Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques

Electrocardiogram (ECG) remains the most reliable and low-cost diagnostic tool to evaluate the patients with cardiac arrhythmias. Manual diagnosis of arrhythmia beats is very tedious due to the nonlinear and complex nature of ECG. Likewise, minute variations in time-domain features viz. amplitude, s...

Full description

Saved in:
Bibliographic Details
Published in2015 Annual IEEE India Conference (INDICON) pp. 1 - 4
Main Authors Desai, Usha, Martis, Roshan Joy, Nayak, C. Gurudas, Sarika, K., Seshikala, G.
Format Conference Proceeding Journal Article
LanguageEnglish
Published IEEE 01.12.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electrocardiogram (ECG) remains the most reliable and low-cost diagnostic tool to evaluate the patients with cardiac arrhythmias. Manual diagnosis of arrhythmia beats is very tedious due to the nonlinear and complex nature of ECG. Likewise, minute variations in time-domain features viz. amplitude, segments and intervals are difficult to interpret by naked eye. The current paper, describes a machine learning-based approach for computer-assisted detection of five classes of ECG arrhythmia beats using Discrete Wavelet Transform (DWT) features. Further, methodology comprises dimensionality reduction using Independent Component Analysis (ICA), ten-fold cross-validation and classification using Support Vector Machine (SVM) kernel functions. Using ANOVA significant features are selected and reliability of accuracy is measured by Cohen's kappa statistic. Large dataset of 110,093 heartbeats from 48 records of MIT-BIH arrhythmia database recommended by ANSI/AAMI EC57:1998, which are grouped into five classes of arrhythmia beats viz. Non-ectopic (N), Supraventricular ectopic (S), Ventricular ectopic (V), Fusion (F) and Unknown (U) are classified with class specific accuracy of 99.57%, 97.91%, 92.18%, 76.54% and 97.22% respectively and an overall average accuracy of 98.49%, using SVM quadratic kernel. The developed methodology is an efficient tool, which has intensive applications in early diagnosis and mass screening of cardiac health.
AbstractList Electrocardiogram (ECG) remains the most reliable and low-cost diagnostic tool to evaluate the patients with cardiac arrhythmias. Manual diagnosis of arrhythmia beats is very tedious due to the nonlinear and complex nature of ECG. Likewise, minute variations in time-domain features viz. amplitude, segments and intervals are difficult to interpret by naked eye. The current paper, describes a machine learning-based approach for computer-assisted detection of five classes of ECG arrhythmia beats using Discrete Wavelet Transform (DWT) features. Further, methodology comprises dimensionality reduction using Independent Component Analysis (ICA), ten-fold cross-validation and classification using Support Vector Machine (SVM) kernel functions. Using ANOVA significant features are selected and reliability of accuracy is measured by Cohen's kappa statistic. Large dataset of 110,093 heartbeats from 48 records of MIT-BIH arrhythmia database recommended by ANSI/AAMI EC57:1998, which are grouped into five classes of arrhythmia beats viz. Non-ectopic (N), Supraventricular ectopic (S), Ventricular ectopic (V), Fusion (F) and Unknown (U) are classified with class specific accuracy of 99.57%, 97.91%, 92.18%, 76.54% and 97.22% respectively and an overall average accuracy of 98.49%, using SVM quadratic kernel. The developed methodology is an efficient tool, which has intensive applications in early diagnosis and mass screening of cardiac health.
Author Martis, Roshan Joy
Sarika, K.
Desai, Usha
Nayak, C. Gurudas
Seshikala, G.
