Bayesian hierarchical modeling on covariance valued data
Analysis of structural and functional connectivity (FC) of human brains is of pivotal importance for diagnosis of cognitive ability. The Human Connectome Project (HCP) provides an excellent source of neural data across different regions of interest (ROIs) of the living human brain. Individual specif...
Saved in:
Published in | Stat (International Statistical Institute) Vol. 12; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2049-1573 2049-1573 |
DOI | 10.1002/sta4.534 |
Cover
Loading…
Abstract | Analysis of structural and functional connectivity (FC) of human brains is of pivotal importance for diagnosis of cognitive ability. The Human Connectome Project (HCP) provides an excellent source of neural data across different regions of interest (ROIs) of the living human brain. Individual specific data were available in the form of time varying covariance matrices representing the brain activity as the subjects perform a specific task. As a preliminary objective of studying the heterogeneity of brain connectomics across the population, we develop a probabilistic model for a sample of covariance matrices using a scaled Wishart distribution. We stress here that our data units are available in the form of covariance matrices, and we use the Wishart distribution to create our likelihood function rather than its more common usage as a prior on covariance matrices. Based on empirical explorations suggesting the data matrices to have a low effective rank, we further model the center of the Wishart distribution using an orthogonal factor model type decomposition. We encourage shrinkage toward a low rank structure through a novel shrinkage prior and discuss strategies to sample from the posterior distribution using a combination of Gibbs and slice sampling. The efficacy of the approach is explored in various simulation settings and exemplified on several case studies including our motivating HCP data. We extend our modeling framework to a dynamic setting to detect change points. |
---|---|
AbstractList | Analysis of structural and functional connectivity (FC) of human brains is of pivotal importance for diagnosis of cognitive ability. The Human Connectome Project (HCP) provides an excellent source of neural data across different regions of interest (ROIs) of the living human brain. Individual specific data were available in the form of time varying covariance matrices representing the brain activity as the subjects perform a specific task. As a preliminary objective of studying the heterogeneity of brain connectomics across the population, we develop a probabilistic model for a sample of covariance matrices using a scaled Wishart distribution. We stress here that our data units are available in the form of covariance matrices, and we use the Wishart distribution to create our likelihood function rather than its more common usage as a prior on covariance matrices. Based on empirical explorations suggesting the data matrices to have a low effective rank, we further model the center of the Wishart distribution using an orthogonal factor model type decomposition. We encourage shrinkage toward a low rank structure through a novel shrinkage prior and discuss strategies to sample from the posterior distribution using a combination of Gibbs and slice sampling. The efficacy of the approach is explored in various simulation settings and exemplified on several case studies including our motivating HCP data. We extend our modeling framework to a dynamic setting to detect change points. |
Author | Pati, Debdeep Zhang, Zhengwu Acharyya, Satwik Bhattacharya, Anirban |
Author_xml | – sequence: 1 givenname: Satwik orcidid: 0000-0003-2660-9781 surname: Acharyya fullname: Acharyya, Satwik email: satwika@umich.edu organization: University of Michigan – sequence: 2 givenname: Zhengwu surname: Zhang fullname: Zhang, Zhengwu organization: University of North Carolina – sequence: 3 givenname: Anirban surname: Bhattacharya fullname: Bhattacharya, Anirban organization: Texas A&M University – sequence: 4 givenname: Debdeep surname: Pati fullname: Pati, Debdeep organization: Texas A&M University |
BookMark | eNp1zztPwzAUhmELFYlSKvETPLKk2PElzlgqblIlBspsHdsn1ChNkF2K8u9JVQYWpnOGR5_0XpJJ13dIyDVnC85YeZv3IBdKyDMyLZmsC64qMfnzX5B5zh-MMa7KWmgxJeYOBswROrqNmCD5bfTQ0l0fsI3dO-076vsDpFF4pAdovzDQAHu4IucNtBnnv3dG3h7uN6unYv3y-LxargtfaiYL32hjeGBaVpLpxphKOy9RcSMrrBSUgjvjnZJ1MI12jmNtkBtVs4CuVihm5Oa061Ofc8LGfqa4gzRYzuwx2h6j7Rg90uJEv2OLw7_Ovm6W8uh_ACORWSk |
Cites_doi | 10.1017/CBO9780511794308.006 10.1080/01621459.2011.646934 10.1016/j.neuroimage.2015.11.055 10.1080/01621459.1999.10473878 10.1214/11-STS358 10.1080/01621459.2014.960967 10.1016/j.neuroimage.2013.05.041 10.1089/brain.2011.0008 10.1016/S0167-9473(99)00032-8 10.1006/nimg.2001.0978 10.1111/j.1467-9868.2009.00716.x 10.1038/nn.4361 10.1214/12-BA730 10.1016/j.cortex.2016.11.009 10.1038/nature18933 10.1080/10618600.2015.1028549 10.2307/2290726 10.1038/nn.4393 10.1007/978-94-017-0653-7_3 10.1016/j.neuroimage.2014.06.052 10.1093/biomet/asq017 10.1016/j.jmva.2005.06.001 10.1098/rstb.2015.0349 10.1038/nn.4135 10.1214/14-AOS1215 10.1080/10618600.2013.852553 10.1016/j.neuroimage.2010.06.010 10.1214/aos/1176348885 10.3389/fncom.2013.00143 10.1038/nn.4134 10.1093/biomet/ass060 10.1016/j.jalz.2010.03.007 10.1016/j.jmva.2005.11.002 10.1038/nn.4125 10.1126/science.1238411 10.1016/j.neuroimage.2013.05.079 10.1101/256933 10.1016/j.csda.2016.10.008 10.1111/j.2517-6161.1977.tb01610.x 10.1080/01621459.2017.1379404 10.1080/07350015.2015.1096788 10.1198/jcgs.2009.07177 10.1093/biomet/89.1.159 10.1016/j.neuroimage.2013.04.127 10.1016/j.nec.2010.11.001 10.1080/01621459.1984.10477108 10.1016/S0378-3758(00)00209-3 10.1016/j.jeconom.2011.11.004 10.1007/978-3-319-59050-9_29 10.1111/biom.12133 10.1016/j.neuroimage.2014.07.033 10.1080/01621459.2013.804409 10.1016/j.jeconom.2008.12.016 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION |
DOI | 10.1002/sta4.534 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2049-1573 |
EndPage | n/a |
ExternalDocumentID | 10_1002_sta4_534 STA4534 |
Genre | article |
GroupedDBID | 05W 0R~ 1OC 31~ 33P 50Y 8-1 AAESR AAHHS AAHQN AAIHA AAMNL AANHP AANLZ AAYCA AAZKR ABCUV ABDBF ABJNI ACCFJ ACCZN ACGFS ACPOU ACRPL ACUHS ACXQS ACYXJ ADBBV ADKYN ADNMO ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AZVAB BDRZF BFHJK BMXJE BRXPI D-B DCZOG EBS EJD G-S GODZA HGLYW HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- OK1 P2W ROL SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW AAYXX AEYWJ AGHNM AGQPQ AGYGG AMVHM CITATION |
ID | FETCH-LOGICAL-c2604-cf6881d0647406f8876bc4e51847e75a231b8cb549d8f6bb1e98e18590deb95e3 |
ISSN | 2049-1573 |
IngestDate | Tue Jul 01 03:07:36 EDT 2025 Wed Jan 22 16:19:21 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c2604-cf6881d0647406f8876bc4e51847e75a231b8cb549d8f6bb1e98e18590deb95e3 |
ORCID | 0000-0003-2660-9781 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/sta4.534 |
PageCount | 16 |
ParticipantIDs | crossref_primary_10_1002_sta4_534 wiley_primary_10_1002_sta4_534_STA4534 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January/December 2023 2023-01-00 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January/December 2023 |
PublicationDecade | 2020 |
PublicationTitle | Stat (International Statistical Institute) |
PublicationYear | 2023 |
References | 2017; 86 2010; 97 2010; 53 2001; 94 2002; 15 2014; 70 2012; 167 2009; 150 2013; 7 2014; 23 2009b; 18 2019; 20 1977; 39 2000; 10 2002; 89 2009a; 71 2017; 35 1987 2011; 22 2011; 26 1999; 94 2014; 8 2010; 6 2006; 97 2015; 18 2011; 1 2016; 19 2012 2013; 108 1993; 88 2013; 100 2013; 342 2016; 127 2007; 98 2012; 107 2014; 42 2011; 106 2016; 536 2004; 14 2018; 113 2015; 110 1984; 79 2013; 80 2018 2017 1999; 32 2013 1992; 20 2012; 7 2016; 25 2014; 103 2014; 101 2016; 371 2017; 107 e_1_2_9_31_1 e_1_2_9_52_1 e_1_2_9_50_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_56_1 Buckner R. L. (e_1_2_9_7_1) 2011; 106 e_1_2_9_12_1 e_1_2_9_33_1 Franks A. M. (e_1_2_9_18_1) 2019; 20 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_58_1 e_1_2_9_41_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_8_1 e_1_2_9_6_1 Pas S. L. (e_1_2_9_54_1) 2014; 8 e_1_2_9_4_1 e_1_2_9_60_1 Lopes H. (e_1_2_9_40_1) 2004; 14 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_51_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_19_1 Barnard J. (e_1_2_9_2_1) 2000; 10 e_1_2_9_42_1 e_1_2_9_21_1 e_1_2_9_46_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_5_1 e_1_2_9_3_1 e_1_2_9_9_1 e_1_2_9_25_1 e_1_2_9_27_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 23 start-page: 966 issue: 4 year: 2014 end-page: 984 article-title: Sparsity inducing prior distributions for correlation matrices of longitudinal data publication-title: Journal of Computational and Graphical Statistics – start-page: 361 year: 2017 end-page: 372 – volume: 94 start-page: 1254 issue: 448 year: 1999 end-page: 1263 article-title: Nonconjugate Bayesian estimation of covariance matrices and its use in hierarchical models publication-title: Journal of the American Statistical Association – volume: 19 start-page: 1175 issue: 9 year: 2016 end-page: 1187 article-title: The human connectome project's neuroimaging approach publication-title: Nature Neuroscience – volume: 89 start-page: 159 issue: 1 year: 2002 end-page: 182 article-title: Spectral models for covariance matrices publication-title: Biometrika – volume: 97 start-page: 1185 issue: 5 year: 2006 end-page: 1207 article-title: Bayesian modeling of several covariance matrices and some results on propriety of the posterior for linear regression with correlated and/or heterogeneous errors publication-title: Journal of Multivariate Analysis – volume: 113 start-page: 134 issue: 521 year: 2018 end-page: 151 article-title: A Bayesian approach for estimating dynamic functional network connectivity in FMRI data publication-title: Journal of the American Statistical Association – volume: 22 start-page: 133 issue: 2 year: 2011 end-page: 139 article-title: Overview of functional magnetic resonance imaging publication-title: Neurosurgery Clinics – volume: 70 start-page: 33 issue: 1 year: 2014 end-page: 43 article-title: A semiparametric approach to simultaneous covariance estimation for bivariate sparse longitudinal data publication-title: Biometrics – volume: 167 start-page: 211 issue: 1 year: 2012 end-page: 223 article-title: The conditional autoregressive Wishart model for multivariate stock market volatility publication-title: Journal of Econometrics – volume: 18 start-page: 1565 issue: 11 year: 2015 end-page: 1567 article-title: A positive‐negative mode of population covariation links brain connectivity, demographics and behavior publication-title: Nature Neuroscience – volume: 107 start-page: 107 year: 2017 end-page: 119 article-title: Variable selection using shrinkage priors publication-title: Computational Statistics & Data Analysis – volume: 107 start-page: 362 issue: 497 year: 2012 end-page: 377 article-title: Simplex factor models for multivariate unordered categorical data publication-title: Journal of the American Statistical Association – year: 2018 – volume: 18 start-page: 1546 issue: 11 year: 2015 article-title: Measuring macroscopic brain connections in vivo publication-title: Nature Neuroscience – volume: 32 start-page: 135 issue: 2 year: 1999 end-page: 146 article-title: A test for proportional covariance matrices publication-title: Computational statistics & data analysis – volume: 39 start-page: 95 issue: 1 year: 1977 end-page: 106 article-title: The von Mises–Fisher matrix distribution in orientation statistics publication-title: Journal of the Royal Statistical Society: Series B (Methodological) – volume: 20 start-page: 1 issue: 171 year: 2019 end-page: 37 article-title: Shared subspace models for multi‐group covariance estimation publication-title: Journal of Machine Learning Research – volume: 100 start-page: 125 issue: 1 year: 2013 end-page: 138 article-title: A nonparametric prior for simultaneous covariance estimation publication-title: Biometrika – volume: 101 start-page: 531 year: 2014 end-page: 546 article-title: Evaluating dynamic bivariate correlations in resting‐state FMRI: A comparison study and a new approach publication-title: NeuroImage – volume: 14 start-page: 41 year: 2004 end-page: 67 article-title: Bayesian model assessment in factor analysis publication-title: Statistica Sinica – volume: 103 start-page: 427 year: 2014 end-page: 443 article-title: Estimating time‐varying brain connectivity networks from functional MRI time series publication-title: NeuroImage – volume: 86 start-page: 83 year: 2017 end-page: 92 article-title: The cingulate cortex of older adults with excellent memory capacity publication-title: Cortex – start-page: 210 year: 2012 end-page: 268 – volume: 18 start-page: 438 issue: 2 year: 2009b end-page: 456 article-title: Simulation of the matrix Bingham–von Mises–Fisher distribution, with applications to multivariate and relational data publication-title: Journal of Computational and Graphical Statistics – volume: 18 start-page: 1664 issue: 11 year: 2015 end-page: 1671 article-title: Functional connectome fingerprinting: Identifying individuals using patterns of brain connectivity publication-title: Nature Neuroscience – start-page: 31 year: 1987 end-page: 43 – volume: 19 start-page: 1523 issue: 11 year: 2016 article-title: Multimodal population brain imaging in the UK Biobank prospective epidemiological study publication-title: Nature neuroscience – volume: 150 start-page: 167 issue: 2 year: 2009 end-page: 181 article-title: The Wishart autoregressive process of multivariate stochastic volatility publication-title: Journal of Econometrics – volume: 371 issue: 1705 year: 2016 article-title: Uses, misuses, new uses and fundamental limitations of magnetic resonance imaging in cognitive science publication-title: Philosophical Transactions of the Royal Society B: Biological Sciences – volume: 110 start-page: 1479 issue: 512 year: 2015 end-page: 1490 article-title: Dirichlet–Laplace priors for optimal shrinkage publication-title: Journal of the American Statistical Association – volume: 7 start-page: 887 issue: 4 year: 2012 end-page: 902 article-title: On the half‐Cauchy prior for a global scale parameter publication-title: Bayesian Analysis – volume: 6 start-page: 202 issue: 3 year: 2010 end-page: 211 article-title: The Alzheimer's disease neuroimaging initiative: Progress report and future plans publication-title: Alzheimer's & Dementia – volume: 7 start-page: 143 year: 2013 article-title: Detecting functional connectivity change points for single‐subject FMRI data publication-title: Frontiers in computational neuroscience – volume: 20 start-page: 1669 issue: 4 year: 1992 end-page: 1696 article-title: Bayesian inference for a covariance matrix publication-title: The Annals of Statistics – volume: 80 start-page: 62 year: 2013 end-page: 79 article-title: The WU‐Minn human connectome project: An overview publication-title: Neuroimage – volume: 536 start-page: 171 issue: 7615 year: 2016 end-page: 178 article-title: A multi‐modal parcellation of human cerebral cortex publication-title: Nature – volume: 80 start-page: 360 year: 2013 end-page: 378 article-title: Dynamic functional connectivity: Promise, issues, and interpretations publication-title: Neuroimage – volume: 80 start-page: 105 year: 2013 end-page: 124 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage – volume: 94 start-page: 25 issue: 1 year: 2001 end-page: 36 article-title: Some tests for the equality of covariance matrices publication-title: Journal of statistical planning and inference – volume: 25 start-page: 167 issue: 1 year: 2016 end-page: 186 article-title: Covariance partition priors: A Bayesian approach to simultaneous covariance estimation for longitudinal data publication-title: Journal of Computational and Graphical Statistics – volume: 1 start-page: 13 issue: 1 year: 2011 end-page: 36 article-title: Functional and effective connectivity: A review publication-title: Brain Connectivity – volume: 108 start-page: 876 issue: 503 year: 2013 end-page: 891 article-title: An integrative Bayesian modeling approach to imaging genetics publication-title: Journal of the American Statistical Association – volume: 71 start-page: 971 issue: 5 year: 2009a end-page: 992 article-title: A hierarchical eigenmodel for pooled covariance estimation publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 26 start-page: 369 issue: 3 year: 2011 end-page: 387 article-title: Covariance estimation: The GLM and regularization perspectives publication-title: Statistical Science – volume: 98 start-page: 568 issue: 3 year: 2007 end-page: 587 article-title: Simultaneous modelling of the Cholesky decomposition of several covariance matrices publication-title: Journal of Multivariate Analysis – volume: 79 start-page: 892 issue: 388 year: 1984 end-page: 898 article-title: Common principal components in groups publication-title: Journal of the American Statistical Association – volume: 88 start-page: 309 issue: 421 year: 1993 end-page: 319 article-title: A Bayesian analysis for change point problems publication-title: Journal of the American Statistical Association – volume: 10 start-page: 1281 issue: 4 year: 2000 end-page: 1311 article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage publication-title: Statistica Sinica – volume: 35 start-page: 513 issue: 4 year: 2017 end-page: 527 article-title: The generalized conditional autoregressive Wishart model for multivariate realized volatility publication-title: Journal of Business & Economic Statistics – volume: 53 start-page: 1 issue: 1 year: 2010 end-page: 15 article-title: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature publication-title: Neuroimage – volume: 127 start-page: 242 year: 2016 end-page: 256 article-title: Can sliding‐window correlations reveal dynamic functional connectivity in resting‐state fmri? publication-title: NeuroImage – volume: 342 issue: 6158 year: 2013 article-title: Structural and functional brain networks: From connections to cognition publication-title: Science – volume: 15 start-page: 273 issue: 1 year: 2002 end-page: 289 article-title: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single‐subject brain publication-title: Neuroimage – volume: 106 start-page: 1125 year: 2011 end-page: 1165 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – volume: 97 start-page: 465 issue: 2 year: 2010 end-page: 480 article-title: The horseshoe estimator for sparse signals publication-title: Biometrika – volume: 8 start-page: 2585 year: 2014 end-page: 2618 article-title: The horseshoe estimator: Posterior concentration around nearly black vectors publication-title: Electronic Journal of Statistics – year: 2013 – volume: 42 start-page: 1102 issue: 3 year: 2014 end-page: 1130 article-title: Posterior contraction in sparse Bayesian factor models for massive covariance matrices publication-title: The Annals of Statistics – ident: e_1_2_9_56_1 doi: 10.1017/CBO9780511794308.006 – ident: e_1_2_9_4_1 doi: 10.1080/01621459.2011.646934 – ident: e_1_2_9_29_1 doi: 10.1016/j.neuroimage.2015.11.055 – ident: e_1_2_9_12_1 doi: 10.1080/01621459.1999.10473878 – ident: e_1_2_9_46_1 doi: 10.1214/11-STS358 – ident: e_1_2_9_5_1 doi: 10.1080/01621459.2014.960967 – ident: e_1_2_9_55_1 doi: 10.1016/j.neuroimage.2013.05.041 – ident: e_1_2_9_19_1 doi: 10.1089/brain.2011.0008 – ident: e_1_2_9_48_1 doi: 10.1016/S0167-9473(99)00032-8 – ident: e_1_2_9_53_1 doi: 10.1006/nimg.2001.0978 – ident: e_1_2_9_31_1 doi: 10.1111/j.1467-9868.2009.00716.x – ident: e_1_2_9_24_1 doi: 10.1038/nn.4361 – ident: e_1_2_9_45_1 doi: 10.1214/12-BA730 – ident: e_1_2_9_38_1 doi: 10.1016/j.cortex.2016.11.009 – volume: 8 start-page: 2585 year: 2014 ident: e_1_2_9_54_1 article-title: The horseshoe estimator: Posterior concentration around nearly black vectors publication-title: Electronic Journal of Statistics – ident: e_1_2_9_23_1 doi: 10.1038/nature18933 – ident: e_1_2_9_21_1 doi: 10.1080/10618600.2015.1028549 – ident: e_1_2_9_3_1 doi: 10.2307/2290726 – volume: 20 start-page: 1 issue: 171 year: 2019 ident: e_1_2_9_18_1 article-title: Shared subspace models for multi‐group covariance estimation publication-title: Journal of Machine Learning Research – ident: e_1_2_9_41_1 doi: 10.1038/nn.4393 – volume: 10 start-page: 1281 issue: 4 year: 2000 ident: e_1_2_9_2_1 article-title: Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage publication-title: Statistica Sinica – ident: e_1_2_9_16_1 doi: 10.1007/978-94-017-0653-7_3 – ident: e_1_2_9_39_1 doi: 10.1016/j.neuroimage.2014.06.052 – ident: e_1_2_9_8_1 doi: 10.1093/biomet/asq017 – ident: e_1_2_9_11_1 doi: 10.1016/j.jmva.2005.06.001 – ident: e_1_2_9_30_1 – volume: 14 start-page: 41 year: 2004 ident: e_1_2_9_40_1 article-title: Bayesian model assessment in factor analysis publication-title: Statistica Sinica – ident: e_1_2_9_52_1 doi: 10.1098/rstb.2015.0349 – ident: e_1_2_9_15_1 doi: 10.1038/nn.4135 – ident: e_1_2_9_44_1 doi: 10.1214/14-AOS1215 – ident: e_1_2_9_22_1 doi: 10.1080/10618600.2013.852553 – ident: e_1_2_9_14_1 doi: 10.1016/j.neuroimage.2010.06.010 – ident: e_1_2_9_36_1 doi: 10.1214/aos/1176348885 – ident: e_1_2_9_9_1 doi: 10.3389/fncom.2013.00143 – ident: e_1_2_9_34_1 doi: 10.1038/nn.4134 – ident: e_1_2_9_20_1 doi: 10.1093/biomet/ass060 – ident: e_1_2_9_58_1 doi: 10.1016/j.jalz.2010.03.007 – ident: e_1_2_9_47_1 doi: 10.1016/j.jmva.2005.11.002 – ident: e_1_2_9_50_1 doi: 10.1038/nn.4125 – ident: e_1_2_9_43_1 doi: 10.1126/science.1238411 – ident: e_1_2_9_33_1 doi: 10.1016/j.neuroimage.2013.05.079 – volume: 106 start-page: 1125 year: 2011 ident: e_1_2_9_7_1 article-title: The organization of the human cerebellum estimated by intrinsic functional connectivity publication-title: American Journal of Physiology‐Heart and Circulatory Physiology – ident: e_1_2_9_60_1 doi: 10.1101/256933 – ident: e_1_2_9_37_1 doi: 10.1016/j.csda.2016.10.008 – ident: e_1_2_9_35_1 doi: 10.1111/j.2517-6161.1977.tb01610.x – ident: e_1_2_9_57_1 doi: 10.1080/01621459.2017.1379404 – ident: e_1_2_9_59_1 doi: 10.1080/07350015.2015.1096788 – ident: e_1_2_9_32_1 doi: 10.1198/jcgs.2009.07177 – ident: e_1_2_9_6_1 doi: 10.1093/biomet/89.1.159 – ident: e_1_2_9_25_1 doi: 10.1016/j.neuroimage.2013.04.127 – ident: e_1_2_9_26_1 doi: 10.1016/j.nec.2010.11.001 – ident: e_1_2_9_17_1 doi: 10.1080/01621459.1984.10477108 – ident: e_1_2_9_49_1 doi: 10.1016/S0378-3758(00)00209-3 – ident: e_1_2_9_27_1 doi: 10.1016/j.jeconom.2011.11.004 – ident: e_1_2_9_10_1 doi: 10.1007/978-3-319-59050-9_29 – ident: e_1_2_9_13_1 doi: 10.1111/biom.12133 – ident: e_1_2_9_42_1 doi: 10.1016/j.neuroimage.2014.07.033 – ident: e_1_2_9_51_1 doi: 10.1080/01621459.2013.804409 – ident: e_1_2_9_28_1 doi: 10.1016/j.jeconom.2008.12.016 |
SSID | ssj0001529363 |
Score | 2.23096 |
Snippet | Analysis of structural and functional connectivity (FC) of human brains is of pivotal importance for diagnosis of cognitive ability. The Human Connectome... |
SourceID | crossref wiley |
SourceType | Index Database Publisher |
SubjectTerms | change point covariance matrix functional connectivity low rank Stiefel manifold Wishart distribution |
Title | Bayesian hierarchical modeling on covariance valued data |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsta4.534 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT8IwFG4ULl6MRo34KzMx3oZb6bbuCCohJhoTISFelrXrhMsgZEjwr_e13S8QE_QySEM36PvSfu_xvvcQurE8n9EY26ZNHGHCeeubIWfUJHbMXYuG2MdS7_z84vYG5GnoDMv8eaUuSVmTf23UlfzHqjAGdpUq2T9YtrgpDMB7sC9cwcJw3crGnXAplAhSNrRWfwnIFVfNbVQys0wx_wRnWMkCZFlvYJeZGK1gpJJtKpq5EhqUo6qEsyrFkeUTVKMGUq21XIY6qJwuxoXgp4hAv49E8rGYF_7-KEzTUE3TodxkPGMlNF9DnVcA-18kxLQajMCtSjBC7VkYHA7TdnR3kqbYMJZvungdXD_2cl0bFjgyaTpZwHOlXPbaMVYkF-pCzDiQMwOYuYvqGHwIq4bq7c5Dp1uG4BzgOqrXXvEV8_LEFr7LH7xCWKoOjGIg_QO0n7kORlvj4BDtiOQI0RwDRhUDRo4BY5IYJQYMjQFDYuAYDbqP_fuemXXDMDn4nMTksUvBuZDiYCBhMRwOLuNEOOCie8JzQiDqjHIG_n5EY5cxW_hUABvzrUgw3xGtE1RLJok4RQaNWORym7uw-xLCCSW8RTzGuSwwGLfiBrrOf3Iw1UVPgvVVbaBbtRa_fiB467cJvJ5tcbNztFei6QLV0tlcXALZS9lVZrRv5NdVyA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+hierarchical+modeling+on+covariance+valued+data&rft.jtitle=Stat+%28International+Statistical+Institute%29&rft.au=Acharyya%2C+Satwik&rft.au=Zhang%2C+Zhengwu&rft.au=Bhattacharya%2C+Anirban&rft.au=Pati%2C+Debdeep&rft.date=2023-01-01&rft.issn=2049-1573&rft.eissn=2049-1573&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1002%2Fsta4.534&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sta4_534 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2049-1573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2049-1573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2049-1573&client=summon |