Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis

Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristi...

Full description

Saved in:
Bibliographic Details
Published inSoil use and management Vol. 39; no. 1; pp. 43 - 52
Main Authors Li, Lidong, Long, Amelia, Fossum, Britt, Kaiser, Michael
Format Journal Article
LanguageEnglish
Published Bedfordshire Wiley Subscription Services, Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.
AbstractList Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and related improvements of soil functioning depend on biochar production conditions. Systematic evaluation of corresponding biochar characteristics is needed for more targeted and efficient biochar application strategies. Herein, we systematically review the effects of biochar pyrolysis temperature (175–950°C) and feedstock (corn stover, switchgrass and wood) on selected biochar characteristics (carbon content, H/C ratio, nitrogen content, pH, specific surface area, ash content and pore volume). These specific characteristics were selected as being pertinent to soil organic carbon sequestration and soil health improvement. Despite numerous studies on these topics, few have numerically quantified the effects of pyrolysis temperature. Our results show that high pyrolysis temperature (>500°C) increased carbon content and pore volume for wood biochar compared with low pyrolysis temperature (≤500°C). The high pyrolysis temperature decreased the H/C ratio and nitrogen content but increased pH, specific surface area and ash content regardless of feedstock. Compared with corn stover biochar and switchgrass biochar, wood biochar had higher carbon content and larger specific surface area but lower nitrogen and ash contents regardless of pyrolysis temperature. The higher biochar carbon content might be derived from higher lignin and cellulose contents of wood feedstock. Wood feedstock had 76%–109% more lignin and 27%–47% more cellulose than corn stover and switchgrass. Corn stover biochar had higher pH, and switchgrass biochar had larger pore volume than wood biochar. Our study indicates that the targeted production of biochar with specific characteristics can be facilitated by the selection of pyrolysis temperature and feedstock type. For amending soil with biochar, more operationally defined biochar production conditions and feedstock selection might be a way forward to wider acceptance and better predictability of biochar performance under field conditions.
Author Long, Amelia
Kaiser, Michael
Li, Lidong
Fossum, Britt
Author_xml – sequence: 1
  givenname: Lidong
  orcidid: 0000-0001-5420-260X
  surname: Li
  fullname: Li, Lidong
  email: lli32@unl.edu
  organization: University of Nebraska‐Lincoln
– sequence: 2
  givenname: Amelia
  surname: Long
  fullname: Long, Amelia
  organization: University of Nebraska‐Lincoln
– sequence: 3
  givenname: Britt
  surname: Fossum
  fullname: Fossum, Britt
  organization: University of Nebraska‐Lincoln
– sequence: 4
  givenname: Michael
  surname: Kaiser
  fullname: Kaiser, Michael
  organization: University of Nebraska‐Lincoln
BookMark eNp9kb9O5DAQxi20SLf8Ke4NLNHcFQHbycYO3WrFARInCqCOHGesNSR2sB2hdFdfdc_Ik-DdpVqJm2JGI_2-b0b6jtDMOgsIfafknKa6CGN_TpkoxAGa04IvMsaLfIbmhJVlRkjOvqGjEJ4JYZSXZI7-XmkNKgbsNB4m77opmIAj9AN4GUcPWNoWa4A2RKdecJwGwM7ixji1lh5vmlQRvAnRqICTLBoLNuLocHCmw0r6Jgk2Ntt9DbKL60u8xD1E-f7nn7Rye_UEHWrZBTj9nMfo6dfV4-omu7u_vl0t7zLFSiIyuVB5SQBE1RLGQdOSi4UWjahE0RDRtopBVeZCNKolDXAFKr0vZEM0zYu8yo_Rj53v4N3rCCHWvQkKuk5acGOomaC04qLMSULP9tBnN_r0b6I4JwteFUwk6ueOUt6F4EHXgze99FNNSb1JpU6p1NtUEnuxxyoTZTTORi9N9z_Fm-lg-tq6fnj6vVN8ADSbpGg
CitedBy_id crossref_primary_10_1590_1983_21252024v3711792rc
crossref_primary_10_1016_j_jaap_2023_106069
crossref_primary_10_1016_j_biombioe_2024_107583
crossref_primary_10_1016_j_scitotenv_2024_170577
crossref_primary_10_1111_gcbb_13147
crossref_primary_10_1016_j_jtice_2024_105670
crossref_primary_10_1080_15226514_2025_2457510
crossref_primary_10_1038_s43586_024_00297_4
crossref_primary_10_3390_c9030067
crossref_primary_10_1016_j_eti_2024_103775
crossref_primary_10_1016_j_fecs_2024_100277
crossref_primary_10_1080_26395940_2024_2387680
crossref_primary_10_1007_s13369_025_10022_2
crossref_primary_10_1007_s10653_024_02120_1
crossref_primary_10_1111_sum_13032
crossref_primary_10_3390_su15097627
crossref_primary_10_1007_s43621_024_00380_6
crossref_primary_10_1590_1678_4499_20230299
crossref_primary_10_3389_fenvs_2023_1327000
crossref_primary_10_1007_s11368_023_03645_1
crossref_primary_10_1111_gcbb_70021
crossref_primary_10_1016_j_jhazmat_2024_135738
crossref_primary_10_1111_gcb_17233
crossref_primary_10_1111_sum_12945
crossref_primary_10_1007_s42729_023_01489_9
crossref_primary_10_1111_sum_12868
crossref_primary_10_1016_j_jece_2024_114885
crossref_primary_10_1016_j_scitotenv_2023_167290
crossref_primary_10_1111_gcbb_13110
crossref_primary_10_1016_j_plaphy_2024_109053
crossref_primary_10_54559_jauist_1541318
crossref_primary_10_1016_j_biombioe_2024_107178
crossref_primary_10_1016_j_crgsc_2024_100409
crossref_primary_10_3390_ma17246208
crossref_primary_10_1016_j_jenvman_2024_123147
crossref_primary_10_14710_ijred_2023_56575
crossref_primary_10_3390_agriculture14010037
crossref_primary_10_3390_plants13030460
crossref_primary_10_3390_su16062523
crossref_primary_10_1002_agj2_21714
crossref_primary_10_1111_sum_13026
crossref_primary_10_1080_15226514_2025_2473594
crossref_primary_10_1007_s11356_024_33807_8
crossref_primary_10_1002_bbb_2679
crossref_primary_10_1002_bbb_2734
crossref_primary_10_1016_j_desal_2024_117597
Cites_doi 10.1016/j.geoderma.2016.03.029
10.1007/s10098-016-1113-3
10.1007/978-3-030-44364-1_2
10.1021/es8033044
10.1016/j.chemosphere.2015.04.062
10.1016/j.biombioe.2014.03.059
10.1021/es5022087
10.1111/gcbb.12376
10.1007/s42773-020-00067-x
10.1038/s41561-021-00852-8
10.1021/es302545b
10.1021/ie201309r
10.1007/s11368-016-1360-2
10.1016/j.soilbio.2011.04.022
10.1016/j.scitotenv.2020.140714
10.1007/s10098-014-0730-y
10.1007/s10098-019-01728-7
10.1016/j.geoderma.2020.114841
10.1016/j.geoderma.2004.12.016
10.1016/j.biortech.2011.11.084
10.1016/j.agee.2011.08.015
10.1016/j.geoderma.2012.10.002
10.1016/j.scitotenv.2018.10.060
10.1016/j.scitotenv.2017.09.200
10.1111/gcbb.12037
10.1111/gcbb.12266
10.1111/gcbb.12030
10.3389/fenrg.2020.00085
10.1016/j.scitotenv.2018.07.402
10.1111/gcbb.12885
10.1021/es903140c
10.1016/j.biombioe.2015.11.002
10.1371/journal.pone.0176884
10.1021/es403711y
10.1016/j.jclepro.2020.120318
10.1016/j.scitotenv.2020.144204
10.1016/j.fuel.2017.12.054
10.1016/j.geoderma.2020.114184
10.1038/srep38506
10.1038/ncomms1053
10.1016/j.scitotenv.2019.136433
10.1111/gcb.14613
10.1016/j.chemosphere.2021.132113
10.1016/j.cej.2021.130387
10.1016/j.orggeochem.2014.10.002
10.1029/1999GB900067
10.1007/s11104-018-3619-4
10.1007/s11157-020-09523-3
10.1016/j.envpol.2020.115549
10.1111/gcbb.12765
10.1016/j.chemosphere.2018.11.177
10.1016/j.scitotenv.2020.136635
10.1016/j.fuel.2006.12.013
10.1016/j.biortech.2019.02.105
10.1016/j.chemosphere.2012.05.085
10.1016/j.agee.2020.107258
10.2134/jeq2011.0146
10.1016/j.biortech.2021.125811
ContentType Journal Article
Copyright 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by John Wiley & Sons Ltd on behalf of British Society of Soil Science.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
7ST
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
DOI 10.1111/sum.12848
DatabaseName Wiley Online Library Open Access
CrossRef
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
CrossRef
AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1475-2743
EndPage 52
ExternalDocumentID 10_1111_sum_12848
SUM12848
Genre reviewArticle
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
24P
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABJNI
ABOGM
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHEFC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DC6
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
UB1
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WUPDE
WXSBR
WYISQ
XG1
Y6R
ZZTAW
~02
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7ST
7UA
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H96
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c2608-a5c360ee89d027ef16785f8b8984b08ddc2e96388bcd0be7cecfee8ab0f134393
IEDL.DBID DR2
ISSN 0266-0032
IngestDate Fri Jul 11 18:37:14 EDT 2025
Fri Jul 25 20:51:34 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Tue Jul 01 00:47:33 EDT 2025
Wed Jan 22 16:24:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2608-a5c360ee89d027ef16785f8b8984b08ddc2e96388bcd0be7cecfee8ab0f134393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5420-260X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12848
PQID 2770579428
PQPubID 1046348
PageCount 10
ParticipantIDs proquest_miscellaneous_2811978630
proquest_journals_2770579428
crossref_primary_10_1111_sum_12848
crossref_citationtrail_10_1111_sum_12848
wiley_primary_10_1111_sum_12848_SUM12848
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationPlace Bedfordshire
PublicationPlace_xml – name: Bedfordshire
PublicationTitle Soil use and management
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 78
2009; 43
2013; 1
2021; 763
2019; 647
2020; 364
2013; 5
2019; 281
2017; 9
2014; 66
2020; 19
2012; 51
2020; 8
2022; 287
2020; 2
2010; 1
2019; 21
2018; 217
2015; 134
2019; 25
1999; 13
2014; 16
2016; 84
2020; 255
2018; 618
2013; 193
2016; 274
2021; 308
2021; 388
2012
2021; 268
2018; 426
2021; 424
2014; 48
2020; 744
2021; 341
2016; 18
2012; 107
2021; 14
2021; 13
2010; 44
2016; 6
2017; 17
2020
2017; 12
2005; 128
2011; 43
2019; 218
2015
2007; 86
2012; 46
2012; 89
2016; 8
2019; 651
2020; 713
2011; 144
2012; 41
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
Chia C. H. (e_1_2_8_10_1) 2015
IBI (e_1_2_8_25_1) 2015
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Zimmerman A. R. (e_1_2_8_65_1) 2013; 1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
Krull E. S. (e_1_2_8_34_1) 2012
e_1_2_8_29_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
Kleber M. (e_1_2_8_32_1) 2015
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
DeLuca T. H. (e_1_2_8_13_1) 2015
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 43
  start-page: 1812
  year: 2011
  end-page: 1836
  article-title: Biochar effects on soil biota – A review
  publication-title: Soil Biology and Biochemistry
– volume: 14
  start-page: 883
  year: 2021
  end-page: 892
  article-title: Biochar in climate change mitigation
  publication-title: Nature Geoscience
– volume: 41
  start-page: 1001
  year: 2012
  end-page: 1013
  article-title: One step forward toward characterization: Some important material properties to distinguish biochars
  publication-title: Journal of Environmental Quality
– volume: 86
  start-page: 1781
  year: 2007
  end-page: 1788
  article-title: Characteristics of hemicellulose, cellulose and lignin pyrolysis
  publication-title: Fuel
– volume: 9
  start-page: 743
  year: 2017
  end-page: 755
  article-title: Effects of biochar application on soil greenhouse gas fluxes: A meta‐analysis
  publication-title: GCB Bioenergy
– volume: 134
  start-page: 257
  year: 2015
  end-page: 262
  article-title: Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass
  publication-title: Chemosphere
– volume: 5
  start-page: 202
  year: 2013
  end-page: 214
  article-title: Biochar and its effects on plant productivity and nutrient cycling: A meta‐analysis
  publication-title: GCB Bioenergy
– volume: 12
  start-page: e0176884
  year: 2017
  article-title: Properties of biochar derived from wood and high‐nutrient biomasses with the aim of agronomic and environmental benefits
  publication-title: PLoS One
– start-page: 453
  year: 2015
  end-page: 486
– volume: 744
  year: 2020
  article-title: Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta‐analysis
  publication-title: Science of the Total Environment
– volume: 713
  start-page: 136433
  year: 2020
  article-title: Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application
  publication-title: Science of the Total Environment
– volume: 388
  year: 2021
  article-title: Organo‐mineral associations largely contribute to the stabilization of century‐old pyrogenic organic matter in cropland soils
  publication-title: Geoderma
– volume: 341
  year: 2021
  article-title: Critical impacts of pyrolysis conditions and activation methods on application‐oriented production of wood waste‐derived biochar
  publication-title: Bioresource Technology
– volume: 43
  start-page: 3421
  year: 2009
  end-page: 3429
  article-title: Molecular‐level interactions in soils and sediments: The role of aromatic π‐systems
  publication-title: Environmental Science & Technology
– volume: 193
  start-page: 122
  year: 2013
  end-page: 130
  article-title: Organic carbon and nutrient release from a range of laboratory‐produced biochars and biochar–soil mixtures
  publication-title: Geoderma
– volume: 5
  start-page: 122
  year: 2013
  end-page: 131
  article-title: The effect of pyrolysis conditions on biochar stability as determined by three methods
  publication-title: GCB Bioenergy
– volume: 268
  year: 2021
  article-title: Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: A review
  publication-title: Environmental Pollution
– volume: 51
  start-page: 3587
  year: 2012
  end-page: 3597
  article-title: Multiple controls on the chemical and physical structure of biochars
  publication-title: Industrial & Engineering Chemistry Research
– volume: 618
  start-page: 1210
  year: 2018
  end-page: 1223
  article-title: Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release
  publication-title: Science of the Total Environment
– volume: 647
  start-page: 210
  year: 2019
  end-page: 222
  article-title: Biochar stability assessment methods: A review
  publication-title: Science of the Total Environment
– volume: 16
  start-page: 1821
  year: 2014
  end-page: 1825
  article-title: Significant breakthrough in biochar cost reduction
  publication-title: Clean Technologies and Environmental Policy
– volume: 651
  start-page: 2354
  year: 2019
  end-page: 2364
  article-title: Biochar, soil and land‐use interactions that reduce nitrate leaching and N O emissions: A meta‐analysis
  publication-title: Science of the Total Environment
– start-page: 21
  year: 2020
  end-page: 46
– volume: 424
  start-page: 130387
  year: 2021
  article-title: Roles of biochar‐derived dissolved organic matter in soil amendment and environmental remediation: A critical review
  publication-title: Chemical Engineering Journal
– volume: 218
  start-page: 624
  year: 2019
  end-page: 631
  article-title: Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge
  publication-title: Chemosphere
– volume: 84
  start-page: 76
  year: 2016
  end-page: 86
  article-title: Insight into biochar properties and its cost analysis
  publication-title: Biomass and Bioenergy
– start-page: 121
  year: 2015
  end-page: 142
– year: 2015
– volume: 13
  start-page: 923
  year: 1999
  end-page: 932
  article-title: Stability of elemental carbon in a savanna soil
  publication-title: Global Biogeochemical Cycles
– volume: 2
  start-page: 421
  year: 2020
  end-page: 438
  article-title: Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta‐data analysis review
  publication-title: Biochar
– volume: 144
  start-page: 175
  year: 2011
  end-page: 187
  article-title: A quantitative review of the effects of biochar application to soils on crop productivity using meta‐analysis
  publication-title: Agriculture, Ecosystems & Environment
– volume: 308
  start-page: 107258
  year: 2021
  article-title: Applying both biochar and phosphobacteria enhances L. growth and yield in acid soils by increasing soil pH, moisture content, microbial growth and P availability
  publication-title: Agriculture, Ecosystems & Environment
– volume: 46
  start-page: 11770
  year: 2012
  end-page: 11778
  article-title: Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature
  publication-title: Environmental Science & Technology
– volume: 21
  start-page: 1389
  year: 2019
  end-page: 1395
  article-title: Biochar farming: Defining economically perspective applications
  publication-title: Clean Technologies and Environmental Policy
– volume: 44
  start-page: 1295
  year: 2010
  end-page: 1301
  article-title: Abiotic and microbial oxidation of laboratory‐produced black carbon (biochar)
  publication-title: Environmental Science & Technology
– volume: 763
  year: 2021
  article-title: An overview on engineering the surface area and porosity of biochar
  publication-title: Science of the Total Environment
– volume: 17
  start-page: 685
  year: 2017
  end-page: 716
  article-title: Biochar for crop production: Potential benefits and risks
  publication-title: Journal of Soils and Sediments
– volume: 66
  start-page: 176
  year: 2014
  end-page: 185
  article-title: New approaches to measuring biochar density and porosity
  publication-title: Biomass and Bioenergy
– volume: 13
  start-page: 133
  year: 2021
  end-page: 142
  article-title: Water cost savings from soil biochar amendment: A spatial analysis
  publication-title: GCB Bioenergy
– volume: 128
  start-page: 80
  year: 2005
  end-page: 93
  article-title: Soil wettability, aggregate stability, and the decomposition of soil organic matter
  publication-title: Geoderma
– volume: 107
  start-page: 419
  year: 2012
  end-page: 428
  article-title: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar
  publication-title: Bioresource Technology
– volume: 13
  start-page: 1731
  year: 2021
  end-page: 1764
  article-title: How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar
  publication-title: GCB Bioenergy
– volume: 18
  start-page: 1225
  year: 2016
  end-page: 1231
  article-title: Biochar pricing hampers biochar farming
  publication-title: Clean Technologies and Environmental Policy
– volume: 48
  start-page: 11227
  year: 2014
  end-page: 11234
  article-title: Role of structure and microporosity in phenanthrene sorption by natural and engineered organic matter
  publication-title: Environmental Science & Technology
– volume: 426
  start-page: 211
  year: 2018
  end-page: 225
  article-title: How does biochar influence soil N cycle? A meta‐analysis
  publication-title: Plant and Soil
– volume: 713
  year: 2020
  article-title: Combined effects of biochar properties and soil conditions on plant growth: A meta‐analysis
  publication-title: Science of the Total Environment
– volume: 274
  start-page: 28
  year: 2016
  end-page: 34
  article-title: Quantification of biochar effects on soil hydrological properties using meta‐analysis of literature data
  publication-title: Geoderma
– volume: 281
  start-page: 457
  year: 2019
  end-page: 468
  article-title: Formation, characteristics, and applications of environmentally persistent free radicals in biochars: A review
  publication-title: Bioresource Technology
– volume: 48
  start-page: 279
  year: 2014
  end-page: 288
  article-title: Aromatic and hydrophobic surfaces of wood‐derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen‐containing organic groups
  publication-title: Environmental Science & Technology
– start-page: 85
  year: 2012
  end-page: 98
– volume: 78
  start-page: 135
  year: 2015
  end-page: 143
  article-title: Aromaticity and degree of aromatic condensation of char
  publication-title: Organic Geochemistry
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  article-title: H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials
  publication-title: Scientific Reports
– volume: 25
  start-page: 2077
  year: 2019
  end-page: 2093
  article-title: Biochar application as a tool to decrease soil nitrogen losses (NH volatilization, N O emissions, and N leaching) from croplands: Options and mitigation strength in a global perspective
  publication-title: Global Change Biology
– volume: 8
  start-page: 512
  year: 2016
  end-page: 523
  article-title: Biochar stability in soil: Meta‐analysis of decomposition and priming effects
  publication-title: GCB Bioenergy
– volume: 8
  start-page: 85
  year: 2020
  article-title: Effect of pyrolysis temperature on physicochemical properties and acoustic‐based amination of biochar for efficient CO adsorption
  publication-title: Frontiers in Energy Research
– start-page: 143
  year: 2015
  end-page: 170
– volume: 89
  start-page: 198
  year: 2012
  end-page: 203
  article-title: Textural and chemical properties of swine‐manure‐derived biochar pertinent to its potential use as a soil amendment
  publication-title: Chemosphere
– volume: 217
  start-page: 240
  year: 2018
  end-page: 261
  article-title: Properties of biochar
  publication-title: Fuel
– volume: 19
  start-page: 191
  year: 2020
  end-page: 215
  article-title: Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects
  publication-title: Reviews in Environmental Science and Bio/Technology
– volume: 364
  year: 2020
  article-title: Biochar's stability and effect on the content, composition and turnover of soil organic carbon
  publication-title: Geoderma
– volume: 287
  year: 2022
  article-title: Novel insights into the adsorption of organic contaminants by biochar: A review
  publication-title: Chemosphere
– volume: 255
  year: 2020
  article-title: Phytostabalization of the heavy metals in the soil with biochar applications, the impact on chlorophyll, carotene, soil fertility and tomato crop yield
  publication-title: Journal of Cleaner Production
– volume: 1
  start-page: 1
  year: 2010
  end-page: 9
  article-title: Sustainable biochar to mitigate global climate change
  publication-title: Nature Communications
– volume: 1
  start-page: 240
  year: 2013
  article-title: The stability of biochar in the environment
  publication-title: Biochar and Soil Biota
– ident: e_1_2_8_45_1
  doi: 10.1016/j.geoderma.2016.03.029
– ident: e_1_2_8_54_1
  doi: 10.1007/s10098-016-1113-3
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-030-44364-1_2
– ident: e_1_2_8_31_1
  doi: 10.1021/es8033044
– ident: e_1_2_8_56_1
  doi: 10.1016/j.chemosphere.2015.04.062
– ident: e_1_2_8_6_1
  doi: 10.1016/j.biombioe.2014.03.059
– ident: e_1_2_8_18_1
  doi: 10.1021/es5022087
– ident: e_1_2_8_22_1
  doi: 10.1111/gcbb.12376
– ident: e_1_2_8_26_1
  doi: 10.1007/s42773-020-00067-x
– ident: e_1_2_8_35_1
  doi: 10.1038/s41561-021-00852-8
– ident: e_1_2_8_49_1
  doi: 10.1021/es302545b
– ident: e_1_2_8_50_1
  doi: 10.1021/ie201309r
– ident: e_1_2_8_24_1
  doi: 10.1007/s11368-016-1360-2
– ident: e_1_2_8_36_1
  doi: 10.1016/j.soilbio.2011.04.022
– ident: e_1_2_8_20_1
  doi: 10.1016/j.scitotenv.2020.140714
– ident: e_1_2_8_42_1
  doi: 10.1007/s10098-014-0730-y
– ident: e_1_2_8_43_1
  doi: 10.1007/s10098-019-01728-7
– volume: 1
  start-page: 240
  year: 2013
  ident: e_1_2_8_65_1
  article-title: The stability of biochar in the environment
  publication-title: Biochar and Soil Biota
– ident: e_1_2_8_7_1
  doi: 10.1016/j.geoderma.2020.114841
– ident: e_1_2_8_16_1
  doi: 10.1016/j.geoderma.2004.12.016
– ident: e_1_2_8_8_1
  doi: 10.1016/j.biortech.2011.11.084
– ident: e_1_2_8_27_1
  doi: 10.1016/j.agee.2011.08.015
– ident: e_1_2_8_44_1
  doi: 10.1016/j.geoderma.2012.10.002
– ident: e_1_2_8_5_1
  doi: 10.1016/j.scitotenv.2018.10.060
– ident: e_1_2_8_29_1
  doi: 10.1016/j.scitotenv.2017.09.200
– ident: e_1_2_8_3_1
  doi: 10.1111/gcbb.12037
– ident: e_1_2_8_55_1
  doi: 10.1111/gcbb.12266
– ident: e_1_2_8_11_1
  doi: 10.1111/gcbb.12030
– ident: e_1_2_8_9_1
  doi: 10.3389/fenrg.2020.00085
– ident: e_1_2_8_37_1
  doi: 10.1016/j.scitotenv.2018.07.402
– ident: e_1_2_8_28_1
  doi: 10.1111/gcbb.12885
– ident: e_1_2_8_64_1
  doi: 10.1021/es903140c
– ident: e_1_2_8_2_1
  doi: 10.1016/j.biombioe.2015.11.002
– ident: e_1_2_8_14_1
  doi: 10.1371/journal.pone.0176884
– ident: e_1_2_8_15_1
  doi: 10.1021/es403711y
– ident: e_1_2_8_63_1
  doi: 10.1016/j.jclepro.2020.120318
– start-page: 121
  volume-title: Biochar for environmental management
  year: 2015
  ident: e_1_2_8_10_1
– ident: e_1_2_8_38_1
  doi: 10.1016/j.scitotenv.2020.144204
– ident: e_1_2_8_57_1
  doi: 10.1016/j.fuel.2017.12.054
– ident: e_1_2_8_19_1
  doi: 10.1016/j.geoderma.2020.114184
– start-page: 85
  volume-title: Biochar for environmental management
  year: 2012
  ident: e_1_2_8_34_1
– ident: e_1_2_8_61_1
  doi: 10.1038/srep38506
– start-page: 453
  volume-title: Biochar for environmental management
  year: 2015
  ident: e_1_2_8_13_1
– ident: e_1_2_8_60_1
  doi: 10.1038/ncomms1053
– ident: e_1_2_8_46_1
  doi: 10.1016/j.scitotenv.2019.136433
– ident: e_1_2_8_39_1
  doi: 10.1111/gcb.14613
– ident: e_1_2_8_41_1
  doi: 10.1016/j.chemosphere.2021.132113
– ident: e_1_2_8_51_1
  doi: 10.1016/j.cej.2021.130387
– ident: e_1_2_8_59_1
  doi: 10.1016/j.orggeochem.2014.10.002
– ident: e_1_2_8_4_1
  doi: 10.1029/1999GB900067
– ident: e_1_2_8_40_1
  doi: 10.1007/s11104-018-3619-4
– ident: e_1_2_8_52_1
  doi: 10.1007/s11157-020-09523-3
– ident: e_1_2_8_17_1
  doi: 10.1016/j.envpol.2020.115549
– ident: e_1_2_8_33_1
  doi: 10.1111/gcbb.12765
– ident: e_1_2_8_58_1
  doi: 10.1016/j.chemosphere.2018.11.177
– ident: e_1_2_8_12_1
  doi: 10.1016/j.scitotenv.2020.136635
– ident: e_1_2_8_62_1
  doi: 10.1016/j.fuel.2006.12.013
– ident: e_1_2_8_47_1
  doi: 10.1016/j.biortech.2019.02.105
– ident: e_1_2_8_53_1
  doi: 10.1016/j.chemosphere.2012.05.085
– ident: e_1_2_8_30_1
  doi: 10.1016/j.agee.2020.107258
– volume-title: Standardized product definition and product testing guidelines for biochar that is used in soil
  year: 2015
  ident: e_1_2_8_25_1
– start-page: 143
  volume-title: Biochar for environmental management
  year: 2015
  ident: e_1_2_8_32_1
– ident: e_1_2_8_48_1
  doi: 10.2134/jeq2011.0146
– ident: e_1_2_8_21_1
  doi: 10.1016/j.biortech.2021.125811
SSID ssj0021760
Score 2.5376704
Snippet Biochar amendment to soil is utilized globally as an approach to enhance carbon storage and to improve soil functioning. However, biochar characteristics and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 43
SubjectTerms administrative management
Ash content
Ashes
biochar
biochar carbon
Carbon
Carbon capture and storage
Carbon content
Carbon sequestration
Cellulose
Charcoal
Corn
corn stover
feedstock type
feedstocks
H/C ratio
Hardwoods
Lignin
Meta-analysis
Nitrogen
nitrogen content
Organic carbon
Panicum virgatum
pH effects
Pyrolysis
Raw materials
Soil
Soil amendment
Soil improvement
soil organic carbon
soil quality
Soil temperature
Soils
Specific surface
specific surface area
Stover
Surface area
Temperature
Vegetables
Wood
Title Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fsum.12848
https://www.proquest.com/docview/2770579428
https://www.proquest.com/docview/2811978630
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VnuDAG7FQqgFx4JKVN6_1wmmFqCokEEJU6gEp8tgOqtomq93sAU6cOfEb-SXMOE5oEUiIW6LYiWN7PN-MZz4DPCVdUp4XRaJ0PU_ylMqEFiZLlHIzx9ZPmYeRfvO2PDzKXx8XxzvwYsiF6fkhRoebSEZYr0XADW0uCDkP1FQWV0n0lVgtAUTvR-ooRtpl9K-wxayyNLIKSRTPWPOyLvoFMC_C1KBnDm7Ax6GFfXjJ6XTb0dR--Y288T9_4SZcj_gTl_2EuQU7vrkN15af1pGDw9-Bbz2j8QbbGlef120gLUHhsIoEzGgahzWrPQaO9hTFi4ttg3TSSg4X2ssc0LiS0O2GlRt2LW7akzO0Zk1cQV4T7vtkzOe4xHPfmR9fv5tIlXIXjg5efXh5mMQjGxLLhpFOTGGzUnmvF47tXV_PWBcWtSa90Dkp7ZxNvYi8JusU-bn1lpurDal6ljE2yu7BbtM2_j6gFy4z2ZgVPhrtPTlHdUqMFxXlxuoJPBsGr7KRz1yO1TirBruGu7cK3TuBJ2PRVU_i8adCe8MMqKIcb6p0PpdsXbbRJvB4fMwSKNsqpvHtlsto2YrV3FhuUhjuv3-kYl0ZLh78e9GHcFXOuO_9Pnuw2623_hEjoY724Uqav9sPE_8nCxkJqQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAeeKNuKWAQBy5ZefNaL-KyAqoF2h5QK_WCIo_toKptstrNHuipZ078Rn4JM44TWgQS4pYo42Ti8Xge9nwGeIEqxzTNskiqchylMeYRTnQSSWlHlqKfPPWS3tvPZ4fph6PsaA1ed7UwLT5En3BjzfDzNSs4J6QvaTlJasizq7oG1_lEb0bOf_upB48iXzsPGRaKmWUSB1wh3sfTN71qjX65mJcdVW9pdm7D547HdoPJyXDV4NCc_wbf-L8_cQduBRdUTNsxcxfWXHUPNqZfFgGGw92Hby2o8VLUpZh_XdQet0QwjFXAYBa6sqIky0e-ozkRnMgVdSXwuOYyLmGuwkCLOe_ersi-iaYWy_r4VBi9QGrAr_H3bT3mKzEVZ67RPy6-64CW8gAOd94dvJlF4dSGyFBspCKdmSSXzqmJpZDXlSMyh1mpUE1UilJZa2LHWq_QWIlubJwhdpVGWY4Sco-Sh7Be1ZXbBOEYzozXZhmSRjmH1mIZI7mMElNt1ABedtIrTIA055M1TosutKHuLXz3DuB5TzpvcTz-RLTdDYEiqPKyiMdjLtilMG0Az_rHpIS8sqIrV6-IRvFqrCJmiSUv779_pCBz6S-2_p30KdyYHeztFrvv9z8-gpt85H2bBtqG9Waxco_JMWrwiR__PwFE9Qzu
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9xADLZ4SBUcELRFXR6tW_XQS9BsnrPtaUVZ0RfiUCRu0byCUCFZ7S4Hbpw58Rv5JdiT2RQkKvWWKJ5kFMexP3v8DcBHLXOdplkWCVkVURrrPNIDlURC2L4l9JOnXtO_jvLDk_T7aXa6AF_mvTAtP0SXcGPL8P9rNvCxrR4ZOSlqj3-uchGWudjH67ni9LhDW_0iDwkWgswiiQOtEC_j6YY-dUZ_I8zHcap3NKN1WAsRIg5blW7AgqtfwurwbBJYMtwruG05h6fYVDi-njSeVgSZZSpQJKOqLVbkmCi0M3-Q86zY1KjPG-6yQvOUpRnHvLi6JveDswanzfkFGjXRNIBv48_bdsnPOMRLN1P3N3cqkJm8hpPRwe_9wyhsqhAZgi4yUplJcuGcHFhCpK7qk7fKKqnlQKZaSGtN7NgopTZWaFcYZ2i6UmlR9ROKXpJNWKqb2r0BdMw2xqVTZoyRzmlrdRVriuiETpWRPfg0f7ulCYzjvPHFRTlHHqSI0iuiBx860XFLs_Gc0M5cRWWwtGkZFwX30xKK6sH77jLZCBc-VO2aK5KRXCyVNFmaklftvx9SkjfzB1v_L_oOXhx_HZU_vx392IYV3pC-TdLswNJscuV2KWyZ6bf-83wA8AbrQA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+pyrolysis+temperature+and+feedstock+type+on+biochar+characteristics+pertinent+to+soil+carbon+and+soil+health%3A+A+meta%E2%80%90analysis&rft.jtitle=Soil+use+and+management&rft.au=Li%2C+Lidong&rft.au=Long%2C+Amelia&rft.au=Fossum%2C+Britt&rft.au=Kaiser%2C+Michael&rft.date=2023-01-01&rft.issn=0266-0032&rft.eissn=1475-2743&rft.volume=39&rft.issue=1&rft.spage=43&rft.epage=52&rft_id=info:doi/10.1111%2Fsum.12848&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_sum_12848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-0032&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-0032&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-0032&client=summon