Author_xml – sequence: 1
  givenname: Usha
  surname: Desai
  fullname: Desai, Usha
  email: usha.nmamit@nitte.edu.in
  organization: Sch. of Electron. & Commun. Eng., Reva Univ., Bangalore, India
– sequence: 2
  givenname: Roshan Joy
  surname: Martis
  fullname: Martis, Roshan Joy
  email: roshaniitsmst@gmail.com
  organization: Dept. of Electron. & Commun. Eng., St. Joseph Eng. Coll., Mangaluru, India
– sequence: 3
  givenname: C. Gurudas
  surname: Nayak
  fullname: Nayak, C. Gurudas
  email: cg.nayak@manipal.edu
  organization: Dept. of Instrum. & Control Eng., Manipal Univ., Manipal, India
– sequence: 4
  givenname: K.
  surname: Sarika
  fullname: Sarika, K.
  organization: Dept. of Electron. & Commun. Eng., NMAM Inst. of Technol., Udupi, India
– sequence: 5
  givenname: G.
  surname: Seshikala
  fullname: Seshikala, G.
  email: seshikala.g@reva.edu.in
  organization: Sch. of Electron. & Commun. Eng., Reva Univ., Bangalore, India
BookMark eNotkE1TwjAYhKOjMwLyC_SQoweLSdp8HZ2CyAwfB1GPnZC-oXFKik058O_FgdNent2d3T66CU0AhB4pGVFK9MtsOZ7lq-WIEcpHMstSxsgV6tNMyFSmWrFr1GMp44nOqLpDwxh_CCFUC6kk76FyYWzlA2AfOqhrv4XQ4dKbbWiij7hxeJJPsWtabNq2OnbVzhtsaxOjd96azjcBH6IPWzz-Xj_jWf6KTSjxx9cCd2Cr4H8PEO_RrTN1hOFFB-jzbbLO35P5anpyzBPLuO4SR0WqGciNBaPkBoQm0jnKKCESrJBWuYxJ0JJrYcDYDZTCCqYkcaXWQqQD9HTO3bfNf29X7Hy0p1kmQHOIBVWMc0KVzk7owxn1AFDsW78z7bG4_Jf-Ac2uZlU
CitedBy_id crossref_primary_10_1109_JSEN_2021_3062395
crossref_primary_10_1109_TII_2023_3245677
crossref_primary_10_1109_JSEN_2020_3019668
crossref_primary_10_3390_s19235079
crossref_primary_10_1007_s13748_017_0120_x
crossref_primary_10_1088_1757_899X_928_3_032030
crossref_primary_10_1088_1361_6579_ab87b4
crossref_primary_10_1109_ACCESS_2020_3026968
crossref_primary_10_47164_ijngc_v14i2_1153
crossref_primary_10_25046_aj050573
crossref_primary_10_1155_2022_3321810
crossref_primary_10_4018_IJSI_315659
crossref_primary_10_1016_j_bspc_2023_104756
crossref_primary_10_1007_s10489_022_04303_8
crossref_primary_10_1155_2022_7401175
crossref_primary_10_3390_pr10112348
crossref_primary_10_1109_ACCESS_2021_3123367
crossref_primary_10_1002_smm2_1114
crossref_primary_10_1051_matecconf_201712505008
crossref_primary_10_1142_S1793984422500052
ContentType Conference Proceeding
Journal Article
DBID 6IE
6IL
CBEJK
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/INDICON.2015.7443220
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP All) 1998-Present
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISBN 1467373982
1467373990
9781467373982
9781467373999
EISSN 2325-9418
EndPage 4
ExternalDocumentID 7443220
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c259t-f16392e7bcea87be6907ff121007ec67c8f427e97596aeacbed6c62870fd99663
IEDL.DBID RIE
IngestDate Fri Jun 28 02:42:51 EDT 2024
Wed Jun 26 19:23:25 EDT 2024
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-f16392e7bcea87be6907ff121007ec67c8f427e97596aeacbed6c62870fd99663
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Conference-1
ObjectType-Feature-3
content type line 23
SourceType-Conference Papers & Proceedings-2
PQID 1825501894
PQPubID 23500
PageCount 4
ParticipantIDs ieee_primary_7443220
proquest_miscellaneous_1825501894
PublicationCentury 2000
PublicationDate 20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 20151201
  day: 01
PublicationDecade 2010
PublicationTitle 2015 Annual IEEE India Conference (INDICON)
PublicationTitleAbbrev INDICON
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001967875
ssj0002001154
Score 1.7028474
Snippet Electrocardiogram (ECG) remains the most reliable and low-cost diagnostic tool to evaluate the patients with cardiac arrhythmias. Manual diagnosis of...
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 1
SubjectTerms Accuracy
Analysis of variance
Analysis of Variance (ANOVA)
Arrhythmia
Classification
Diagnosis
Discrete Wavelet Transform
Discrete wavelet transforms
Diseases
Echocardiography
Electrocardiogram
Electrocardiography
Feature extraction
Independent Component Analysis
Kernel
Methodology
Support Vector Machine
Support vector machines
Title Machine intelligent diagnosis of ECG for arrhythmia classification using DWT, ICA and SVM techniques
URI https://ieeexplore.ieee.org/document/7443220
https://search.proquest.com/docview/1825501894
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwELVKT3BhK6JsMhLHJt2cOD6iLrRILUi00FvlZUwLIkFtcoCvx07SFgEHbrkksjyTmTeeN88IXQVSE5-LhqM1YQ6BmnKEMP9Vva68QHKwvSbLthj6vTG5nXiTAqqsZ2EAICWfgWsf016-imRij8qqlBDjf6ZA36KMZbNam_MUZsJungpf0gZbqjSTT8vVa6zaH7b7rbuhpXN5bv6p_E6VX4E4zS7dXTRYrSsjlby6SSxc-flDsvG_C99Dpc0cH75fZ6h9VIDwAO18kyA8RGqQsikBz9fanDFWGf9uvsSRxp3WDTbIFvPFYvYRz97mHEsLuS3HKDUrttz5Z9x-GlVwv3WNeajww-MAr-VhlyU07nZGrZ6T37zgSFMOxY42KI01gAoJPKACbAmttdUaq1GQPpWBJg0KjHrM5yZ0C1C-9G3PVCtbQDWPUDGMQjhGmBoAIJseqXOqCGGBaHBhMmJTcepLg1fK6NDu1_Q9E9eY5ltVRpcri0yNw9suBg8hSpZTUxB5VoWQkZO_Xz1F29bEGefkDBXjRQLnBjnE4iJ1mS_XasF6
link.rule.ids 310,311,315,783,787,792,793,799,27937,27938,55087
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPKgXH2DE55p4pDzKttseDQ9BAU0E5dbsY1bQWAyUg_56d9sCRj1466XNZmc6883ON98idOkJRVzGbUsp4lsEKtLiXP9X1ap0PMHA9JoM26LvtofkZuSMMqi4moUBgJh8BiXzGPfy5VQszFFZmRKi_U8X6BsaV3s0mdZan6j4OvCmyfAlbrHFWjPpvFy14pc7_Uanftc3hC6nlH4svVXlVyiO80trB_WWK0toJa-lRcRL4vOHaON_l76L8utJPny_ylF7KAPhPtr-JkKYQ7IX8ykBT1bqnBGWCQNvMsdThZv1a6yxLWaz2fgjGr9NGBYGdBuWUWxYbNjzz7jxNCjiTv0Ks1Dih8ceXgnEzvNo2GoO6m0rvXvBErogiiylcZpvA-UCmEc5mCJaKaM2VqEgXCo8RWwKPnV8l-ngzUG6wjVdUyVNCVU7QNlwGsIhwlRDAFFzSJVRSYjvcZtxnRNrklFXaMRSQDmzX8F7Iq8RpFtVQBdLiwTa5U0fg4UwXcwDXRI5RofQJ0d_v3qONtuDXjfodvq3x2jLmDthoJygbDRbwKnGERE_i93nCyOpxMY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2015+Annual+IEEE+India+Conference+%28INDICON%29&rft.atitle=Machine+intelligent+diagnosis+of+ECG+for+arrhythmia+classification+using+DWT%2C+ICA+and+SVM+techniques&rft.au=Desai%2C+Usha&rft.au=Martis%2C+Roshan+Joy&rft.au=Nayak%2C+C.+Gurudas&rft.au=Sarika%2C+K.&rft.date=2015-12-01&rft.pub=IEEE&rft.eissn=2325-9418&rft.spage=1&rft.epage=4&rft_id=info:doi/10.1109%2FINDICON.2015.7443220&rft.externalDocID=7443220