Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics

Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing...

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 361; p. 122930
Main Authors Chang, Ling-Yu, Chang, Ching-Cheng, Rinawati, Mia, Chang, Yu-Hsin, Cheng, Yao-Sheng, Ho, Kuo-Chuan, Chen, Chia-Chin, Lin, Chia-Her, Wang, Chia-Hsin, Yeh, Min-Hsin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO3 has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO3 for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO3 to promote the electrochromic performance. The graphitic sp2 structure and specific functional groups improved the WO3 thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO3 electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO3 one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm2 min−1 W−1 after introducing GQD into the WO3 thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO3 thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO3. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO3-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system. [Display omitted] •GQD was introduced into the WO3 to promote the electrochromic performance.•GQD/WO3 based NIR PECD showed a transmittance contrast of 40% at 1000 nm.•Existence of the hydrogen bonds via GQD enhanced the stability of the WO3 thin film.•NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C.•Complementary PECD for Thermal Management in Agrivoltaics was proposed.
AbstractList Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO₃ has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO₃ for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO₃ to promote the electrochromic performance. The graphitic sp² structure and specific functional groups improved the WO₃ thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO₃ electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO₃ one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm² min⁻¹ W⁻¹ after introducing GQD into the WO₃ thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO₃ electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO₃ thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO₃. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO₃-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system.
Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO3 has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO3 for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO3 to promote the electrochromic performance. The graphitic sp2 structure and specific functional groups improved the WO3 thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO3 electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO3 one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm2 min−1 W−1 after introducing GQD into the WO3 thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO3 thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO3. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO3-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system. [Display omitted] •GQD was introduced into the WO3 to promote the electrochromic performance.•GQD/WO3 based NIR PECD showed a transmittance contrast of 40% at 1000 nm.•Existence of the hydrogen bonds via GQD enhanced the stability of the WO3 thin film.•NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C.•Complementary PECD for Thermal Management in Agrivoltaics was proposed.
ArticleNumber 122930
Author Rinawati, Mia
Chang, Ching-Cheng
Chen, Chia-Chin
Chang, Yu-Hsin
Cheng, Yao-Sheng
Ho, Kuo-Chuan
Wang, Chia-Hsin
Yeh, Min-Hsin
Chang, Ling-Yu
Lin, Chia-Her
Author_xml – sequence: 1
  givenname: Ling-Yu
  surname: Chang
  fullname: Chang, Ling-Yu
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 2
  givenname: Ching-Cheng
  surname: Chang
  fullname: Chang, Ching-Cheng
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 3
  givenname: Mia
  surname: Rinawati
  fullname: Rinawati, Mia
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 4
  givenname: Yu-Hsin
  surname: Chang
  fullname: Chang, Yu-Hsin
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 5
  givenname: Yao-Sheng
  surname: Cheng
  fullname: Cheng, Yao-Sheng
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
– sequence: 6
  givenname: Kuo-Chuan
  surname: Ho
  fullname: Ho, Kuo-Chuan
  organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 7
  givenname: Chia-Chin
  surname: Chen
  fullname: Chen, Chia-Chin
  organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
– sequence: 8
  givenname: Chia-Her
  surname: Lin
  fullname: Lin, Chia-Her
  organization: Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
– sequence: 9
  givenname: Chia-Hsin
  surname: Wang
  fullname: Wang, Chia-Hsin
  organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
– sequence: 10
  givenname: Min-Hsin
  surname: Yeh
  fullname: Yeh, Min-Hsin
  email: mhyeh@mail.ntust.edu.tw
  organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
BookMark eNqFkT1v3DAMhj2kQJO0f6HQ2MVXfZzlGOjQIOgXEDRLgI4CT6bOPNiSQ-nukF-Tv1ofrl26ZOJAPi8JPlfVRUwRq-qDkisllf20W8GMEXn7vNJSr1dK687Ii-pSGmlrbVX3trrKeSel1ErLy-rlFwLXFAMDYy_mIZWEI_rCyQ-cJvKixwN5FEcqg9gyzMOyQDztIZb9JPpUxJR6CrTQvx-MKANFEWicRElH4F4EyKVmzHOKGZc28gSjmCDCFieMRYTEIuMY6jkd8XTE7ZbpkMYC5PO76k2AMeP7v_W6evz29fHuR33_8P3n3e197bWVpVZqrXorNZpWggzWtDdWr9GHtu02uIEOW--tV9D4sOnwxvp2Y9Foj7ZpemWuq4_n2JnT0x5zcRNlj-MIEdM-O6MaY5WRbbOMfj6Pek45MwbnqUChFAsDjU5Jd1Lhdu6fCndS4c4qFtz-h89ME_Dz6-CXM4jLGw6E7LInjB574sWX6xO9FvEHzpaw8g
CitedBy_id crossref_primary_10_1016_j_elecom_2024_107762
crossref_primary_10_1016_j_solmat_2024_113007
crossref_primary_10_3390_agronomy14081824
crossref_primary_10_1002_pat_6571
crossref_primary_10_1016_j_cclet_2024_110321
Cites_doi 10.1039/cs9972600147
10.1021/acs.jpcc.8b05692
10.1109/JPHOTOV.2022.3215087
10.1016/j.solmat.2017.08.016
10.1016/j.ceramint.2021.08.152
10.1002/adfm.201002477
10.1016/j.jpowsour.2019.226839
10.1016/S0013-4686(01)00391-7
10.1016/j.carbon.2022.08.067
10.1039/D0MA00593B
10.1016/j.ceramint.2021.08.340
10.1002/adma.201808283
10.1016/j.carbon.2019.10.102
10.1016/j.apenergy.2020.115582
10.1016/j.mtchem.2018.09.007
10.3390/agronomy13020299
10.1016/j.jcis.2023.05.187
10.1038/s41467-019-08502-9
10.1016/j.cej.2020.125380
10.2147/IJN.S168570
10.1016/j.diamond.2022.109033
10.1002/aelm.201800713
10.1016/j.synthmet.2014.11.031
10.1002/aenm.202001189
10.1016/j.electacta.2019.135504
10.1016/j.jcis.2023.10.028
10.1016/j.renene.2022.08.089
10.1039/D3TC01669B
10.1016/j.arabjc.2022.103856
10.1177/0192623307310950
10.1016/j.carbon.2021.10.027
10.14710/ijred.2022.41116
10.1021/acsanm.2c02279
10.1002/adfm.201603084
10.1016/j.nanoen.2021.106575
10.1016/j.renene.2017.12.049
10.1016/j.molstruc.2016.05.080
10.1016/j.wace.2015.08.001
10.1016/j.cej.2022.136826
10.1021/acsanm.0c03261
10.1007/s10854-022-07986-4
10.1021/acssuschemeng.2c03229
10.1002/ppsc.201300252
10.1016/j.apenergy.2022.120478
10.1021/acsaem.0c00241
10.1016/j.cej.2023.146754
10.1016/j.apsusc.2021.151277
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2024.122930
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
ExternalDocumentID 10_1016_j_apenergy_2024_122930
S0306261924003131
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAQXK
AATTM
AAYOK
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SSH
WUQ
ZY4
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c260t-1141d602e370a0f6378624ecf779beba9e7cc6c1a5cfb9e86c7b6e32ce655d13
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Fri Aug 22 20:22:53 EDT 2025
Tue Jul 01 04:01:22 EDT 2025
Thu Apr 24 23:14:49 EDT 2025
Sat Feb 01 16:07:34 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Agrivoltaics
Thermal management
Photoelectrochromic device
Self-powered
Graphene quantum dot
Tungsten trioxide
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-1141d602e370a0f6378624ecf779beba9e7cc6c1a5cfb9e86c7b6e32ce655d13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 3153613075
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3153613075
crossref_citationtrail_10_1016_j_apenergy_2024_122930
crossref_primary_10_1016_j_apenergy_2024_122930
elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
2024-05-00
20240501
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Applied energy
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Cho, Kim, Yang, Park, Jeong, Jeong (bb0205) 2020; 157
Song, Yan, Dai, Hao, Guo, Xie (bb0250) 2022; 33
Arslan, Firat, Tokgöz, Peksoz (bb0195) 2021; 47
Alam, Alam, Butt (bb0005) 2023; 13
