Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis
Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristi...
Saved in:
Published in | Soil use and management Vol. 39; no. 1; pp. 43 - 52 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bedfordshire
Wiley Subscription Services, Inc
01.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions. |
---|---|
AbstractList | Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions. |
Author | Long, Amelia Kaiser, Michael Li, Lidong Fossum, Britt |
Author_xml | – sequence: 1 givenname: Lidong orcidid: 0000-0001-5420-260X surname: Li fullname: Li, Lidong email: lli32@unl.edu organization: University of Nebraska‐Lincoln – sequence: 2 givenname: Amelia surname: Long fullname: Long, Amelia organization: University of Nebraska‐Lincoln – sequence: 3 givenname: Britt surname: Fossum fullname: Fossum, Britt organization: University of Nebraska‐Lincoln – sequence: 4 givenname: Michael surname: Kaiser fullname: Kaiser, Michael organization: University of Nebraska‐Lincoln |
BookMark | eNp9kb9O5DAQxi20SLf8Ke4NLNHcFQHbycYO3WrFARInCqCOHGesNSR2sB2hdFdfdc_Ik-DdpVqJm2JGI_2-b0b6jtDMOgsIfafknKa6CGN_TpkoxAGa04IvMsaLfIbmhJVlRkjOvqGjEJ4JYZSXZI7-XmkNKgbsNB4m77opmIAj9AN4GUcPWNoWa4A2RKdecJwGwM7ixji1lh5vmlQRvAnRqICTLBoLNuLocHCmw0r6Jgk2Ntt9DbKL60u8xD1E-f7nn7Rye_UEHWrZBTj9nMfo6dfV4-omu7u_vl0t7zLFSiIyuVB5SQBE1RLGQdOSi4UWjahE0RDRtopBVeZCNKolDXAFKr0vZEM0zYu8yo_Rj53v4N3rCCHWvQkKuk5acGOomaC04qLMSULP9tBnN_r0b6I4JwteFUwk6ueOUt6F4EHXgze99FNNSb1JpU6p1NtUEnuxxyoTZTTORi9N9z_Fm-lg-tq6fnj6vVN8ADSbpGg |
CitedBy_id | crossref_primary_10_1590_1983_21252024v3711792rc crossref_primary_10_1016_j_jaap_2023_106069 crossref_primary_10_1016_j_biombioe_2024_107583 crossref_primary_10_1016_j_scitotenv_2024_170577 crossref_primary_10_1111_gcbb_13147 crossref_primary_10_1016_j_jtice_2024_105670 crossref_primary_10_1080_15226514_2025_2457510 crossref_primary_10_1038_s43586_024_00297_4 crossref_primary_10_3390_c9030067 crossref_primary_10_1016_j_eti_2024_103775 crossref_primary_10_1016_j_fecs_2024_100277 crossref_primary_10_1080_26395940_2024_2387680 crossref_primary_10_1007_s13369_025_10022_2 crossref_primary_10_1007_s10653_024_02120_1 crossref_primary_10_1111_sum_13032 crossref_primary_10_3390_su15097627 crossref_primary_10_1007_s43621_024_00380_6 crossref_primary_10_1590_1678_4499_20230299 crossref_primary_10_3389_fenvs_2023_1327000 crossref_primary_10_1007_s11368_023_03645_1 crossref_primary_10_1111_gcbb_70021 crossref_primary_10_1016_j_jhazmat_2024_135738 crossref_primary_10_1111_gcb_17233 crossref_primary_10_1111_sum_12945 crossref_primary_10_1007_s42729_023_01489_9 crossref_primary_10_1111_sum_12868 crossref_primary_10_1016_j_jece_2024_114885 crossref_primary_10_1016_j_scitotenv_2023_167290 crossref_primary_10_1111_gcbb_13110 crossref_primary_10_1016_j_plaphy_2024_109053 crossref_primary_10_54559_jauist_1541318 crossref_primary_10_1016_j_biombioe_2024_107178 crossref_primary_10_1016_j_crgsc_2024_100409 crossref_primary_10_3390_ma17246208 crossref_primary_10_1016_j_jenvman_2024_123147 crossref_primary_10_14710_ijred_2023_56575 crossref_primary_10_3390_agriculture14010037 crossref_primary_10_3390_plants13030460 crossref_primary_10_3390_su16062523 crossref_primary_10_1002_agj2_21714 crossref_primary_10_1111_sum_13026 crossref_primary_10_1080_15226514_2025_2473594 crossref_primary_10_1007_s11356_024_33807_8 crossref_primary_10_1002_bbb_2679 crossref_primary_10_1002_bbb_2734 crossref_primary_10_1016_j_desal_2024_117597 |
Cites_doi | 10.1016/j.geoderma.2016.03.029 10.1007/s10098-016-1113-3 10.1007/978-3-030-44364-1_2 10.1021/es8033044 10.1016/j.chemosphere.2015.04.062 10.1016/j.biombioe.2014.03.059 10.1021/es5022087 10.1111/gcbb.12376 10.1007/s42773-020-00067-x 10.1038/s41561-021-00852-8 10.1021/es302545b 10.1021/ie201309r 10.1007/s11368-016-1360-2 10.1016/j.soilbio.2011.04.022 10.1016/j.scitotenv.2020.140714 10.1007/s10098-014-0730-y 10.1007/s10098-019-01728-7 10.1016/j.geoderma.2020.114841 10.1016/j.geoderma.2004.12.016 10.1016/j.biortech.2011.11.084 10.1016/j.agee.2011.08.015 10.1016/j.geoderma.2012.10.002 10.1016/j.scitotenv.2018.10.060 10.1016/j.scitotenv.2017.09.200 10.1111/gcbb.12037 10.1111/gcbb.12266 10.1111/gcbb.12030 10.3389/fenrg.2020.00085 10.1016/j.scitotenv.2018.07.402 10.1111/gcbb.12885 10.1021/es903140c 10.1016/j.biombioe.2015.11.002 10.1371/journal.pone.0176884 10.1021/es403711y 10.1016/j.jclepro.2020.120318 10.1016/j.scitotenv.2020.144204 10.1016/j.fuel.2017.12.054 10.1016/j.geoderma.2020.114184 10.1038/srep38506 10.1038/ncomms1053 10.1016/j.scitotenv.2019.136433 10.1111/gcb.14613 10.1016/j.chemosphere.2021.132113 10.1016/j.cej.2021.130387 10.1016/j.orggeochem.2014.10.002 10.1029/1999GB900067 10.1007/s11104-018-3619-4 10.1007/s11157-020-09523-3 10.1016/j.envpol.2020.115549 10.1111/gcbb.12765 10.1016/j.chemosphere.2018.11.177 10.1016/j.scitotenv.2020.136635 10.1016/j.fuel.2006.12.013 10.1016/j.biortech.2019.02.105 10.1016/j.chemosphere.2012.05.085 10.1016/j.agee.2020.107258 10.2134/jeq2011.0146 10.1016/j.biortech.2021.125811 |
ContentType | Journal Article |
Copyright | 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science. – notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 7ST 7UA 8FD C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
DOI | 10.1111/sum.12848 |
DatabaseName | Wiley Online Library Open Access CrossRef Environment Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA Civil Engineering Abstracts |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1475-2743 |
EndPage | 52 |
ExternalDocumentID | 10_1111_sum_12848 SUM12848 |
Genre | reviewArticle |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 24P 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABJNI ABOGM ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHEFC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 D-E D-F DC6 DCZOG DDYGU DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD F00 F01 F04 FEDTE FZ0 G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ UB1 W8V W99 WBKPD WIH WIK WOHZO WQJ WRC WUPDE WXSBR WYISQ XG1 Y6R ZZTAW ~02 ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION 7ST 7UA 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H96 KR7 L.G SOI 7S9 L.6 |
ID | FETCH-LOGICAL-c2608-a5c360ee89d027ef16785f8b8984b08ddc2e96388bcd0be7cecfee8ab0f134393 |
IEDL.DBID | DR2 |
ISSN | 0266-0032 |
IngestDate | Fri Jul 11 18:37:14 EDT 2025 Fri Jul 25 20:51:34 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Tue Jul 01 00:47:33 EDT 2025 Wed Jan 22 16:24:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Attribution-NonCommercial-NoDerivs |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2608-a5c360ee89d027ef16785f8b8984b08ddc2e96388bcd0be7cecfee8ab0f134393 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5420-260X |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12848 |
PQID | 2770579428 |
PQPubID | 1046348 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2811978630 proquest_journals_2770579428 crossref_primary_10_1111_sum_12848 crossref_citationtrail_10_1111_sum_12848 wiley_primary_10_1111_sum_12848_SUM12848 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 20230101 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationPlace | Bedfordshire |
PublicationPlace_xml | – name: Bedfordshire |
PublicationTitle | Soil use and management |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2015; 78 2009; 43 2013; 1 2021; 763 2019; 647 2020; 364 2013; 5 2019; 281 2017; 9 2014; 66 2020; 19 2012; 51 2020; 8 2022; 287 2020; 2 2010; 1 2019; 21 2018; 217 2015; 134 2019; 25 1999; 13 2014; 16 2016; 84 2020; 255 2018; 618 2013; 193 2016; 274 2021; 308 2021; 388 2012 2021; 268 2018; 426 2021; 424 2014; 48 2020; 744 2021; 341 2016; 18 2012; 107 2021; 14 2021; 13 2010; 44 2016; 6 2017; 17 2020 2017; 12 2005; 128 2011; 43 2019; 218 2015 2007; 86 2012; 46 2012; 89 2016; 8 2019; 651 2020; 713 2011; 144 2012; 41 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 Chia C. H. (e_1_2_8_10_1) 2015 IBI (e_1_2_8_25_1) 2015 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Zimmerman A. R. (e_1_2_8_65_1) 2013; 1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 Krull E. S. (e_1_2_8_34_1) 2012 e_1_2_8_29_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 Kleber M. (e_1_2_8_32_1) 2015 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 DeLuca T. H. (e_1_2_8_13_1) 2015 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 43 start-page: 1812 year: 2011 end-page: 1836 article-title: Biochar effects on soil biota – A review publication-title: Soil Biology and Biochemistry – volume: 14 start-page: 883 year: 2021 end-page: 892 article-title: Biochar in climate change mitigation publication-title: Nature Geoscience – volume: 41 start-page: 1001 year: 2012 end-page: 1013 article-title: One step forward toward characterization: Some important material properties to distinguish biochars publication-title: Journal of Environmental Quality – volume: 86 start-page: 1781 year: 2007 end-page: 1788 article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis publication-title: Fuel – volume: 9 start-page: 743 year: 2017 end-page: 755 article-title: Effects of biochar application on soil greenhouse gas fluxes: A meta‐analysis publication-title: GCB Bioenergy – volume: 134 start-page: 257 year: 2015 end-page: 262 article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass publication-title: Chemosphere – volume: 5 start-page: 202 year: 2013 end-page: 214 article-title: Biochar and its effects on plant productivity and nutrient cycling: A meta‐analysis publication-title: GCB Bioenergy – volume: 12 start-page: e0176884 year: 2017 article-title: Properties of biochar derived from wood and high‐nutrient biomasses with the aim of agronomic and environmental benefits publication-title: PLoS One – start-page: 453 year: 2015 end-page: 486 – volume: 744 year: 2020 article-title: Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta‐analysis publication-title: Science of the Total Environment – volume: 713 start-page: 136433 year: 2020 article-title: Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application publication-title: Science of the Total Environment – volume: 388 year: 2021 article-title: Organo‐mineral associations largely contribute to the stabilization of century‐old pyrogenic organic matter in cropland soils publication-title: Geoderma – volume: 341 year: 2021 article-title: Critical impacts of pyrolysis conditions and activation methods on application‐oriented production of wood waste‐derived biochar publication-title: Bioresource Technology – volume: 43 start-page: 3421 year: 2009 end-page: 3429 article-title: Molecular‐level interactions in soils and sediments: The role of aromatic π‐systems publication-title: Environmental Science & Technology – volume: 193 start-page: 122 year: 2013 end-page: 130 article-title: Organic carbon and nutrient release from a range of laboratory‐produced biochars and biochar–soil mixtures publication-title: Geoderma – volume: 5 start-page: 122 year: 2013 end-page: 131 article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods publication-title: GCB Bioenergy – volume: 268 year: 2021 article-title: Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review publication-title: Environmental Pollution – volume: 51 start-page: 3587 year: 2012 end-page: 3597 article-title: Multiple controls on the chemical and physical structure of biochars publication-title: Industrial & Engineering Chemistry Research – volume: 618 start-page: 1210 year: 2018 end-page: 1223 article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release publication-title: Science of the Total Environment – volume: 647 start-page: 210 year: 2019 end-page: 222 article-title: Biochar stability assessment methods: A review publication-title: Science of the Total Environment – volume: 16 start-page: 1821 year: 2014 end-page: 1825 article-title: Significant breakthrough in biochar cost reduction publication-title: Clean Technologies and Environmental Policy – volume: 651 start-page: 2354 year: 2019 end-page: 2364 article-title: Biochar, soil and land‐use interactions that reduce nitrate leaching and N O emissions: A meta‐analysis publication-title: Science of the Total Environment – start-page: 21 year: 2020 end-page: 46 – volume: 424 start-page: 130387 year: 2021 article-title: Roles of biochar‐derived dissolved organic matter in soil amendment and environmental remediation: A critical review publication-title: Chemical Engineering Journal – volume: 218 start-page: 624 year: 2019 end-page: 631 article-title: Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge publication-title: Chemosphere – volume: 84 start-page: 76 year: 2016 end-page: 86 article-title: Insight into biochar properties and its cost analysis publication-title: Biomass and Bioenergy – start-page: 121 year: 2015 end-page: 142 – year: 2015 – volume: 13 start-page: 923 year: 1999 end-page: 932 article-title: Stability of elemental carbon in a savanna soil publication-title: Global Biogeochemical Cycles – volume: 2 start-page: 421 year: 2020 end-page: 438 article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta‐data analysis review publication-title: Biochar – volume: 144 start-page: 175 year: 2011 end-page: 187 article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta‐analysis publication-title: Agriculture, Ecosystems & Environment – volume: 308 start-page: 107258 year: 2021 article-title: Applying both biochar and phosphobacteria enhances L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability publication-title: Agriculture, Ecosystems & Environment – volume: 46 start-page: 11770 year: 2012 end-page: 11778 article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature publication-title: Environmental Science & Technology – volume: 21 start-page: 1389 year: 2019 end-page: 1395 article-title: Biochar farming: Defining economically perspective applications publication-title: Clean Technologies and Environmental Policy – volume: 44 start-page: 1295 year: 2010 end-page: 1301 article-title: Abiotic and microbial oxidation of laboratory‐produced black carbon (biochar) publication-title: Environmental Science & Technology – volume: 763 year: 2021 article-title: An overview on engineering the surface area and porosity of biochar publication-title: Science of the Total Environment – volume: 17 start-page: 685 year: 2017 end-page: 716 article-title: Biochar for crop production: Potential benefits and risks publication-title: Journal of Soils and Sediments – volume: 66 start-page: 176 year: 2014 end-page: 185 article-title: New approaches to measuring biochar density and porosity publication-title: Biomass and Bioenergy – volume: 13 start-page: 133 year: 2021 end-page: 142 article-title: Water cost savings from soil biochar amendment: A spatial analysis publication-title: GCB Bioenergy – volume: 128 start-page: 80 year: 2005 end-page: 93 article-title: Soil wettability, aggregate stability, and the decomposition of soil organic matter publication-title: Geoderma – volume: 107 start-page: 419 year: 2012 end-page: 428 article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar publication-title: Bioresource Technology – volume: 13 start-page: 1731 year: 2021 end-page: 1764 article-title: How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar publication-title: GCB Bioenergy – volume: 18 start-page: 1225 year: 2016 end-page: 1231 article-title: Biochar pricing hampers biochar farming publication-title: Clean Technologies and Environmental Policy – volume: 48 start-page: 11227 year: 2014 end-page: 11234 article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter publication-title: Environmental Science & Technology – volume: 426 start-page: 211 year: 2018 end-page: 225 article-title: How does biochar influence soil N cycle? A meta‐analysis publication-title: Plant and Soil – volume: 713 year: 2020 article-title: Combined effects of biochar properties and soil conditions on plant growth: A meta‐analysis publication-title: Science of the Total Environment – volume: 274 start-page: 28 year: 2016 end-page: 34 article-title: Quantification of biochar effects on soil hydrological properties using meta‐analysis of literature data publication-title: Geoderma – volume: 281 start-page: 457 year: 2019 end-page: 468 article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review publication-title: Bioresource Technology – volume: 48 start-page: 279 year: 2014 end-page: 288 article-title: Aromatic and hydrophobic surfaces of wood‐derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen‐containing organic groups publication-title: Environmental Science & Technology – start-page: 85 year: 2012 end-page: 98 – volume: 78 start-page: 135 year: 2015 end-page: 143 article-title: Aromaticity and degree of aromatic condensation of char publication-title: Organic Geochemistry – volume: 6 start-page: 1 year: 2016 end-page: 13 article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials publication-title: Scientific Reports – volume: 25 start-page: 2077 year: 2019 end-page: 2093 article-title: Biochar application as a tool to decrease soil nitrogen losses (NH volatilization, N O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective publication-title: Global Change Biology – volume: 8 start-page: 512 year: 2016 end-page: 523 article-title: Biochar stability in soil: Meta‐analysis of decomposition and priming effects publication-title: GCB Bioenergy – volume: 8 start-page: 85 year: 2020 article-title: Effect of pyrolysis temperature on physicochemical properties and acoustic‐based amination of biochar for efficient CO adsorption publication-title: Frontiers in Energy Research – start-page: 143 year: 2015 end-page: 170 – volume: 89 start-page: 198 year: 2012 end-page: 203 article-title: Textural and chemical properties of swine‐manure‐derived biochar pertinent to its potential use as a soil amendment publication-title: Chemosphere – volume: 217 start-page: 240 year: 2018 end-page: 261 article-title: Properties of biochar publication-title: Fuel – volume: 19 start-page: 191 year: 2020 end-page: 215 article-title: Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects publication-title: Reviews in Environmental Science and Bio/Technology – volume: 364 year: 2020 article-title: Biochar's stability and effect on the content, composition and turnover of soil organic carbon publication-title: Geoderma – volume: 287 year: 2022 article-title: Novel insights into the adsorption of organic contaminants by biochar: A review publication-title: Chemosphere – volume: 255 year: 2020 article-title: Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield publication-title: Journal of Cleaner Production – volume: 1 start-page: 1 year: 2010 end-page: 9 article-title: Sustainable biochar to mitigate global climate change publication-title: Nature Communications – volume: 1 start-page: 240 year: 2013 article-title: The stability of biochar in the environment publication-title: Biochar and Soil Biota – ident: e_1_2_8_45_1 doi: 10.1016/j.geoderma.2016.03.029 – ident: e_1_2_8_54_1 doi: 10.1007/s10098-016-1113-3 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-030-44364-1_2 – ident: e_1_2_8_31_1 doi: 10.1021/es8033044 – ident: e_1_2_8_56_1 doi: 10.1016/j.chemosphere.2015.04.062 – ident: e_1_2_8_6_1 doi: 10.1016/j.biombioe.2014.03.059 – ident: e_1_2_8_18_1 doi: 10.1021/es5022087 – ident: e_1_2_8_22_1 doi: 10.1111/gcbb.12376 – ident: e_1_2_8_26_1 doi: 10.1007/s42773-020-00067-x – ident: e_1_2_8_35_1 doi: 10.1038/s41561-021-00852-8 – ident: e_1_2_8_49_1 doi: 10.1021/es302545b – ident: e_1_2_8_50_1 doi: 10.1021/ie201309r – ident: e_1_2_8_24_1 doi: 10.1007/s11368-016-1360-2 – ident: e_1_2_8_36_1 doi: 10.1016/j.soilbio.2011.04.022 – ident: e_1_2_8_20_1 doi: 10.1016/j.scitotenv.2020.140714 – ident: e_1_2_8_42_1 doi: 10.1007/s10098-014-0730-y – ident: e_1_2_8_43_1 doi: 10.1007/s10098-019-01728-7 – volume: 1 start-page: 240 year: 2013 ident: e_1_2_8_65_1 article-title: The stability of biochar in the environment publication-title: Biochar and Soil Biota – ident: e_1_2_8_7_1 doi: 10.1016/j.geoderma.2020.114841 – ident: e_1_2_8_16_1 doi: 10.1016/j.geoderma.2004.12.016 – ident: e_1_2_8_8_1 doi: 10.1016/j.biortech.2011.11.084 – ident: e_1_2_8_27_1 doi: 10.1016/j.agee.2011.08.015 – ident: e_1_2_8_44_1 doi: 10.1016/j.geoderma.2012.10.002 – ident: e_1_2_8_5_1 doi: 10.1016/j.scitotenv.2018.10.060 – ident: e_1_2_8_29_1 doi: 10.1016/j.scitotenv.2017.09.200 – ident: e_1_2_8_3_1 doi: 10.1111/gcbb.12037 – ident: e_1_2_8_55_1 doi: 10.1111/gcbb.12266 – ident: e_1_2_8_11_1 doi: 10.1111/gcbb.12030 – ident: e_1_2_8_9_1 doi: 10.3389/fenrg.2020.00085 – ident: e_1_2_8_37_1 doi: 10.1016/j.scitotenv.2018.07.402 – ident: e_1_2_8_28_1 doi: 10.1111/gcbb.12885 – ident: e_1_2_8_64_1 doi: 10.1021/es903140c – ident: e_1_2_8_2_1 doi: 10.1016/j.biombioe.2015.11.002 – ident: e_1_2_8_14_1 doi: 10.1371/journal.pone.0176884 – ident: e_1_2_8_15_1 doi: 10.1021/es403711y – ident: e_1_2_8_63_1 doi: 10.1016/j.jclepro.2020.120318 – start-page: 121 volume-title: Biochar for environmental management year: 2015 ident: e_1_2_8_10_1 – ident: e_1_2_8_38_1 doi: 10.1016/j.scitotenv.2020.144204 – ident: e_1_2_8_57_1 doi: 10.1016/j.fuel.2017.12.054 – ident: e_1_2_8_19_1 doi: 10.1016/j.geoderma.2020.114184 – start-page: 85 volume-title: Biochar for environmental management year: 2012 ident: e_1_2_8_34_1 – ident: e_1_2_8_61_1 doi: 10.1038/srep38506 – start-page: 453 volume-title: Biochar for environmental management year: 2015 ident: e_1_2_8_13_1 – ident: e_1_2_8_60_1 doi: 10.1038/ncomms1053 – ident: e_1_2_8_46_1 doi: 10.1016/j.scitotenv.2019.136433 – ident: e_1_2_8_39_1 doi: 10.1111/gcb.14613 – ident: e_1_2_8_41_1 doi: 10.1016/j.chemosphere.2021.132113 – ident: e_1_2_8_51_1 doi: 10.1016/j.cej.2021.130387 – ident: e_1_2_8_59_1 doi: 10.1016/j.orggeochem.2014.10.002 – ident: e_1_2_8_4_1 doi: 10.1029/1999GB900067 – ident: e_1_2_8_40_1 doi: 10.1007/s11104-018-3619-4 – ident: e_1_2_8_52_1 doi: 10.1007/s11157-020-09523-3 – ident: e_1_2_8_17_1 doi: 10.1016/j.envpol.2020.115549 – ident: e_1_2_8_33_1 doi: 10.1111/gcbb.12765 – ident: e_1_2_8_58_1 doi: 10.1016/j.chemosphere.2018.11.177 – ident: e_1_2_8_12_1 doi: 10.1016/j.scitotenv.2020.136635 – ident: e_1_2_8_62_1 doi: 10.1016/j.fuel.2006.12.013 – ident: e_1_2_8_47_1 doi: 10.1016/j.biortech.2019.02.105 – ident: e_1_2_8_53_1 doi: 10.1016/j.chemosphere.2012.05.085 – ident: e_1_2_8_30_1 doi: 10.1016/j.agee.2020.107258 – volume-title: Standardized product definition and product testing guidelines for biochar that is used in soil year: 2015 ident: e_1_2_8_25_1 – start-page: 143 volume-title: Biochar for environmental management year: 2015 ident: e_1_2_8_32_1 – ident: e_1_2_8_48_1 doi: 10.2134/jeq2011.0146 – ident: e_1_2_8_21_1 doi: 10.1016/j.biortech.2021.125811 |
SSID | ssj0021760 |
Score | 2.5376704 |
Snippet | Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 43 |
SubjectTerms | administrative management Ash content Ashes biochar biochar carbon Carbon Carbon capture and storage Carbon content Carbon sequestration Cellulose Charcoal Corn corn stover feedstock type feedstocks H/C ratio Hardwoods Lignin Meta-analysis Nitrogen nitrogen content Organic carbon Panicum virgatum pH effects Pyrolysis Raw materials Soil Soil amendment Soil improvement soil organic carbon soil quality Soil temperature Soils Specific surface specific surface area Stover Surface area Temperature Vegetables Wood |
Title | Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12848 https://www.proquest.com/docview/2770579428 https://www.proquest.com/docview/2811978630 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VnuDAG7FQqgFx4JKVN6_1wmmFqCokEEJU6gEp8tgOqtomq93sAU6cOfEb-SXMOE5oEUiIW6LYiWN7PN-MZz4DPCVdUp4XRaJ0PU_ylMqEFiZLlHIzx9ZPmYeRfvO2PDzKXx8XxzvwYsiF6fkhRoebSEZYr0XADW0uCDkP1FQWV0n0lVgtAUTvR-ooRtpl9K-wxayyNLIKSRTPWPOyLvoFMC_C1KBnDm7Ax6GFfXjJ6XTb0dR--Y288T9_4SZcj_gTl_2EuQU7vrkN15af1pGDw9-Bbz2j8QbbGlef120gLUHhsIoEzGgahzWrPQaO9hTFi4ttg3TSSg4X2ssc0LiS0O2GlRt2LW7akzO0Zk1cQV4T7vtkzOe4xHPfmR9fv5tIlXIXjg5efXh5mMQjGxLLhpFOTGGzUnmvF47tXV_PWBcWtSa90Dkp7ZxNvYi8JusU-bn1lpurDal6ljE2yu7BbtM2_j6gFy4z2ZgVPhrtPTlHdUqMFxXlxuoJPBsGr7KRz1yO1TirBruGu7cK3TuBJ2PRVU_i8adCe8MMqKIcb6p0PpdsXbbRJvB4fMwSKNsqpvHtlsto2YrV3FhuUhjuv3-kYl0ZLh78e9GHcFXOuO_9Pnuw2623_hEjoY724Uqav9sPE_8nCxkJqQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeeKNuKWAQBy5ZefNaL-KyAqoF2h5QK_WCIo_toKptstrNHuipZ078Rn4JM44TWgQS4pYo42Ti8Xge9nwGeIEqxzTNskiqchylMeYRTnQSSWlHlqKfPPWS3tvPZ4fph6PsaA1ed7UwLT5En3BjzfDzNSs4J6QvaTlJasizq7oG1_lEb0bOf_upB48iXzsPGRaKmWUSB1wh3sfTN71qjX65mJcdVW9pdm7D547HdoPJyXDV4NCc_wbf-L8_cQduBRdUTNsxcxfWXHUPNqZfFgGGw92Hby2o8VLUpZh_XdQet0QwjFXAYBa6sqIky0e-ozkRnMgVdSXwuOYyLmGuwkCLOe_ersi-iaYWy_r4VBi9QGrAr_H3bT3mKzEVZ67RPy6-64CW8gAOd94dvJlF4dSGyFBspCKdmSSXzqmJpZDXlSMyh1mpUE1UilJZa2LHWq_QWIlubJwhdpVGWY4Sco-Sh7Be1ZXbBOEYzozXZhmSRjmH1mIZI7mMElNt1ABedtIrTIA055M1TosutKHuLXz3DuB5TzpvcTz-RLTdDYEiqPKyiMdjLtilMG0Az_rHpIS8sqIrV6-IRvFqrCJmiSUv779_pCBz6S-2_p30KdyYHeztFrvv9z8-gpt85H2bBtqG9Waxco_JMWrwiR__PwFE9Qzu |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLZ4SBUcELRFXR6tW_XQS9BsnrPtaUVZ0RfiUCRu0byCUCFZ7S4Hbpw58Rv5JdiT2RQkKvWWKJ5kFMexP3v8DcBHLXOdplkWCVkVURrrPNIDlURC2L4l9JOnXtO_jvLDk_T7aXa6AF_mvTAtP0SXcGPL8P9rNvCxrR4ZOSlqj3-uchGWudjH67ni9LhDW_0iDwkWgswiiQOtEC_j6YY-dUZ_I8zHcap3NKN1WAsRIg5blW7AgqtfwurwbBJYMtwruG05h6fYVDi-njSeVgSZZSpQJKOqLVbkmCi0M3-Q86zY1KjPG-6yQvOUpRnHvLi6JveDswanzfkFGjXRNIBv48_bdsnPOMRLN1P3N3cqkJm8hpPRwe_9wyhsqhAZgi4yUplJcuGcHFhCpK7qk7fKKqnlQKZaSGtN7NgopTZWaFcYZ2i6UmlR9ROKXpJNWKqb2r0BdMw2xqVTZoyRzmlrdRVriuiETpWRPfg0f7ulCYzjvPHFRTlHHqSI0iuiBx860XFLs_Gc0M5cRWWwtGkZFwX30xKK6sH77jLZCBc-VO2aK5KRXCyVNFmaklftvx9SkjfzB1v_L_oOXhx_HZU_vx392IYV3pC-TdLswNJscuV2KWyZ6bf-83wA8AbrQA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+pyrolysis+temperature+and+feedstock+type+on+biochar+characteristics+pertinent+to+soil+carbon+and+soil+health%3A+A+meta%E2%80%90analysis&rft.jtitle=Soil+use+and+management&rft.au=Li%2C+Lidong&rft.au=Long%2C+Amelia&rft.au=Fossum%2C+Britt&rft.au=Kaiser%2C+Michael&rft.date=2023-01-01&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=39&rft.issue=1&rft.spage=43&rft.epage=52&rft_id=info:doi/10.1111%2Fsum.12848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sum_12848 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon |