THE CAUCHY PROBLEM FOR A GENERALIZED KORTEWEG-DE VRIES EQUATION IN HOMOGENEOUS SOBOLEV SPACES

Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \...

Full description

Saved in:
Bibliographic Details
Published inTaiwanese journal of mathematics Vol. 14; no. 2; pp. 479 - 499
Main Authors Xue, Ruying, 薛儒英, Hu, Sufen, 胡素芬
Format Journal Article
LanguageEnglish
Published Mathematical Society of the Republic of China (Taiwan) 01.04.2010
Subjects
Online AccessGet full text
ISSN1027-5487
2224-6851
DOI10.11650/twjm/1500405803

Cover

Abstract Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \right.$ with 0 ≤ α ≤ 1. The local well-posedness of the Cauchy problem in the homogeneous Sobolev space Hs (ℝ) for $s \in \left( {\frac{{\alpha - 3}}{{2\left( {2 - \alpha } \right)}},0} \right)$ is proved. In addition, the mapping that associated to appropriate initial-data the corresponding solution is analytic as a function between appropriate Banach spaces.
AbstractList Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}} \right|^{2\alpha }}u = 0,t \in {{\Cal R}^ + },x \in {\Cal R}, \hfill \cr u\left( {x,0} \right) = \varphi \left( x \right) \hfill \cr \endmatrix \right.$ with 0 ≤ α ≤ 1. The local well-posedness of the Cauchy problem in the homogeneous Sobolev space Hs (ℝ) for $s \in \left( {\frac{{\alpha - 3}}{{2\left( {2 - \alpha } \right)}},0} \right)$ is proved. In addition, the mapping that associated to appropriate initial-data the corresponding solution is analytic as a function between appropriate Banach spaces.
Author Hu, Sufen
薛儒英
胡素芬
Xue, Ruying
Author_xml – sequence: 1
  givenname: Ruying
  surname: Xue
  fullname: Xue, Ruying
– sequence: 2
  fullname: 薛儒英
– sequence: 3
  givenname: Sufen
  surname: Hu
  fullname: Hu, Sufen
– sequence: 4
  fullname: 胡素芬
BookMark eNpFkMtKw0AYRgepYFvduxHmBWL_uWZmmabTJph2ai4VBQlJmoDFXkgK4ttrrejq25zzLc4A9Xb7XY3QLYF7QqSA0fFjsx0RAcBBKGAXqE8p5Y5UgvRQnwB1HcGVe4UGXbcBoEoS2UevaWCw72V-8IyXsR1HZo6nNsYenpmFib0ofDET_GDj1DyZmTMxeBWHJsHmMfPS0C5wuMCBndsTbbMEJ3ZsI7PCydLzTXKNLpvivatvfneIsqlJ_cCJ7Cz0vcipqISjwySThdCSa6a5IlqWldJNQykoAZrrptSCu41bVKQoC63Way6rRrMSalW6tWJDBOffqt13XVs3-aF92xbtZ04g_8mTn_Lk_3m-lbuzsumO-_aP50wx7irCvgBXc1vm
Cites_doi 10.1002/cpa.3160460405
10.1155/S1073792802112104
10.4134/JKMS.2008.45.1.079
10.1353/ajm.2001.0035
10.1016/S0764-4442(00)88471-2
10.1090/S0894-0347-96-00200-7
10.1016/j.jmaa.2005.04.041
10.57262/die/1367846899
10.1215/S0012-7094-01-10638-8
10.1006/jfan.1997.3148
10.1137/0527038
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.11650/twjm/1500405803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2224-6851
EndPage 499
ExternalDocumentID 10_11650_twjm_1500405803
43834781
GroupedDBID -~X
123
29Q
2WC
AAFWJ
AAHSX
ABBHK
ABXSQ
ACHDO
ACIPV
ACMTB
ACTMH
ADULT
AEHFS
AELHJ
AENEX
AEUPB
AFBOV
AFFOW
AFOWJ
AGLNM
AIHAF
ALMA_UNASSIGNED_HOLDINGS
ALRMG
C1A
E3Z
EBS
ECEWR
EJD
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
OK1
OVT
RBV
RPE
SA0
XSB
AAYXX
CITATION
ID FETCH-LOGICAL-c260t-3636a596493948196bc89ff220850949fb9547f7ac1aba98dd46cf93b0e8b7e83
ISSN 1027-5487
IngestDate Tue Jul 01 02:33:55 EDT 2025
Thu Jul 03 21:19:27 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c260t-3636a596493948196bc89ff220850949fb9547f7ac1aba98dd46cf93b0e8b7e83
OpenAccessLink https://projecteuclid.org/journals/taiwanese-journal-of-mathematics/volume-14/issue-2/THE-CAUCHY-PROBLEM-FOR-A-GENERALIZED-KORTEWEG-DE-VRIES-EQUATION/10.11650/twjm/1500405803.pdf
PageCount 21
ParticipantIDs crossref_primary_10_11650_twjm_1500405803
jstor_primary_43834781
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-04-01
PublicationDateYYYYMMDD 2010-04-01
PublicationDate_xml – month: 04
  year: 2010
  text: 2010-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Taiwanese journal of mathematics
PublicationYear 2010
Publisher Mathematical Society of the Republic of China (Taiwan)
Publisher_xml – name: Mathematical Society of the Republic of China (Taiwan)
References 11
1
12
2
3
4
5
6
7
8
9
10
References_xml – ident: 2
– ident: 7
  doi: 10.1002/cpa.3160460405
– ident: 8
  doi: 10.1155/S1073792802112104
– ident: 12
  doi: 10.4134/JKMS.2008.45.1.079
– ident: 9
  doi: 10.1353/ajm.2001.0035
– ident: 10
  doi: 10.1016/S0764-4442(00)88471-2
– ident: 5
  doi: 10.1090/S0894-0347-96-00200-7
– ident: 11
  doi: 10.1016/j.jmaa.2005.04.041
– ident: 1
  doi: 10.57262/die/1367846899
– ident: 6
  doi: 10.1215/S0012-7094-01-10638-8
– ident: 4
  doi: 10.1006/jfan.1997.3148
– ident: 3
  doi: 10.1137/0527038
SSID ssj0028616
Score 1.8135027
Snippet Considered in this article is the Cauchy problem of a generalized Korteweg-de Vries equation $\left\{ \matrix {u_t} + {u_{xxx}} + u{u_x} + {\left| {{D_x}}...
SourceID crossref
jstor
SourceType Index Database
Publisher
StartPage 479
SubjectTerms Burger equation
Cauchy problem
Differential equations
Dyadics
Estimation methods
Mathematical functions
Mathematical induction
Sobolev spaces
Title THE CAUCHY PROBLEM FOR A GENERALIZED KORTEWEG-DE VRIES EQUATION IN HOMOGENEOUS SOBOLEV SPACES
URI https://www.jstor.org/stable/43834781
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIfF2r2sD2NdF9pdih72MoyWxJIveszFm7M18chtaaEEyRfYoNkYDqX963cky5eMDtq-mGDEIeiTpd-RdM5B6D2FRQ1WGUnSRDpE5ZkkgvmMgJJ1aNKlUqRqv2M8ccMF-7JyVnURRB1dksuP8e2dcSWPoQrvgKuKkn0A2coovIDfwBeeQBie92McBtagtxiE59CTUf8sGFvg1MG3bi6kjS6CofU1Asn6PfhMhoG1nIL6swKQsbrYzmhihdE4Uq2jxcyaRf3oLFhas2-9gRGJRrbOxY9roWpVNjNNXFUZXytdvtrq_dHp9qZcEfWIKa7_ZCbqzOwxqOPx6mpKMS2C80qUb7Mzb7LG-LDvno5B_0En5tc_r9QOgaOmDMfv0HrxKQ_c_1mTqpuC2kcBK2tlY11b2ENPbc_TB_PT_rJysX1XF7ut_m95MA0W2spCu7awI0Sad1G1spi_QM-NS4B7Bd9D9CTdvEQH47p3j9AlkMYFaWxIYyCNe7hBGjdIY00al6TxaIIbpLEhjQvSr9DiUzAfhMQUxiAxuJ85oS51hcNdxqlKtsNdGfs8y2xVbxXcdZ5J7jAv80TcFVJwP0mYG2ecyk7qSy_1aQvtb35t0mOEvZgLr5N5tpSSpawjORPQiDkS_IZuYp-gD2UvrX8X-U_W_2Nyglq6G6uGKg2uCmV-_QAjb9CzegS-Rfv5n236DnRfLk816r_sdEWr
linkProvider Project Euclid
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=THE+CAUCHY+PROBLEM+FOR+A+GENERALIZED+KORTEWEG-DE+VRIES+EQUATION+IN+HOMOGENEOUS+SOBOLEV+SPACES&rft.jtitle=Taiwanese+journal+of+mathematics&rft.au=Xue%2C+Ruying&rft.au=Hu%2C+Sufen&rft.date=2010-04-01&rft.issn=1027-5487&rft.volume=14&rft.issue=2&rft_id=info:doi/10.11650%2Ftwjm%2F1500405803&rft.externalDBID=n%2Fa&rft.externalDocID=10_11650_twjm_1500405803
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-5487&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-5487&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-5487&client=summon