Lin, Rinawati, Huang, Chang, Chang, Cheng (bb0090) 2024; 654
Dave, Gomes (bb0080) 2019; 66
Hauch, Georg, Baumgärtner, Krašovec, Orel (bb0050) 2001; 46
Liao, Xu, Zhao, Wang, Ge (bb0215) 2021; 4
Ahmad, Shinde, Song, Kim (bb0075) 2021; 47
Liu, Jiang, Ye, Zhao, Gao, Wu (bb0210) 2016; 26
Kumpanalaisatit, Setthapun, Sintuya, Jansri (bb0025) 2022; 11
Chiang, Chang, Cheng, Chang, Yeh, Huang (bb0040) 2022; 199
Fu, Xu, Zhang, Tian, Huang, Xie (bb0200) 2019; 436
Rinawati, Wang, Huang, Wu, Cheng, Kurniawan (bb0100) 2022; 200
Thompson, Bombelli, Shubham, Watson, Everard, D’Ardes (bb0235) 2020; 10
Chang, Chang, Cheng, Chang, Lai, Septiani (bb0030) 2023; 11
La Notte, Giordano, Calabrò, Bedini, Colla, Puglisi (bb0010) 2020; 278
Monika, Mahalakshmi, Subha, Pandian, Ramasamy (bb0145) 2022; 125
Wang, Chen, Gao, Lei (bb0070) 2019; 5
Deerinck (bb0165) 2008; 36
Yu, Guo, Wang, Zhang, Liu, Dong (bb0185) 2020; 332
Ratikainen, Kokko (bb0245) 2019; 10
Yilmaz, Magni, Martinez, Gonzalez Gil, Della Pirriera, Manca (bb0045) 2020; 3
Wei, Li, Guo, Li, Hou, Guo (bb0190) 2022; 571
Obotowo, Obot, Ekpe (bb0225) 2016; 1122
Francis, Ikenna (bb0230) 2021; 13
Hong, Zhao, Deng, Yang, Peng, Liu (bb0170) 2018; 13
Lin, Aulia, Yeh, Hsiao, Tarigan, Ho (bb0095) 2023; 648
Wang, Rinawati, Zhan, Lin, Huang, Chen (bb0120) 2022; 5
Hatfield, Prueger (bb0240) 2015; 10
Li, Xiao, Hu, Wang, Wang, Yan (bb0150) 2022; 15
Jo, Kim, Ahn (bb0055) 2022; 445
Wagner, Lask, Kiesel, Lewandowski, Weselek, Högy (bb0020) 2023; 13
Mane, Navale, Pawar, Lee, Patil (bb0220) 2015; 199
Mortimer (bb0060) 1997; 26
Williams, Hashad, Wang, Zhang (bb0015) 2023; 332
Tarigan, Aulia, Rinawati, Chang, Cheng, Chang (bb0105) 2023; 476
Zheng, Ou, Strano, Kaner, Mitchell, Kalantar-zadeh (bb0175) 2011; 21
Cheng, Chiang, Yu, Hsiao, Yeh, Chang (bb0035) 2021; 90
Wang, Rinawati, Huang, Cheng, Lin, Chen (bb0115) 2022; 186
Tian, Tang, Teng, Lau (bb0135) 2018; 10
Niu, Wang, Zou, Tan, Jia, Weng (bb0155) 2021; 24
Qian, Ma, Xu, Li, Wang (bb0255) 2018; 177
Casini (bb0160) 2018; 119
Sangabathula, Sharma (bb0140) 2020; 1
Yan, Gong, Chen, Zeng, Huang, Pu (bb0130) 2019; 31
Lin, Rinawati, Chang, Wang, Wu, Yen (bb0110) 2023
Bacon, Bradley, Nann (bb0125) 2014; 31
Ahmad, Song, Kim (bb0065) 2022; 10
Qi, Wang, Li, Liu, Qiu, Li (bb0085) 2020; 397
Guo, Wang, Diao, Zhang, Dong, Yu (bb0180) 2018; 122
Deerinck (10.1016/j.apenergy.2024.122930_bb0165) 2008; 36
Liao (10.1016/j.apenergy.2024.122930_bb0215) 2021; 4
Williams (10.1016/j.apenergy.2024.122930_bb0015) 2023; 332
Kumpanalaisatit (10.1016/j.apenergy.2024.122930_bb0025) 2022; 11
Guo (10.1016/j.apenergy.2024.122930_bb0180) 2018; 122
Jo (10.1016/j.apenergy.2024.122930_bb0055) 2022; 445
Ahmad (10.1016/j.apenergy.2024.122930_bb0075) 2021; 47
Wang (10.1016/j.apenergy.2024.122930_bb0115) 2022; 186
Qian (10.1016/j.apenergy.2024.122930_bb0255) 2018; 177
Wang (10.1016/j.apenergy.2024.122930_bb0070) 2019; 5
Hong (10.1016/j.apenergy.2024.122930_bb0170) 2018; 13
Chiang (10.1016/j.apenergy.2024.122930_bb0040) 2022; 199
Liu (10.1016/j.apenergy.2024.122930_bb0210) 2016; 26
Dave (10.1016/j.apenergy.2024.122930_bb0080) 2019; 66
Mortimer (10.1016/j.apenergy.2024.122930_bb0060) 1997; 26
Sangabathula (10.1016/j.apenergy.2024.122930_bb0140) 2020; 1
Thompson (10.1016/j.apenergy.2024.122930_bb0235) 2020; 10
Song (10.1016/j.apenergy.2024.122930_bb0250) 2022; 33
Niu (10.1016/j.apenergy.2024.122930_bb0155) 2021; 24
Hatfield (10.1016/j.apenergy.2024.122930_bb0240) 2015; 10
Hauch (10.1016/j.apenergy.2024.122930_bb0050) 2001; 46
Yan (10.1016/j.apenergy.2024.122930_bb0130) 2019; 31
Arslan (10.1016/j.apenergy.2024.122930_bb0195) 2021; 47
Wei (10.1016/j.apenergy.2024.122930_bb0190) 2022; 571
Lin (10.1016/j.apenergy.2024.122930_bb0090) 2024; 654
Rinawati (10.1016/j.apenergy.2024.122930_bb0100) 2022; 200
Wagner (10.1016/j.apenergy.2024.122930_bb0020) 2023; 13
Tian (10.1016/j.apenergy.2024.122930_bb0135) 2018; 10
Casini (10.1016/j.apenergy.2024.122930_bb0160) 2018; 119
Wang (10.1016/j.apenergy.2024.122930_bb0120) 2022; 5
Fu (10.1016/j.apenergy.2024.122930_bb0200) 2019; 436
Cho (10.1016/j.apenergy.2024.122930_bb0205) 2020; 157
La Notte (10.1016/j.apenergy.2024.122930_bb0010) 2020; 278
Yilmaz (10.1016/j.apenergy.2024.122930_bb0045) 2020; 3
Tarigan (10.1016/j.apenergy.2024.122930_bb0105) 2023; 476
Lin (10.1016/j.apenergy.2024.122930_bb0110) 2023
Lin (10.1016/j.apenergy.2024.122930_bb0095) 2023; 648
Monika (10.1016/j.apenergy.2024.122930_bb0145) 2022; 125
Obotowo (10.1016/j.apenergy.2024.122930_bb0225) 2016; 1122
Bacon (10.1016/j.apenergy.2024.122930_bb0125) 2014; 31
Chang (10.1016/j.apenergy.2024.122930_bb0030) 2023; 11
Yu (10.1016/j.apenergy.2024.122930_bb0185) 2020; 332
Cheng (10.1016/j.apenergy.2024.122930_bb0035) 2021; 90
Zheng (10.1016/j.apenergy.2024.122930_bb0175) 2011; 21
Ahmad (10.1016/j.apenergy.2024.122930_bb0065) 2022; 10
Mane (10.1016/j.apenergy.2024.122930_bb0220) 2015; 199
Li (10.1016/j.apenergy.2024.122930_bb0150) 2022; 15
Qi (10.1016/j.apenergy.2024.122930_bb0085) 2020; 397
Alam (10.1016/j.apenergy.2024.122930_bb0005) 2023; 13
Francis (10.1016/j.apenergy.2024.122930_bb0230) 2021; 13
Ratikainen (10.1016/j.apenergy.2024.122930_bb0245) 2019; 10
References_xml – volume: 13
  start-page: 4807
  year: 2018
  ident: bb0170
  article-title: Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging
  publication-title: Int J Nanomedicine
– volume: 13
  start-page: 174
  year: 2023
  ident: bb0005
  article-title: Techno economic modeling for Agrivoltaics: can Agrivoltaics be more profitable than ground mounted PV?
  publication-title: IEEE J Photovolt
– volume: 11
  start-page: 13290
  year: 2023
  end-page: 13299
  ident: bb0030
  article-title: A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows
  publication-title: J Mater Chem C
– volume: 332
  year: 2023
  ident: bb0015
  article-title: The potential for agrivoltaics to enhance solar farm cooling
  publication-title: Appl Energy
– volume: 177
  start-page: 9
  year: 2018
  end-page: 14
  ident: bb0255
  article-title: Electrochromic properties of hydrothermally grown Prussian blue film and device
  publication-title: Solar Energy Mater Solar Cells
– volume: 26
  start-page: 147
  year: 1997
  end-page: 156
  ident: bb0060
  article-title: Electrochromic materials
  publication-title: Chem Soc Rev
– volume: 10
  year: 2020
  ident: bb0235
  article-title: Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland
  publication-title: Adv Energy Mater
– volume: 10
  start-page: 11948
  year: 2022
  end-page: 11957
  ident: bb0065
  article-title: Fabrication of tungsten oxide/graphene quantum dot (WO3@ GQD) thin films on indium tin oxide-based glass and flexible substrates for the construction of electrochromic devices for smart window applications
  publication-title: ACS Sustain Chem Eng
– volume: 13
  start-page: 299
  year: 2023
  ident: bb0020
  article-title: Agrivoltaics: the environmental impacts of combining food crop cultivation and solar energy generation
  publication-title: Agronomy.
– volume: 46
  start-page: 2131
  year: 2001
  end-page: 2136
  ident: bb0050
  article-title: New photoelectrochromic device
  publication-title: Electrochim Acta
– volume: 10
  start-page: 221
  year: 2018
  end-page: 258
  ident: bb0135
  article-title: Graphene quantum dots from chemistry to applications
  publication-title: Mater Today Chem
– volume: 47
  start-page: 34297
  year: 2021
  end-page: 34306
  ident: bb0075
  article-title: Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates
  publication-title: Ceram Int
– volume: 332
  year: 2020
  ident: bb0185
  article-title: Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing
  publication-title: Electrochim Acta
– volume: 31
  start-page: 415
  year: 2014
  end-page: 428
  ident: bb0125
  article-title: Graphene quantum dots
  publication-title: Particle Particle Syst Characteriz
– volume: 11
  start-page: 103
  year: 2022
  ident: bb0025
  article-title: Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy (
  publication-title: Int J Renew Energy Dev
– volume: 66
  year: 2019
  ident: bb0080
  article-title: Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects
  publication-title: Nano Energy
– volume: 571
  year: 2022
  ident: bb0190
  article-title: An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation
  publication-title: Appl Surf Sci
– volume: 200
  start-page: 437
  year: 2022
  end-page: 447
  ident: bb0100
  article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction
  publication-title: Carbon.
– volume: 199
  start-page: 187
  year: 2015
  end-page: 195
  ident: bb0220
  article-title: Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites
  publication-title: Synth Met
– volume: 445
  year: 2022
  ident: bb0055
  article-title: P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices
  publication-title: Chem Eng J
– volume: 90
  year: 2021
  ident: bb0035
  article-title: Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows
  publication-title: Nano Energy
– volume: 278
  year: 2020
  ident: bb0010
  article-title: Hybrid and organic photovoltaics for greenhouse applications
  publication-title: Appl Energy
– volume: 33
  start-page: 8292
  year: 2022
  end-page: 8304
  ident: bb0250
  article-title: Preparation of complementary electrochromic devices with WO3/PANI and NiO/PB double-hybrid electrodes
  publication-title: J Mater Sci Mater Electron
– volume: 125
  year: 2022
  ident: bb0145
  article-title: Graphene quantum dots and CuS microflowers anchored rGO composite counter electrode for the enhanced performance of quantum dot sensitized solar cells
  publication-title: Diamond Relat Mater
– volume: 4
  start-page: 1898
  year: 2021
  end-page: 1905
  ident: bb0215
  article-title: Ag and Fe3O4 Comodified WO3 – x nanocomposites for catalytic photothermal degradation of pharmaceuticals and personal care products
  publication-title: ACS Appl Nano Mater
– volume: 10
  start-page: 538
  year: 2019
  ident: bb0245
  article-title: The coevolution of lifespan and reversible plasticity
  publication-title: Nat Commun
– volume: 36
  start-page: 112
  year: 2008
  end-page: 116
  ident: bb0165
  article-title: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging
  publication-title: Toxicol Pathol
– volume: 199
  start-page: 103
  year: 2022
  end-page: 111
  ident: bb0040
  article-title: Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building
  publication-title: Renew Energy
– volume: 5
  year: 2019
  ident: bb0070
  article-title: Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering
  publication-title: Adv Electron Mater
– volume: 654
  start-page: 677
  year: 2024
  end-page: 687
  ident: bb0090
  article-title: Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst
  publication-title: J Colloid Interface Sci
– volume: 648
  start-page: 193
  year: 2023
  end-page: 202
  ident: bb0095
  article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: J Colloid Interface Sci
– volume: 1122
  start-page: 80
  year: 2016
  end-page: 87
  ident: bb0225
  article-title: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives
  publication-title: J Mol Struct
– volume: 119
  start-page: 923
  year: 2018
  end-page: 934
  ident: bb0160
  article-title: Active dynamic windows for buildings: a review
  publication-title: Renew Energy
– volume: 47
  start-page: 32570
  year: 2021
  end-page: 32578
  ident: bb0195
  article-title: Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications
  publication-title: Ceram Int
– volume: 122
  start-page: 19037
  year: 2018
  end-page: 19043
  ident: bb0180
  article-title: Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films
  publication-title: J Phys Chem C
– volume: 476
  year: 2023
  ident: bb0105
  article-title: Tandem surface engineering of graphene quantum dot-assisted fluorinated NiFe Prussian blue analogue for electrocatalytic oxygen evolution reaction
  publication-title: Chem Eng J
– volume: 10
  start-page: 4
  year: 2015
  end-page: 10
  ident: bb0240
  article-title: Temperature extremes: effect on plant growth and development
  publication-title: Weather Clim Extrem
– volume: 21
  start-page: 2175
  year: 2011
  end-page: 2196
  ident: bb0175
  article-title: Nanostructured tungsten oxide–properties, synthesis, and applications
  publication-title: Adv Funct Mater
– volume: 3
  start-page: 3779
  year: 2020
  end-page: 3788
  ident: bb0045
  article-title: Spectrally selective PANI/ITO nanocomposite electrodes for energy-efficient dual band electrochromic windows
  publication-title: ACS Appl Energy Mater
– volume: 397
  year: 2020
  ident: bb0085
  article-title: Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries
  publication-title: Chem Eng J
– volume: 157
  start-page: 663
  year: 2020
  end-page: 669
  ident: bb0205
  article-title: Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene nanosheets
  publication-title: Carbon.
– volume: 26
  start-page: 8694
  year: 2016
  end-page: 8706
  ident: bb0210
  article-title: Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging
  publication-title: Adv Funct Mater
– volume: 31
  year: 2019
  ident: bb0130
  article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications
  publication-title: Adv Mater
– volume: 24
  year: 2021
  ident: bb0155
  article-title: Infrared electrochromic materials, devices and applications
  publication-title: Appl Mater Today
– volume: 436
  year: 2019
  ident: bb0200
  article-title: Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles
  publication-title: J Power Sources
– volume: 1
  start-page: 2763
  year: 2020
  end-page: 2772
  ident: bb0140
  article-title: One-pot hydrothermal synthesis of molybdenum nickel sulfide with graphene quantum dots as a novel conductive additive for enhanced supercapacitive performance
  publication-title: Mater Adv
– volume: 186
  start-page: 406
  year: 2022
  end-page: 415
  ident: bb0115
  article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor
  publication-title: Carbon.
– volume: 13
  start-page: 496
  year: 2021
  end-page: 509
  ident: bb0230
  article-title: Review of dye-sensitized solar cell (DSSCs) development
  publication-title: Nat Sci
– start-page: 383
  year: 2023
  ident: bb0110
  article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring
– volume: 15
  year: 2022
  ident: bb0150
  article-title: Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging
  publication-title: Arab J Chem
– volume: 5
  start-page: 11100
  year: 2022
  end-page: 11110
  ident: bb0120
  article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as Noble metal-free Electrocatalysts of uric acid for a wearable sweat sensor
  publication-title: ACS Appl Nano Mater
– volume: 26
  start-page: 147
  year: 1997
  ident: 10.1016/j.apenergy.2024.122930_bb0060
  article-title: Electrochromic materials
  publication-title: Chem Soc Rev
  doi: 10.1039/cs9972600147
– volume: 122
  start-page: 19037
  year: 2018
  ident: 10.1016/j.apenergy.2024.122930_bb0180
  article-title: Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films
  publication-title: J Phys Chem C
  doi: 10.1021/acs.jpcc.8b05692
– volume: 13
  start-page: 174
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0005
  article-title: Techno economic modeling for Agrivoltaics: can Agrivoltaics be more profitable than ground mounted PV?
  publication-title: IEEE J Photovolt
  doi: 10.1109/JPHOTOV.2022.3215087
– volume: 177
  start-page: 9
  year: 2018
  ident: 10.1016/j.apenergy.2024.122930_bb0255
  article-title: Electrochromic properties of hydrothermally grown Prussian blue film and device
  publication-title: Solar Energy Mater Solar Cells
  doi: 10.1016/j.solmat.2017.08.016
– volume: 47
  start-page: 32570
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0195
  article-title: Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.08.152
– volume: 21
  start-page: 2175
  year: 2011
  ident: 10.1016/j.apenergy.2024.122930_bb0175
  article-title: Nanostructured tungsten oxide–properties, synthesis, and applications
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201002477
– volume: 436
  year: 2019
  ident: 10.1016/j.apenergy.2024.122930_bb0200
  article-title: Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2019.226839
– volume: 46
  start-page: 2131
  year: 2001
  ident: 10.1016/j.apenergy.2024.122930_bb0050
  article-title: New photoelectrochromic device
  publication-title: Electrochim Acta
  doi: 10.1016/S0013-4686(01)00391-7
– volume: 66
  year: 2019
  ident: 10.1016/j.apenergy.2024.122930_bb0080
  article-title: Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects
  publication-title: Nano Energy
– volume: 200
  start-page: 437
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0100
  article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2022.08.067
– volume: 1
  start-page: 2763
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0140
  article-title: One-pot hydrothermal synthesis of molybdenum nickel sulfide with graphene quantum dots as a novel conductive additive for enhanced supercapacitive performance
  publication-title: Mater Adv
  doi: 10.1039/D0MA00593B
– volume: 47
  start-page: 34297
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0075
  article-title: Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2021.08.340
– volume: 31
  year: 2019
  ident: 10.1016/j.apenergy.2024.122930_bb0130
  article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications
  publication-title: Adv Mater
  doi: 10.1002/adma.201808283
– volume: 157
  start-page: 663
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0205
  article-title: Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene nanosheets
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2019.10.102
– volume: 278
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0010
  article-title: Hybrid and organic photovoltaics for greenhouse applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115582
– volume: 10
  start-page: 221
  year: 2018
  ident: 10.1016/j.apenergy.2024.122930_bb0135
  article-title: Graphene quantum dots from chemistry to applications
  publication-title: Mater Today Chem
  doi: 10.1016/j.mtchem.2018.09.007
– volume: 13
  start-page: 299
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0020
  article-title: Agrivoltaics: the environmental impacts of combining food crop cultivation and solar energy generation
  publication-title: Agronomy.
  doi: 10.3390/agronomy13020299
– volume: 648
  start-page: 193
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0095
  article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2023.05.187
– volume: 10
  start-page: 538
  year: 2019
  ident: 10.1016/j.apenergy.2024.122930_bb0245
  article-title: The coevolution of lifespan and reversible plasticity
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-08502-9
– volume: 13
  start-page: 496
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0230
  article-title: Review of dye-sensitized solar cell (DSSCs) development
  publication-title: Nat Sci
– volume: 397
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0085
  article-title: Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.125380
– volume: 13
  start-page: 4807
  year: 2018
  ident: 10.1016/j.apenergy.2024.122930_bb0170
  article-title: Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging
  publication-title: Int J Nanomedicine
  doi: 10.2147/IJN.S168570
– volume: 125
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0145
  article-title: Graphene quantum dots and CuS microflowers anchored rGO composite counter electrode for the enhanced performance of quantum dot sensitized solar cells
  publication-title: Diamond Relat Mater
  doi: 10.1016/j.diamond.2022.109033
– volume: 5
  year: 2019
  ident: 10.1016/j.apenergy.2024.122930_bb0070
  article-title: Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering
  publication-title: Adv Electron Mater
  doi: 10.1002/aelm.201800713
– start-page: 383
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0110
– volume: 199
  start-page: 187
  year: 2015
  ident: 10.1016/j.apenergy.2024.122930_bb0220
  article-title: Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites
  publication-title: Synth Met
  doi: 10.1016/j.synthmet.2014.11.031
– volume: 10
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0235
  article-title: Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.202001189
– volume: 332
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0185
  article-title: Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing
  publication-title: Electrochim Acta
  doi: 10.1016/j.electacta.2019.135504
– volume: 654
  start-page: 677
  year: 2024
  ident: 10.1016/j.apenergy.2024.122930_bb0090
  article-title: Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2023.10.028
– volume: 24
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0155
  article-title: Infrared electrochromic materials, devices and applications
  publication-title: Appl Mater Today
– volume: 199
  start-page: 103
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0040
  article-title: Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2022.08.089
– volume: 11
  start-page: 13290
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0030
  article-title: A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows
  publication-title: J Mater Chem C
  doi: 10.1039/D3TC01669B
– volume: 15
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0150
  article-title: Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging
  publication-title: Arab J Chem
  doi: 10.1016/j.arabjc.2022.103856
– volume: 36
  start-page: 112
  year: 2008
  ident: 10.1016/j.apenergy.2024.122930_bb0165
  article-title: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging
  publication-title: Toxicol Pathol
  doi: 10.1177/0192623307310950
– volume: 186
  start-page: 406
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0115
  article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor
  publication-title: Carbon.
  doi: 10.1016/j.carbon.2021.10.027
– volume: 11
  start-page: 103
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0025
  article-title: Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy (Brassica rapa subsp. chinensis L.) under the panels
  publication-title: Int J Renew Energy Dev
  doi: 10.14710/ijred.2022.41116
– volume: 5
  start-page: 11100
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0120
  article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as Noble metal-free Electrocatalysts of uric acid for a wearable sweat sensor
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.2c02279
– volume: 26
  start-page: 8694
  year: 2016
  ident: 10.1016/j.apenergy.2024.122930_bb0210
  article-title: Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201603084
– volume: 90
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0035
  article-title: Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.106575
– volume: 119
  start-page: 923
  year: 2018
  ident: 10.1016/j.apenergy.2024.122930_bb0160
  article-title: Active dynamic windows for buildings: a review
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.12.049
– volume: 1122
  start-page: 80
  year: 2016
  ident: 10.1016/j.apenergy.2024.122930_bb0225
  article-title: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives
  publication-title: J Mol Struct
  doi: 10.1016/j.molstruc.2016.05.080
– volume: 10
  start-page: 4
  year: 2015
  ident: 10.1016/j.apenergy.2024.122930_bb0240
  article-title: Temperature extremes: effect on plant growth and development
  publication-title: Weather Clim Extrem
  doi: 10.1016/j.wace.2015.08.001
– volume: 445
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0055
  article-title: P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2022.136826
– volume: 4
  start-page: 1898
  year: 2021
  ident: 10.1016/j.apenergy.2024.122930_bb0215
  article-title: Ag and Fe3O4 Comodified WO3 – x nanocomposites for catalytic photothermal degradation of pharmaceuticals and personal care products
  publication-title: ACS Appl Nano Mater
  doi: 10.1021/acsanm.0c03261
– volume: 33
  start-page: 8292
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0250
  article-title: Preparation of complementary electrochromic devices with WO3/PANI and NiO/PB double-hybrid electrodes
  publication-title: J Mater Sci Mater Electron
  doi: 10.1007/s10854-022-07986-4
– volume: 10
  start-page: 11948
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0065
  article-title: Fabrication of tungsten oxide/graphene quantum dot (WO3@ GQD) thin films on indium tin oxide-based glass and flexible substrates for the construction of electrochromic devices for smart window applications
  publication-title: ACS Sustain Chem Eng
  doi: 10.1021/acssuschemeng.2c03229
– volume: 31
  start-page: 415
  year: 2014
  ident: 10.1016/j.apenergy.2024.122930_bb0125
  article-title: Graphene quantum dots
  publication-title: Particle Particle Syst Characteriz
  doi: 10.1002/ppsc.201300252
– volume: 332
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0015
  article-title: The potential for agrivoltaics to enhance solar farm cooling
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120478
– volume: 3
  start-page: 3779
  year: 2020
  ident: 10.1016/j.apenergy.2024.122930_bb0045
  article-title: Spectrally selective PANI/ITO nanocomposite electrodes for energy-efficient dual band electrochromic windows
  publication-title: ACS Appl Energy Mater
  doi: 10.1021/acsaem.0c00241
– volume: 476
  year: 2023
  ident: 10.1016/j.apenergy.2024.122930_bb0105
  article-title: Tandem surface engineering of graphene quantum dot-assisted fluorinated NiFe Prussian blue analogue for electrocatalytic oxygen evolution reaction
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2023.146754
– volume: 571
  year: 2022
  ident: 10.1016/j.apenergy.2024.122930_bb0190
  article-title: An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation
  publication-title: Appl Surf Sci
  doi: 10.1016/j.apsusc.2021.151277
SSID ssj0002120
Score 2.4284723
Snippet Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122930
SubjectTerms agrivoltaic systems
Agrivoltaics
electrodes
energy
films (materials)
graphene
Graphene quantum dot
greenhouses
hydrogen
lighting
pastoralism
Photoelectrochromic device
quantum dots
Self-powered
solar energy
temperature
Thermal management
transmittance
tungsten oxide
Tungsten trioxide
Title Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics
URI https://dx.doi.org/10.1016/j.apenergy.2024.122930
https://www.proquest.com/docview/3153613075
Volume 361
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvdADaqGo0Ba5Uq_eTZy1vTmuEGjbqtsDoHKzbMfuBm0-SLLX_pX-1Y4TB2iligPHRLZlZcYzb5w3Mwh9AoSapgD7SZwqCgGKYUQ560hMtTKaztk881cD31Z8eT37csNudtDZmAvjaZXB9g82vbfW4c00fM1pnefTS492hwCiL0DYZ7DPhNfyya8HmgcNpRlhMPGjH2UJ305UbfsMO4gT6WwSU_B90f8c1D-muvc_F6_QfgCOeDHs7TXaseUBevmonOABOjp_yFqDoeHYtofo9wr0mYAuNZ5ujut11VWh_41ZNz4vGWfWmwzsr2VxX8QatozvtvDdtwWGyBUXVZY7wKv4x_cEd-u8xC7fFLjrabfYqbYjzcC3tdiDygJ2UNxzazBgY9zajSO1b8sGyyx-NjmYxk7lpn2Dri7Or86WJHRmIAbin45AEBVnPKI2EZGKHE-EzzOxxgmRaqtVaoUx3MSKGadTO-dGaG4TaixnLIuTI7RbVqV9i7BmfO4cTZlQ2YxqoTPDnaDGJJHWQrFjxEZpSBOqlvvmGRs50tNu5ShF6aUoBykeo-n9vHqo2_HkjHQUtvxLAyU4lyfnfhy1Q8Lx9P9cVGmrbSsT8Cg-RBPs5Bnrv0N7_mkgWr5Hu12ztR8ADHX6tNf2U_Ri8fnrcvUHFJsPmw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq7QE4IChU9AEYiau7ibOON8dV1Wr7Wg4sojfLdmw21eZBkv09_asdJ85SkKoeuCYZy_KMZ77PmRkj9BUQapIA7CdhIikQFM2ItMaSkCqpFZ2yaeqOBm4W8fzH5PKW3e6g06EWxqVVet_f-_TOW_snY7-a4yrLxt8d2u0JRNeAECjQrutOxUZod3ZxNV9sHTL13Rnhe-IEHhUK353IynRFdkAV6eQkpBD-gqdi1D_eugtB52_Qa48d8ayf3lu0Y4o99OpRR8E9tH_2p3ANPvU7t3mH7hdg0gTMqXYZ57halW3pr8DRq9qVJuPUOK-B3cks7vpYw5Tx7w0s_SbHQF5xXqaZBciKf36LcLvKCmyzdY7bLvMWW9m0pO5Tbg12uDKHGeTb9BoM8Bg3Zm1J5W5mg2Fmv-oMvGMrM928R8vzs-XpnPjLGYgGCtQS4FFhGgfURDyQgY0j7kpNjLacJ8oomRiudaxDybRViZnGmqvYRFSbmLE0jPbRqCgL8wFhxeKptTRhXKYTqrhKdWw51ToKlOKSHSA2aENo37jc3Z-xFkOG2p0YtCicFkWvxQM03spVfeuOZyWSQdniLyMUEF-elf0yWIeAHep-u8jClJtGRBBUHEvj7PA_xv-MXsyXN9fi-mJxdYReujd93uUxGrX1xnwEbNSqT972HwBG_hJM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-infrared+photoelectrochromic+device+with+graphene+quantum+dot+modified+WO3+thin+film+toward+fast-response+thermal+management+for+self-powered+Agrivoltaics&rft.jtitle=Applied+energy&rft.au=Chang%2C+Ling-Yu&rft.au=Chang%2C+Ching-Cheng&rft.au=Rinawati%2C+Mia&rft.au=Chang%2C+Yu-Hsin&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.volume=361&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122930&rft.externalDocID=S0306261924003131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon