&rft.spage=098702&rft.epage=1-098702-6&rft_id=info:doi/10.1088%2F1674-1056%2F22%2F9%2F098702&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |