Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics
Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing...
Saved in:
Published in | Applied energy Vol. 361; p. 122930 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO3 has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO3 for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO3 to promote the electrochromic performance. The graphitic sp2 structure and specific functional groups improved the WO3 thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO3 electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO3 one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm2 min−1 W−1 after introducing GQD into the WO3 thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO3 thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO3. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO3-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system.
[Display omitted]
•GQD was introduced into the WO3 to promote the electrochromic performance.•GQD/WO3 based NIR PECD showed a transmittance contrast of 40% at 1000 nm.•Existence of the hydrogen bonds via GQD enhanced the stability of the WO3 thin film.•NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C.•Complementary PECD for Thermal Management in Agrivoltaics was proposed. |
---|---|
AbstractList | Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO₃ has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO₃ for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO₃ to promote the electrochromic performance. The graphitic sp² structure and specific functional groups improved the WO₃ thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO₃ electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO₃ one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm² min⁻¹ W⁻¹ after introducing GQD into the WO₃ thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO₃ electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO₃ thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO₃. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO₃-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system. Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation. This work has proposed an idea of introducing a near-infrared photoelectrochromic device (NIR-PECD) into the agrivoltaic system for realizing the self-powered thermal management, revealing the temperature control for a greenhouse without external power supplier to increase the yield of the crops, while reducing the energy consumption for the plant growing. As a commercial and widely used electrochromic material in PECD, WO3 has been reported as a significant and effective material in numerous electrochromic materials. To improve of electrochromic response of WO3 for coloring/bleaching in NIR-PECD, in this study, graphene quantum dot (GQD) was introduced into the WO3 to promote the electrochromic performance. The graphitic sp2 structure and specific functional groups improved the WO3 thin film's electrochromic results by enhancing the response rate and transmittance contrast. The NIR-PECD with GQD/WO3 electrochromic layer showed a significant improvement in response time for bleaching (93.3 s), compared to the case with pristine WO3 one (271 s). The photocoloration efficiency (PhCE) of NIR-PECD was also improved from 55.85 to 96.46 cm2 min−1 W−1 after introducing GQD into the WO3 thin film. Under 1 sun illumination, the colored state and bleached state of NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C. GQD/WO3 thin film maintained approximately 90% of the original transmittance contrast after 1000 cycles of coloring and bleaching, due to the hydrogen bonds formed between functional groups on GQD and WO3. By integrating the Prussian blue (PB) electrochromic electrode, GQD/WO3-PB complementary NIR-PECD can achieve self-powered indoor thermal management by changing the transmittance as an agrivoltaic system. [Display omitted] •GQD was introduced into the WO3 to promote the electrochromic performance.•GQD/WO3 based NIR PECD showed a transmittance contrast of 40% at 1000 nm.•Existence of the hydrogen bonds via GQD enhanced the stability of the WO3 thin film.•NIR-PECD with GQD/WO3 electrochromic layer showed a temperature difference of 8.7 °C.•Complementary PECD for Thermal Management in Agrivoltaics was proposed. |
ArticleNumber | 122930 |
Author | Rinawati, Mia Chang, Ching-Cheng Chen, Chia-Chin Chang, Yu-Hsin Cheng, Yao-Sheng Ho, Kuo-Chuan Wang, Chia-Hsin Yeh, Min-Hsin Chang, Ling-Yu Lin, Chia-Her |
Author_xml | – sequence: 1 givenname: Ling-Yu surname: Chang fullname: Chang, Ling-Yu organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 2 givenname: Ching-Cheng surname: Chang fullname: Chang, Ching-Cheng organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 3 givenname: Mia surname: Rinawati fullname: Rinawati, Mia organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 4 givenname: Yu-Hsin surname: Chang fullname: Chang, Yu-Hsin organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 5 givenname: Yao-Sheng surname: Cheng fullname: Cheng, Yao-Sheng organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan – sequence: 6 givenname: Kuo-Chuan surname: Ho fullname: Ho, Kuo-Chuan organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 7 givenname: Chia-Chin surname: Chen fullname: Chen, Chia-Chin organization: Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan – sequence: 8 givenname: Chia-Her surname: Lin fullname: Lin, Chia-Her organization: Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan – sequence: 9 givenname: Chia-Hsin surname: Wang fullname: Wang, Chia-Hsin organization: National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan – sequence: 10 givenname: Min-Hsin surname: Yeh fullname: Yeh, Min-Hsin email: mhyeh@mail.ntust.edu.tw organization: Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan |
BookMark | eNqFkT1v3DAMhj2kQJO0f6HQ2MVXfZzlGOjQIOgXEDRLgI4CT6bOPNiSQ-nukF-Tv1ofrl26ZOJAPi8JPlfVRUwRq-qDkisllf20W8GMEXn7vNJSr1dK687Ii-pSGmlrbVX3trrKeSel1ErLy-rlFwLXFAMDYy_mIZWEI_rCyQ-cJvKixwN5FEcqg9gyzMOyQDztIZb9JPpUxJR6CrTQvx-MKANFEWicRElH4F4EyKVmzHOKGZc28gSjmCDCFieMRYTEIuMY6jkd8XTE7ZbpkMYC5PO76k2AMeP7v_W6evz29fHuR33_8P3n3e197bWVpVZqrXorNZpWggzWtDdWr9GHtu02uIEOW--tV9D4sOnwxvp2Y9Foj7ZpemWuq4_n2JnT0x5zcRNlj-MIEdM-O6MaY5WRbbOMfj6Pek45MwbnqUChFAsDjU5Jd1Lhdu6fCndS4c4qFtz-h89ME_Dz6-CXM4jLGw6E7LInjB574sWX6xO9FvEHzpaw8g |
CitedBy_id | crossref_primary_10_1016_j_elecom_2024_107762 crossref_primary_10_1016_j_solmat_2024_113007 crossref_primary_10_3390_agronomy14081824 crossref_primary_10_1002_pat_6571 crossref_primary_10_1016_j_cclet_2024_110321 |
Cites_doi | 10.1039/cs9972600147 10.1021/acs.jpcc.8b05692 10.1109/JPHOTOV.2022.3215087 10.1016/j.solmat.2017.08.016 10.1016/j.ceramint.2021.08.152 10.1002/adfm.201002477 10.1016/j.jpowsour.2019.226839 10.1016/S0013-4686(01)00391-7 10.1016/j.carbon.2022.08.067 10.1039/D0MA00593B 10.1016/j.ceramint.2021.08.340 10.1002/adma.201808283 10.1016/j.carbon.2019.10.102 10.1016/j.apenergy.2020.115582 10.1016/j.mtchem.2018.09.007 10.3390/agronomy13020299 10.1016/j.jcis.2023.05.187 10.1038/s41467-019-08502-9 10.1016/j.cej.2020.125380 10.2147/IJN.S168570 10.1016/j.diamond.2022.109033 10.1002/aelm.201800713 10.1016/j.synthmet.2014.11.031 10.1002/aenm.202001189 10.1016/j.electacta.2019.135504 10.1016/j.jcis.2023.10.028 10.1016/j.renene.2022.08.089 10.1039/D3TC01669B 10.1016/j.arabjc.2022.103856 10.1177/0192623307310950 10.1016/j.carbon.2021.10.027 10.14710/ijred.2022.41116 10.1021/acsanm.2c02279 10.1002/adfm.201603084 10.1016/j.nanoen.2021.106575 10.1016/j.renene.2017.12.049 10.1016/j.molstruc.2016.05.080 10.1016/j.wace.2015.08.001 10.1016/j.cej.2022.136826 10.1021/acsanm.0c03261 10.1007/s10854-022-07986-4 10.1021/acssuschemeng.2c03229 10.1002/ppsc.201300252 10.1016/j.apenergy.2022.120478 10.1021/acsaem.0c00241 10.1016/j.cej.2023.146754 10.1016/j.apsusc.2021.151277 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.apenergy.2024.122930 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Environmental Sciences |
ExternalDocumentID | 10_1016_j_apenergy_2024_122930 S0306261924003131 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAQXK AATTM AAYOK AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SSH WUQ ZY4 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c260t-1141d602e370a0f6378624ecf779beba9e7cc6c1a5cfb9e86c7b6e32ce655d13 |
IEDL.DBID | .~1 |
ISSN | 0306-2619 |
IngestDate | Fri Aug 22 20:22:53 EDT 2025 Tue Jul 01 04:01:22 EDT 2025 Thu Apr 24 23:14:49 EDT 2025 Sat Feb 01 16:07:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Agrivoltaics Thermal management Photoelectrochromic device Self-powered Graphene quantum dot Tungsten trioxide |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c260t-1141d602e370a0f6378624ecf779beba9e7cc6c1a5cfb9e86c7b6e32ce655d13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 3153613075 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3153613075 crossref_citationtrail_10_1016_j_apenergy_2024_122930 crossref_primary_10_1016_j_apenergy_2024_122930 elsevier_sciencedirect_doi_10_1016_j_apenergy_2024_122930 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-05-01 2024-05-00 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Applied energy |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cho, Kim, Yang, Park, Jeong, Jeong (bb0205) 2020; 157 Song, Yan, Dai, Hao, Guo, Xie (bb0250) 2022; 33 Arslan, Firat, Tokgöz, Peksoz (bb0195) 2021; 47 Alam, Alam, Butt (bb0005) 2023; 13 Lin, Rinawati, Huang, Chang, Chang, Cheng (bb0090) 2024; 654 Dave, Gomes (bb0080) 2019; 66 Hauch, Georg, Baumgärtner, Krašovec, Orel (bb0050) 2001; 46 Liao, Xu, Zhao, Wang, Ge (bb0215) 2021; 4 Ahmad, Shinde, Song, Kim (bb0075) 2021; 47 Liu, Jiang, Ye, Zhao, Gao, Wu (bb0210) 2016; 26 Kumpanalaisatit, Setthapun, Sintuya, Jansri (bb0025) 2022; 11 Chiang, Chang, Cheng, Chang, Yeh, Huang (bb0040) 2022; 199 Fu, Xu, Zhang, Tian, Huang, Xie (bb0200) 2019; 436 Rinawati, Wang, Huang, Wu, Cheng, Kurniawan (bb0100) 2022; 200 Thompson, Bombelli, Shubham, Watson, Everard, D’Ardes (bb0235) 2020; 10 Chang, Chang, Cheng, Chang, Lai, Septiani (bb0030) 2023; 11 La Notte, Giordano, Calabrò, Bedini, Colla, Puglisi (bb0010) 2020; 278 Monika, Mahalakshmi, Subha, Pandian, Ramasamy (bb0145) 2022; 125 Wang, Chen, Gao, Lei (bb0070) 2019; 5 Deerinck (bb0165) 2008; 36 Yu, Guo, Wang, Zhang, Liu, Dong (bb0185) 2020; 332 Ratikainen, Kokko (bb0245) 2019; 10 Yilmaz, Magni, Martinez, Gonzalez Gil, Della Pirriera, Manca (bb0045) 2020; 3 Wei, Li, Guo, Li, Hou, Guo (bb0190) 2022; 571 Obotowo, Obot, Ekpe (bb0225) 2016; 1122 Francis, Ikenna (bb0230) 2021; 13 Hong, Zhao, Deng, Yang, Peng, Liu (bb0170) 2018; 13 Lin, Aulia, Yeh, Hsiao, Tarigan, Ho (bb0095) 2023; 648 Wang, Rinawati, Zhan, Lin, Huang, Chen (bb0120) 2022; 5 Hatfield, Prueger (bb0240) 2015; 10 Li, Xiao, Hu, Wang, Wang, Yan (bb0150) 2022; 15 Jo, Kim, Ahn (bb0055) 2022; 445 Wagner, Lask, Kiesel, Lewandowski, Weselek, Högy (bb0020) 2023; 13 Mane, Navale, Pawar, Lee, Patil (bb0220) 2015; 199 Mortimer (bb0060) 1997; 26 Williams, Hashad, Wang, Zhang (bb0015) 2023; 332 Tarigan, Aulia, Rinawati, Chang, Cheng, Chang (bb0105) 2023; 476 Zheng, Ou, Strano, Kaner, Mitchell, Kalantar-zadeh (bb0175) 2011; 21 Cheng, Chiang, Yu, Hsiao, Yeh, Chang (bb0035) 2021; 90 Wang, Rinawati, Huang, Cheng, Lin, Chen (bb0115) 2022; 186 Tian, Tang, Teng, Lau (bb0135) 2018; 10 Niu, Wang, Zou, Tan, Jia, Weng (bb0155) 2021; 24 Qian, Ma, Xu, Li, Wang (bb0255) 2018; 177 Casini (bb0160) 2018; 119 Sangabathula, Sharma (bb0140) 2020; 1 Yan, Gong, Chen, Zeng, Huang, Pu (bb0130) 2019; 31 Lin, Rinawati, Chang, Wang, Wu, Yen (bb0110) 2023 Bacon, Bradley, Nann (bb0125) 2014; 31 Ahmad, Song, Kim (bb0065) 2022; 10 Qi, Wang, Li, Liu, Qiu, Li (bb0085) 2020; 397 Guo, Wang, Diao, Zhang, Dong, Yu (bb0180) 2018; 122 Deerinck (10.1016/j.apenergy.2024.122930_bb0165) 2008; 36 Liao (10.1016/j.apenergy.2024.122930_bb0215) 2021; 4 Williams (10.1016/j.apenergy.2024.122930_bb0015) 2023; 332 Kumpanalaisatit (10.1016/j.apenergy.2024.122930_bb0025) 2022; 11 Guo (10.1016/j.apenergy.2024.122930_bb0180) 2018; 122 Jo (10.1016/j.apenergy.2024.122930_bb0055) 2022; 445 Ahmad (10.1016/j.apenergy.2024.122930_bb0075) 2021; 47 Wang (10.1016/j.apenergy.2024.122930_bb0115) 2022; 186 Qian (10.1016/j.apenergy.2024.122930_bb0255) 2018; 177 Wang (10.1016/j.apenergy.2024.122930_bb0070) 2019; 5 Hong (10.1016/j.apenergy.2024.122930_bb0170) 2018; 13 Chiang (10.1016/j.apenergy.2024.122930_bb0040) 2022; 199 Liu (10.1016/j.apenergy.2024.122930_bb0210) 2016; 26 Dave (10.1016/j.apenergy.2024.122930_bb0080) 2019; 66 Mortimer (10.1016/j.apenergy.2024.122930_bb0060) 1997; 26 Sangabathula (10.1016/j.apenergy.2024.122930_bb0140) 2020; 1 Thompson (10.1016/j.apenergy.2024.122930_bb0235) 2020; 10 Song (10.1016/j.apenergy.2024.122930_bb0250) 2022; 33 Niu (10.1016/j.apenergy.2024.122930_bb0155) 2021; 24 Hatfield (10.1016/j.apenergy.2024.122930_bb0240) 2015; 10 Hauch (10.1016/j.apenergy.2024.122930_bb0050) 2001; 46 Yan (10.1016/j.apenergy.2024.122930_bb0130) 2019; 31 Arslan (10.1016/j.apenergy.2024.122930_bb0195) 2021; 47 Wei (10.1016/j.apenergy.2024.122930_bb0190) 2022; 571 Lin (10.1016/j.apenergy.2024.122930_bb0090) 2024; 654 Rinawati (10.1016/j.apenergy.2024.122930_bb0100) 2022; 200 Wagner (10.1016/j.apenergy.2024.122930_bb0020) 2023; 13 Tian (10.1016/j.apenergy.2024.122930_bb0135) 2018; 10 Casini (10.1016/j.apenergy.2024.122930_bb0160) 2018; 119 Wang (10.1016/j.apenergy.2024.122930_bb0120) 2022; 5 Fu (10.1016/j.apenergy.2024.122930_bb0200) 2019; 436 Cho (10.1016/j.apenergy.2024.122930_bb0205) 2020; 157 La Notte (10.1016/j.apenergy.2024.122930_bb0010) 2020; 278 Yilmaz (10.1016/j.apenergy.2024.122930_bb0045) 2020; 3 Tarigan (10.1016/j.apenergy.2024.122930_bb0105) 2023; 476 Lin (10.1016/j.apenergy.2024.122930_bb0110) 2023 Lin (10.1016/j.apenergy.2024.122930_bb0095) 2023; 648 Monika (10.1016/j.apenergy.2024.122930_bb0145) 2022; 125 Obotowo (10.1016/j.apenergy.2024.122930_bb0225) 2016; 1122 Bacon (10.1016/j.apenergy.2024.122930_bb0125) 2014; 31 Chang (10.1016/j.apenergy.2024.122930_bb0030) 2023; 11 Yu (10.1016/j.apenergy.2024.122930_bb0185) 2020; 332 Cheng (10.1016/j.apenergy.2024.122930_bb0035) 2021; 90 Zheng (10.1016/j.apenergy.2024.122930_bb0175) 2011; 21 Ahmad (10.1016/j.apenergy.2024.122930_bb0065) 2022; 10 Mane (10.1016/j.apenergy.2024.122930_bb0220) 2015; 199 Li (10.1016/j.apenergy.2024.122930_bb0150) 2022; 15 Qi (10.1016/j.apenergy.2024.122930_bb0085) 2020; 397 Alam (10.1016/j.apenergy.2024.122930_bb0005) 2023; 13 Francis (10.1016/j.apenergy.2024.122930_bb0230) 2021; 13 Ratikainen (10.1016/j.apenergy.2024.122930_bb0245) 2019; 10 |
References_xml | – volume: 13 start-page: 4807 year: 2018 ident: bb0170 article-title: Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging publication-title: Int J Nanomedicine – volume: 13 start-page: 174 year: 2023 ident: bb0005 article-title: Techno economic modeling for Agrivoltaics: can Agrivoltaics be more profitable than ground mounted PV? publication-title: IEEE J Photovolt – volume: 11 start-page: 13290 year: 2023 end-page: 13299 ident: bb0030 article-title: A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows publication-title: J Mater Chem C – volume: 332 year: 2023 ident: bb0015 article-title: The potential for agrivoltaics to enhance solar farm cooling publication-title: Appl Energy – volume: 177 start-page: 9 year: 2018 end-page: 14 ident: bb0255 article-title: Electrochromic properties of hydrothermally grown Prussian blue film and device publication-title: Solar Energy Mater Solar Cells – volume: 26 start-page: 147 year: 1997 end-page: 156 ident: bb0060 article-title: Electrochromic materials publication-title: Chem Soc Rev – volume: 10 year: 2020 ident: bb0235 article-title: Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland publication-title: Adv Energy Mater – volume: 10 start-page: 11948 year: 2022 end-page: 11957 ident: bb0065 article-title: Fabrication of tungsten oxide/graphene quantum dot (WO3@ GQD) thin films on indium tin oxide-based glass and flexible substrates for the construction of electrochromic devices for smart window applications publication-title: ACS Sustain Chem Eng – volume: 13 start-page: 299 year: 2023 ident: bb0020 article-title: Agrivoltaics: the environmental impacts of combining food crop cultivation and solar energy generation publication-title: Agronomy. – volume: 46 start-page: 2131 year: 2001 end-page: 2136 ident: bb0050 article-title: New photoelectrochromic device publication-title: Electrochim Acta – volume: 10 start-page: 221 year: 2018 end-page: 258 ident: bb0135 article-title: Graphene quantum dots from chemistry to applications publication-title: Mater Today Chem – volume: 47 start-page: 34297 year: 2021 end-page: 34306 ident: bb0075 article-title: Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates publication-title: Ceram Int – volume: 332 year: 2020 ident: bb0185 article-title: Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing publication-title: Electrochim Acta – volume: 31 start-page: 415 year: 2014 end-page: 428 ident: bb0125 article-title: Graphene quantum dots publication-title: Particle Particle Syst Characteriz – volume: 11 start-page: 103 year: 2022 ident: bb0025 article-title: Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy ( publication-title: Int J Renew Energy Dev – volume: 66 year: 2019 ident: bb0080 article-title: Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects publication-title: Nano Energy – volume: 571 year: 2022 ident: bb0190 article-title: An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation publication-title: Appl Surf Sci – volume: 200 start-page: 437 year: 2022 end-page: 447 ident: bb0100 article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction publication-title: Carbon. – volume: 199 start-page: 187 year: 2015 end-page: 195 ident: bb0220 article-title: Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites publication-title: Synth Met – volume: 445 year: 2022 ident: bb0055 article-title: P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices publication-title: Chem Eng J – volume: 90 year: 2021 ident: bb0035 article-title: Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows publication-title: Nano Energy – volume: 278 year: 2020 ident: bb0010 article-title: Hybrid and organic photovoltaics for greenhouse applications publication-title: Appl Energy – volume: 33 start-page: 8292 year: 2022 end-page: 8304 ident: bb0250 article-title: Preparation of complementary electrochromic devices with WO3/PANI and NiO/PB double-hybrid electrodes publication-title: J Mater Sci Mater Electron – volume: 125 year: 2022 ident: bb0145 article-title: Graphene quantum dots and CuS microflowers anchored rGO composite counter electrode for the enhanced performance of quantum dot sensitized solar cells publication-title: Diamond Relat Mater – volume: 4 start-page: 1898 year: 2021 end-page: 1905 ident: bb0215 article-title: Ag and Fe3O4 Comodified WO3 – x nanocomposites for catalytic photothermal degradation of pharmaceuticals and personal care products publication-title: ACS Appl Nano Mater – volume: 10 start-page: 538 year: 2019 ident: bb0245 article-title: The coevolution of lifespan and reversible plasticity publication-title: Nat Commun – volume: 36 start-page: 112 year: 2008 end-page: 116 ident: bb0165 article-title: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging publication-title: Toxicol Pathol – volume: 199 start-page: 103 year: 2022 end-page: 111 ident: bb0040 article-title: Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building publication-title: Renew Energy – volume: 5 year: 2019 ident: bb0070 article-title: Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering publication-title: Adv Electron Mater – volume: 654 start-page: 677 year: 2024 end-page: 687 ident: bb0090 article-title: Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst publication-title: J Colloid Interface Sci – volume: 648 start-page: 193 year: 2023 end-page: 202 ident: bb0095 article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction publication-title: J Colloid Interface Sci – volume: 1122 start-page: 80 year: 2016 end-page: 87 ident: bb0225 article-title: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives publication-title: J Mol Struct – volume: 119 start-page: 923 year: 2018 end-page: 934 ident: bb0160 article-title: Active dynamic windows for buildings: a review publication-title: Renew Energy – volume: 47 start-page: 32570 year: 2021 end-page: 32578 ident: bb0195 article-title: Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications publication-title: Ceram Int – volume: 122 start-page: 19037 year: 2018 end-page: 19043 ident: bb0180 article-title: Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films publication-title: J Phys Chem C – volume: 476 year: 2023 ident: bb0105 article-title: Tandem surface engineering of graphene quantum dot-assisted fluorinated NiFe Prussian blue analogue for electrocatalytic oxygen evolution reaction publication-title: Chem Eng J – volume: 10 start-page: 4 year: 2015 end-page: 10 ident: bb0240 article-title: Temperature extremes: effect on plant growth and development publication-title: Weather Clim Extrem – volume: 21 start-page: 2175 year: 2011 end-page: 2196 ident: bb0175 article-title: Nanostructured tungsten oxide–properties, synthesis, and applications publication-title: Adv Funct Mater – volume: 3 start-page: 3779 year: 2020 end-page: 3788 ident: bb0045 article-title: Spectrally selective PANI/ITO nanocomposite electrodes for energy-efficient dual band electrochromic windows publication-title: ACS Appl Energy Mater – volume: 397 year: 2020 ident: bb0085 article-title: Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries publication-title: Chem Eng J – volume: 157 start-page: 663 year: 2020 end-page: 669 ident: bb0205 article-title: Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene nanosheets publication-title: Carbon. – volume: 26 start-page: 8694 year: 2016 end-page: 8706 ident: bb0210 article-title: Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging publication-title: Adv Funct Mater – volume: 31 year: 2019 ident: bb0130 article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications publication-title: Adv Mater – volume: 24 year: 2021 ident: bb0155 article-title: Infrared electrochromic materials, devices and applications publication-title: Appl Mater Today – volume: 436 year: 2019 ident: bb0200 article-title: Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles publication-title: J Power Sources – volume: 1 start-page: 2763 year: 2020 end-page: 2772 ident: bb0140 article-title: One-pot hydrothermal synthesis of molybdenum nickel sulfide with graphene quantum dots as a novel conductive additive for enhanced supercapacitive performance publication-title: Mater Adv – volume: 186 start-page: 406 year: 2022 end-page: 415 ident: bb0115 article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor publication-title: Carbon. – volume: 13 start-page: 496 year: 2021 end-page: 509 ident: bb0230 article-title: Review of dye-sensitized solar cell (DSSCs) development publication-title: Nat Sci – start-page: 383 year: 2023 ident: bb0110 article-title: A non-invasive wearable sweat biosensor with a flexible N-GQDs/PANI nanocomposite layer for glucose monitoring – volume: 15 year: 2022 ident: bb0150 article-title: Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging publication-title: Arab J Chem – volume: 5 start-page: 11100 year: 2022 end-page: 11110 ident: bb0120 article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as Noble metal-free Electrocatalysts of uric acid for a wearable sweat sensor publication-title: ACS Appl Nano Mater – volume: 26 start-page: 147 year: 1997 ident: 10.1016/j.apenergy.2024.122930_bb0060 article-title: Electrochromic materials publication-title: Chem Soc Rev doi: 10.1039/cs9972600147 – volume: 122 start-page: 19037 year: 2018 ident: 10.1016/j.apenergy.2024.122930_bb0180 article-title: Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.8b05692 – volume: 13 start-page: 174 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0005 article-title: Techno economic modeling for Agrivoltaics: can Agrivoltaics be more profitable than ground mounted PV? publication-title: IEEE J Photovolt doi: 10.1109/JPHOTOV.2022.3215087 – volume: 177 start-page: 9 year: 2018 ident: 10.1016/j.apenergy.2024.122930_bb0255 article-title: Electrochromic properties of hydrothermally grown Prussian blue film and device publication-title: Solar Energy Mater Solar Cells doi: 10.1016/j.solmat.2017.08.016 – volume: 47 start-page: 32570 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0195 article-title: Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.08.152 – volume: 21 start-page: 2175 year: 2011 ident: 10.1016/j.apenergy.2024.122930_bb0175 article-title: Nanostructured tungsten oxide–properties, synthesis, and applications publication-title: Adv Funct Mater doi: 10.1002/adfm.201002477 – volume: 436 year: 2019 ident: 10.1016/j.apenergy.2024.122930_bb0200 article-title: Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles publication-title: J Power Sources doi: 10.1016/j.jpowsour.2019.226839 – volume: 46 start-page: 2131 year: 2001 ident: 10.1016/j.apenergy.2024.122930_bb0050 article-title: New photoelectrochromic device publication-title: Electrochim Acta doi: 10.1016/S0013-4686(01)00391-7 – volume: 66 year: 2019 ident: 10.1016/j.apenergy.2024.122930_bb0080 article-title: Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects publication-title: Nano Energy – volume: 200 start-page: 437 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0100 article-title: Unraveling the efficiency of heteroatom-doped graphene quantum dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution reaction publication-title: Carbon. doi: 10.1016/j.carbon.2022.08.067 – volume: 1 start-page: 2763 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0140 article-title: One-pot hydrothermal synthesis of molybdenum nickel sulfide with graphene quantum dots as a novel conductive additive for enhanced supercapacitive performance publication-title: Mater Adv doi: 10.1039/D0MA00593B – volume: 47 start-page: 34297 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0075 article-title: Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates publication-title: Ceram Int doi: 10.1016/j.ceramint.2021.08.340 – volume: 31 year: 2019 ident: 10.1016/j.apenergy.2024.122930_bb0130 article-title: Recent advances on graphene quantum dots: from chemistry and physics to applications publication-title: Adv Mater doi: 10.1002/adma.201808283 – volume: 157 start-page: 663 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0205 article-title: Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene nanosheets publication-title: Carbon. doi: 10.1016/j.carbon.2019.10.102 – volume: 278 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0010 article-title: Hybrid and organic photovoltaics for greenhouse applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.115582 – volume: 10 start-page: 221 year: 2018 ident: 10.1016/j.apenergy.2024.122930_bb0135 article-title: Graphene quantum dots from chemistry to applications publication-title: Mater Today Chem doi: 10.1016/j.mtchem.2018.09.007 – volume: 13 start-page: 299 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0020 article-title: Agrivoltaics: the environmental impacts of combining food crop cultivation and solar energy generation publication-title: Agronomy. doi: 10.3390/agronomy13020299 – volume: 648 start-page: 193 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0095 article-title: Graphene quantum dots induced defect-rich NiFe Prussian blue analogue as an efficient electrocatalyst for oxygen evolution reaction publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2023.05.187 – volume: 10 start-page: 538 year: 2019 ident: 10.1016/j.apenergy.2024.122930_bb0245 article-title: The coevolution of lifespan and reversible plasticity publication-title: Nat Commun doi: 10.1038/s41467-019-08502-9 – volume: 13 start-page: 496 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0230 article-title: Review of dye-sensitized solar cell (DSSCs) development publication-title: Nat Sci – volume: 397 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0085 article-title: Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125380 – volume: 13 start-page: 4807 year: 2018 ident: 10.1016/j.apenergy.2024.122930_bb0170 article-title: Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging publication-title: Int J Nanomedicine doi: 10.2147/IJN.S168570 – volume: 125 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0145 article-title: Graphene quantum dots and CuS microflowers anchored rGO composite counter electrode for the enhanced performance of quantum dot sensitized solar cells publication-title: Diamond Relat Mater doi: 10.1016/j.diamond.2022.109033 – volume: 5 year: 2019 ident: 10.1016/j.apenergy.2024.122930_bb0070 article-title: Electrochromic properties of nanostructured WO3 thin films deposited by glancing-angle magnetron sputtering publication-title: Adv Electron Mater doi: 10.1002/aelm.201800713 – start-page: 383 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0110 – volume: 199 start-page: 187 year: 2015 ident: 10.1016/j.apenergy.2024.122930_bb0220 article-title: Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites publication-title: Synth Met doi: 10.1016/j.synthmet.2014.11.031 – volume: 10 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0235 article-title: Tinted semi-transparent solar panels allow concurrent production of crops and electricity on the same cropland publication-title: Adv Energy Mater doi: 10.1002/aenm.202001189 – volume: 332 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0185 article-title: Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing publication-title: Electrochim Acta doi: 10.1016/j.electacta.2019.135504 – volume: 654 start-page: 677 year: 2024 ident: 10.1016/j.apenergy.2024.122930_bb0090 article-title: Surface restructuring Prussian blue analog-derived bimetallic CoFe phosphides by N-doped graphene quantum dots for electroactive hydrogen evolving catalyst publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2023.10.028 – volume: 24 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0155 article-title: Infrared electrochromic materials, devices and applications publication-title: Appl Mater Today – volume: 199 start-page: 103 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0040 article-title: Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building publication-title: Renew Energy doi: 10.1016/j.renene.2022.08.089 – volume: 11 start-page: 13290 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0030 article-title: A near-infrared photoelectrochromic device with indoor thermal management for self-powered smart windows publication-title: J Mater Chem C doi: 10.1039/D3TC01669B – volume: 15 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0150 article-title: Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging publication-title: Arab J Chem doi: 10.1016/j.arabjc.2022.103856 – volume: 36 start-page: 112 year: 2008 ident: 10.1016/j.apenergy.2024.122930_bb0165 article-title: The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging publication-title: Toxicol Pathol doi: 10.1177/0192623307310950 – volume: 186 start-page: 406 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0115 article-title: Surface-engineered N-doped carbon nanotubes with B-doped graphene quantum dots: strategies to develop highly-efficient noble metal-free electrocatalyst for online-monitoring dissolved oxygen biosensor publication-title: Carbon. doi: 10.1016/j.carbon.2021.10.027 – volume: 11 start-page: 103 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0025 article-title: Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy (Brassica rapa subsp. chinensis L.) under the panels publication-title: Int J Renew Energy Dev doi: 10.14710/ijred.2022.41116 – volume: 5 start-page: 11100 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0120 article-title: Boron-doped graphene quantum dots anchored to carbon nanotubes as Noble metal-free Electrocatalysts of uric acid for a wearable sweat sensor publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.2c02279 – volume: 26 start-page: 8694 year: 2016 ident: 10.1016/j.apenergy.2024.122930_bb0210 article-title: Nitrogen-doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple-modal in vivo bioimaging publication-title: Adv Funct Mater doi: 10.1002/adfm.201603084 – volume: 90 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0035 article-title: Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106575 – volume: 119 start-page: 923 year: 2018 ident: 10.1016/j.apenergy.2024.122930_bb0160 article-title: Active dynamic windows for buildings: a review publication-title: Renew Energy doi: 10.1016/j.renene.2017.12.049 – volume: 1122 start-page: 80 year: 2016 ident: 10.1016/j.apenergy.2024.122930_bb0225 article-title: Organic sensitizers for dye-sensitized solar cell (DSSC): properties from computation, progress and future perspectives publication-title: J Mol Struct doi: 10.1016/j.molstruc.2016.05.080 – volume: 10 start-page: 4 year: 2015 ident: 10.1016/j.apenergy.2024.122930_bb0240 article-title: Temperature extremes: effect on plant growth and development publication-title: Weather Clim Extrem doi: 10.1016/j.wace.2015.08.001 – volume: 445 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0055 article-title: P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices publication-title: Chem Eng J doi: 10.1016/j.cej.2022.136826 – volume: 4 start-page: 1898 year: 2021 ident: 10.1016/j.apenergy.2024.122930_bb0215 article-title: Ag and Fe3O4 Comodified WO3 – x nanocomposites for catalytic photothermal degradation of pharmaceuticals and personal care products publication-title: ACS Appl Nano Mater doi: 10.1021/acsanm.0c03261 – volume: 33 start-page: 8292 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0250 article-title: Preparation of complementary electrochromic devices with WO3/PANI and NiO/PB double-hybrid electrodes publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-022-07986-4 – volume: 10 start-page: 11948 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0065 article-title: Fabrication of tungsten oxide/graphene quantum dot (WO3@ GQD) thin films on indium tin oxide-based glass and flexible substrates for the construction of electrochromic devices for smart window applications publication-title: ACS Sustain Chem Eng doi: 10.1021/acssuschemeng.2c03229 – volume: 31 start-page: 415 year: 2014 ident: 10.1016/j.apenergy.2024.122930_bb0125 article-title: Graphene quantum dots publication-title: Particle Particle Syst Characteriz doi: 10.1002/ppsc.201300252 – volume: 332 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0015 article-title: The potential for agrivoltaics to enhance solar farm cooling publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120478 – volume: 3 start-page: 3779 year: 2020 ident: 10.1016/j.apenergy.2024.122930_bb0045 article-title: Spectrally selective PANI/ITO nanocomposite electrodes for energy-efficient dual band electrochromic windows publication-title: ACS Appl Energy Mater doi: 10.1021/acsaem.0c00241 – volume: 476 year: 2023 ident: 10.1016/j.apenergy.2024.122930_bb0105 article-title: Tandem surface engineering of graphene quantum dot-assisted fluorinated NiFe Prussian blue analogue for electrocatalytic oxygen evolution reaction publication-title: Chem Eng J doi: 10.1016/j.cej.2023.146754 – volume: 571 year: 2022 ident: 10.1016/j.apenergy.2024.122930_bb0190 article-title: An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation publication-title: Appl Surf Sci doi: 10.1016/j.apsusc.2021.151277 |
SSID | ssj0002120 |
Score | 2.4284723 |
Snippet | Agrivoltaic system is the use of land for both photovoltaic energy production through the installation of solar panels and for pastoral and crop cultivation.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 122930 |
SubjectTerms | agrivoltaic systems Agrivoltaics electrodes energy films (materials) graphene Graphene quantum dot greenhouses hydrogen lighting pastoralism Photoelectrochromic device quantum dots Self-powered solar energy temperature Thermal management transmittance tungsten oxide Tungsten trioxide |
Title | Near-infrared photoelectrochromic device with graphene quantum dot modified WO3 thin film toward fast-response thermal management for self-powered Agrivoltaics |
URI | https://dx.doi.org/10.1016/j.apenergy.2024.122930 https://www.proquest.com/docview/3153613075 |
Volume | 361 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQvdADaqGo0Ba5Uq_eTZy1vTmuEGjbqtsDoHKzbMfuBm0-SLLX_pX-1Y4TB2iligPHRLZlZcYzb5w3Mwh9AoSapgD7SZwqCgGKYUQ560hMtTKaztk881cD31Z8eT37csNudtDZmAvjaZXB9g82vbfW4c00fM1pnefTS492hwCiL0DYZ7DPhNfyya8HmgcNpRlhMPGjH2UJ305UbfsMO4gT6WwSU_B90f8c1D-muvc_F6_QfgCOeDHs7TXaseUBevmonOABOjp_yFqDoeHYtofo9wr0mYAuNZ5ujut11VWh_41ZNz4vGWfWmwzsr2VxX8QatozvtvDdtwWGyBUXVZY7wKv4x_cEd-u8xC7fFLjrabfYqbYjzcC3tdiDygJ2UNxzazBgY9zajSO1b8sGyyx-NjmYxk7lpn2Dri7Or86WJHRmIAbin45AEBVnPKI2EZGKHE-EzzOxxgmRaqtVaoUx3MSKGadTO-dGaG4TaixnLIuTI7RbVqV9i7BmfO4cTZlQ2YxqoTPDnaDGJJHWQrFjxEZpSBOqlvvmGRs50tNu5ShF6aUoBykeo-n9vHqo2_HkjHQUtvxLAyU4lyfnfhy1Q8Lx9P9cVGmrbSsT8Cg-RBPs5Bnrv0N7_mkgWr5Hu12ztR8ADHX6tNf2U_Ri8fnrcvUHFJsPmw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaq7QE4IChU9AEYiau7ibOON8dV1Wr7Wg4sojfLdmw21eZBkv09_asdJ85SkKoeuCYZy_KMZ77PmRkj9BUQapIA7CdhIikQFM2ItMaSkCqpFZ2yaeqOBm4W8fzH5PKW3e6g06EWxqVVet_f-_TOW_snY7-a4yrLxt8d2u0JRNeAECjQrutOxUZod3ZxNV9sHTL13Rnhe-IEHhUK353IynRFdkAV6eQkpBD-gqdi1D_eugtB52_Qa48d8ayf3lu0Y4o99OpRR8E9tH_2p3ANPvU7t3mH7hdg0gTMqXYZ57halW3pr8DRq9qVJuPUOK-B3cks7vpYw5Tx7w0s_SbHQF5xXqaZBciKf36LcLvKCmyzdY7bLvMWW9m0pO5Tbg12uDKHGeTb9BoM8Bg3Zm1J5W5mg2Fmv-oMvGMrM928R8vzs-XpnPjLGYgGCtQS4FFhGgfURDyQgY0j7kpNjLacJ8oomRiudaxDybRViZnGmqvYRFSbmLE0jPbRqCgL8wFhxeKptTRhXKYTqrhKdWw51ToKlOKSHSA2aENo37jc3Z-xFkOG2p0YtCicFkWvxQM03spVfeuOZyWSQdniLyMUEF-elf0yWIeAHep-u8jClJtGRBBUHEvj7PA_xv-MXsyXN9fi-mJxdYReujd93uUxGrX1xnwEbNSqT972HwBG_hJM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Near-infrared+photoelectrochromic+device+with+graphene+quantum+dot+modified+WO3+thin+film+toward+fast-response+thermal+management+for+self-powered+Agrivoltaics&rft.jtitle=Applied+energy&rft.au=Chang%2C+Ling-Yu&rft.au=Chang%2C+Ching-Cheng&rft.au=Rinawati%2C+Mia&rft.au=Chang%2C+Yu-Hsin&rft.date=2024-05-01&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.volume=361&rft_id=info:doi/10.1016%2Fj.apenergy.2024.122930&rft.externalDocID=S0306261924003131 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |