THE CAUCHY PROBLEM FOR A GENERALIZED KORTEWEG-DE VRIES EQUATION IN HOMOGENEOUS SOBOLEV SPACES
Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \...
Saved in:
Published in | Taiwanese journal of mathematics Vol. 14; no. 2; pp. 479 - 499 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Mathematical Society of the Republic of China (Taiwan)
01.04.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 1027-5487 2224-6851 |
DOI | 10.11650/twjm/1500405803 |
Cover
Abstract | Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \right.$ with 0 ≤ α ≤ 1. The local well-posedness of the Cauchy problem in the homogeneous Sobolev space Hs (ℝ) for $s \in \left( {\frac{{\alpha - 3}}{{2\left( {2 - \alpha } \right)}},0} \right)$ is proved. In addition, the mapping that associated to appropriate initial-data the corresponding solution is analytic as a function between appropriate Banach spaces. |
---|---|
AbstractList | Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \right.$ with 0 ≤ α ≤ 1. The local well-posedness of the Cauchy problem in the homogeneous Sobolev space Hs (ℝ) for $s \in \left( {\frac{{\alpha - 3}}{{2\left( {2 - \alpha } \right)}},0} \right)$ is proved. In addition, the mapping that associated to appropriate initial-data the corresponding solution is analytic as a function between appropriate Banach spaces. |
Author | Hu, Sufen 薛儒英 胡素芬 Xue, Ruying |
Author_xml | – sequence: 1 givenname: Ruying surname: Xue fullname: Xue, Ruying – sequence: 2 fullname: 薛儒英 – sequence: 3 givenname: Sufen surname: Hu fullname: Hu, Sufen – sequence: 4 fullname: 胡素芬 |
BookMark | eNpFkMtKw0AYRgepYFvduxHmBWL_uWZmmabTJph2ai4VBQlJmoDFXkgK4ttrrejq25zzLc4A9Xb7XY3QLYF7QqSA0fFjsx0RAcBBKGAXqE8p5Y5UgvRQnwB1HcGVe4UGXbcBoEoS2UevaWCw72V-8IyXsR1HZo6nNsYenpmFib0ofDET_GDj1DyZmTMxeBWHJsHmMfPS0C5wuMCBndsTbbMEJ3ZsI7PCydLzTXKNLpvivatvfneIsqlJ_cCJ7Cz0vcipqISjwySThdCSa6a5IlqWldJNQykoAZrrptSCu41bVKQoC63Way6rRrMSalW6tWJDBOffqt13XVs3-aF92xbtZ04g_8mTn_Lk_3m-lbuzsumO-_aP50wx7irCvgBXc1vm |
Cites_doi | 10.1002/cpa.3160460405 10.1155/S1073792802112104 10.4134/JKMS.2008.45.1.079 10.1353/ajm.2001.0035 10.1016/S0764-4442(00)88471-2 10.1090/S0894-0347-96-00200-7 10.1016/j.jmaa.2005.04.041 10.57262/die/1367846899 10.1215/S0012-7094-01-10638-8 10.1006/jfan.1997.3148 10.1137/0527038 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.11650/twjm/1500405803 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2224-6851 |
EndPage | 499 |
ExternalDocumentID | 10_11650_twjm_1500405803 43834781 |
GroupedDBID | -~X 123 29Q 2WC AAFWJ AAHSX ABBHK ABXSQ ACHDO ACIPV ACMTB ACTMH ADULT AEHFS AELHJ AENEX AEUPB AFBOV AFFOW AFOWJ AGLNM AIHAF ALMA_UNASSIGNED_HOLDINGS ALRMG C1A E3Z EBS ECEWR EJD IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST OK1 OVT RBV RPE SA0 XSB AAYXX CITATION |
ID | FETCH-LOGICAL-c260t-3636a596493948196bc89ff220850949fb9547f7ac1aba98dd46cf93b0e8b7e83 |
ISSN | 1027-5487 |
IngestDate | Tue Jul 01 02:33:55 EDT 2025 Thu Jul 03 21:19:27 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c260t-3636a596493948196bc89ff220850949fb9547f7ac1aba98dd46cf93b0e8b7e83 |
OpenAccessLink | https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-14/issue-2/THE-CAUCHY-PROBLEM-FOR-A-GENERALIZED-KORTEWEG-DE-VRIES-EQUATION/10.11650/twjm/1500405803.pdf |
PageCount | 21 |
ParticipantIDs | crossref_primary_10_11650_twjm_1500405803 jstor_primary_43834781 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-04-01 |
PublicationDateYYYYMMDD | 2010-04-01 |
PublicationDate_xml | – month: 04 year: 2010 text: 2010-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Taiwanese journal of mathematics |
PublicationYear | 2010 |
Publisher | Mathematical Society of the Republic of China (Taiwan) |
Publisher_xml | – name: Mathematical Society of the Republic of China (Taiwan) |
References | 11 1 12 2 3 4 5 6 7 8 9 10 |
References_xml | – ident: 2 – ident: 7 doi: 10.1002/cpa.3160460405 – ident: 8 doi: 10.1155/S1073792802112104 – ident: 12 doi: 10.4134/JKMS.2008.45.1.079 – ident: 9 doi: 10.1353/ajm.2001.0035 – ident: 10 doi: 10.1016/S0764-4442(00)88471-2 – ident: 5 doi: 10.1090/S0894-0347-96-00200-7 – ident: 11 doi: 10.1016/j.jmaa.2005.04.041 – ident: 1 doi: 10.57262/die/1367846899 – ident: 6 doi: 10.1215/S0012-7094-01-10638-8 – ident: 4 doi: 10.1006/jfan.1997.3148 – ident: 3 doi: 10.1137/0527038 |
SSID | ssj0028616 |
Score | 1.8135027 |
Snippet | Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}}... |
SourceID | crossref jstor |
SourceType | Index Database Publisher |
StartPage | 479 |
SubjectTerms | Burger equation Cauchy problem Differential equations Dyadics Estimation methods Mathematical functions Mathematical induction Sobolev spaces |
Title | THE CAUCHY PROBLEM FOR A GENERALIZED KORTEWEG-DE VRIES EQUATION IN HOMOGENEOUS SOBOLEV SPACES |
URI | https://www.jstor.org/stable/43834781 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIfF2r2sD2NdF9pdih72MoyWxJIveszFm7M18chtaaEEyRfYoNkYDqX963cky5eMDtq-mGDEIeiTpd-RdM5B6D2FRQ1WGUnSRDpE5ZkkgvmMgJJ1aNKlUqRqv2M8ccMF-7JyVnURRB1dksuP8e2dcSWPoQrvgKuKkn0A2coovIDfwBeeQBie92McBtagtxiE59CTUf8sGFvg1MG3bi6kjS6CofU1Asn6PfhMhoG1nIL6swKQsbrYzmhihdE4Uq2jxcyaRf3oLFhas2-9gRGJRrbOxY9roWpVNjNNXFUZXytdvtrq_dHp9qZcEfWIKa7_ZCbqzOwxqOPx6mpKMS2C80qUb7Mzb7LG-LDvno5B_0En5tc_r9QOgaOmDMfv0HrxKQ_c_1mTqpuC2kcBK2tlY11b2ENPbc_TB_PT_rJysX1XF7ut_m95MA0W2spCu7awI0Sad1G1spi_QM-NS4B7Bd9D9CTdvEQH47p3j9AlkMYFaWxIYyCNe7hBGjdIY00al6TxaIIbpLEhjQvSr9DiUzAfhMQUxiAxuJ85oS51hcNdxqlKtsNdGfs8y2xVbxXcdZ5J7jAv80TcFVJwP0mYG2ecyk7qSy_1aQvtb35t0mOEvZgLr5N5tpSSpawjORPQiDkS_IZuYp-gD2UvrX8X-U_W_2Nyglq6G6uGKg2uCmV-_QAjb9CzegS-Rfv5n236DnRfLk816r_sdEWr |
linkProvider | Project Euclid |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+CAUCHY+PROBLEM+FOR+A+GENERALIZED+KORTEWEG-DE+VRIES+EQUATION+IN+HOMOGENEOUS+SOBOLEV+SPACES&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Xue%2C+Ruying&rft.au=Hu%2C+Sufen&rft.date=2010-04-01&rft.issn=1027-5487&rft.volume=14&rft.issue=2&rft_id=info:doi/10.11650%2Ftwjm%2F1500405803&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_twjm_1500405803 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon |