Temporal signed gestures segmentation in an image sequence using deep reinforcement learning

Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extrac...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 131; p. 107879
Main Authors Kalandyk, Dawid, Kapuściński, Tomasz
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extracts segments from the image sequence corresponding to undistorted parts of gestures. This should simplify the task by reducing it to the easier problem of isolated gestures recognition. The proposed approach uses deep reinforcement learning for segmentation and a novel image sequence processing scheme to extract gradient changes over time. A dataset recorded by deaf people and annotated according to the proposed approach, was prepared to evaluate the method. The proposed deep learning architectures achieved leave-one-subject-out recognition accuracies in the range of 0.70 to 0.76. Considering the inability to compare with other works, the authors also proposed other evaluation protocols to thoroughly examine the employed approach. This work will be developed, and the main aspiration of the authors will be to create an integrated framework that converts the raw form of RGB video into a string of words representing the Sign Language user’s intentions. •Specialized preprocessing video algorithm provides a comprehensive description.•Dynamic gestures extraction done by Deep Reinforcement Learning.•Dedicated database allows to tackle with Sign Language co-articulation problem.•Different Deep Convolutional Neural Network architectures investigation.•Filtering and Voting for segmentation accuracy improvement.
AbstractList Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extracts segments from the image sequence corresponding to undistorted parts of gestures. This should simplify the task by reducing it to the easier problem of isolated gestures recognition. The proposed approach uses deep reinforcement learning for segmentation and a novel image sequence processing scheme to extract gradient changes over time. A dataset recorded by deaf people and annotated according to the proposed approach, was prepared to evaluate the method. The proposed deep learning architectures achieved leave-one-subject-out recognition accuracies in the range of 0.70 to 0.76. Considering the inability to compare with other works, the authors also proposed other evaluation protocols to thoroughly examine the employed approach. This work will be developed, and the main aspiration of the authors will be to create an integrated framework that converts the raw form of RGB video into a string of words representing the Sign Language user’s intentions. •Specialized preprocessing video algorithm provides a comprehensive description.•Dynamic gestures extraction done by Deep Reinforcement Learning.•Dedicated database allows to tackle with Sign Language co-articulation problem.•Different Deep Convolutional Neural Network architectures investigation.•Filtering and Voting for segmentation accuracy improvement.
ArticleNumber 107879
Author Kalandyk, Dawid
Kapuściński, Tomasz
Author_xml – sequence: 1
  givenname: Dawid
  orcidid: 0000-0002-7317-5499
  surname: Kalandyk
  fullname: Kalandyk, Dawid
  email: d.kalandyk@prz.edu.pl
  organization: Doctoral School of the Rzeszów University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland
– sequence: 2
  givenname: Tomasz
  orcidid: 0000-0003-4084-8113
  surname: Kapuściński
  fullname: Kapuściński, Tomasz
  email: tomekkap@prz.edu.pl
  organization: Department of Computer and Control Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland
BookMark eNqFkM1qwzAQhEVJoUnaVyh6AaeSZVvaW0voHwR6SW8FIctro5DIrmQX-vaVSXvuZRd2mGH2W5GF7z0ScsvZhjNe3R026DszDMZtcpYX6SiVhAuy5EqKrJIVLMiSQZlnHGR1RVYxHhhjQhXVknzs8TT0wRxpdJ3HhnYYxylgpBG7E_rRjK731Hlq0jyZDpPwOaG3SKfofEcbxIEGdL7tg8XZQo9ogk_aNblszTHize9ek_enx_32Jdu9Pb9uH3aZzUsYM6xLTNVAlmAEA1uBMrUSUDayZlALZQEKVBw5Wq5aIRAsNEK0vMwLyY1Yk-qca0MfY8BWDyF1Dd-aMz0z0gf9x0jPjPSZUTLen42Y2n05DDpaN__WuIB21E3v_ov4AbHidtc
Cites_doi 10.1007/s11263-018-1121-3
10.1109/ICCV.2017.424
10.28991/ESJ-2023-07-04-010
10.53106/160792642022112306022
10.5244/C.27.20
10.1016/j.neucom.2016.12.088
10.53106/160792642022032302015
10.1109/TIP.2019.2941267
10.1145/3308561.3353774
10.1109/CVPR.2019.00382
10.1109/ICCV48922.2021.01134
10.24963/ijcai.2018/123
10.1016/j.eswa.2018.01.051
10.1109/CVPR.2019.01025
10.1016/j.patrec.2004.06.016
10.1002/cpe.7159
10.1145/375735.376414
10.1007/s11042-020-08961-z
10.1038/nature14236
10.3390/s20082190
10.1016/j.cviu.2015.08.004
10.1016/j.patrec.2017.06.017
10.1109/CVPR.2019.01233
10.1007/s42979-021-00827-x
10.1109/MSP.2017.2743240
10.1109/CVPRW.2009.5206523
10.1145/3136755.3143012
10.28991/ESJ-2023-07-01-09
10.1109/TSMCC.2007.893280
10.1109/CVPR.2018.00708
10.1109/TPAMI.2019.2911077
10.1609/aaai.v30i1.10295
10.1006/cviu.2002.0967
10.1109/CVPR.2017.148
10.1109/ICME.2016.7552950
10.1613/jair.301
10.1109/CVPR.2017.175
10.53106/160792642022072304025
10.1109/ICCV.2017.43
10.1007/978-3-030-01234-2_5
10.1007/978-3-319-89327-3_9
10.1038/s41598-017-17682-7
10.1007/s10462-019-09750-3
10.1007/s10055-016-0301-0
10.3390/s19061429
10.1609/aaai.v31i1.10827
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2024.107879
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1873-6769
ExternalDocumentID 10_1016_j_engappai_2024_107879
S095219762400037X
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c259t-eb5e1979759a309c698ab8395d7b09b38c994e81e1ec18f33e9c9d33f152471a3
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Tue Jul 01 02:23:43 EDT 2025
Sat Apr 13 16:38:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Image sequence segmentation
Gesture database
Gesture spotting
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-eb5e1979759a309c698ab8395d7b09b38c994e81e1ec18f33e9c9d33f152471a3
ORCID 0000-0002-7317-5499
0000-0003-4084-8113
ParticipantIDs crossref_primary_10_1016_j_engappai_2024_107879
elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107879
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Xu, Shu, Mei (b37) 2020
Jevtić, Colomé, Alenya, Torras (b26) 2018; 105
Singh, Gupta, Singh (b62) 2019; 7
Hung, W.-C., Zhang, J., Shen, X., Lin, Z., Lee, J.-Y., Yang, M.-H., 2018. Learning to blend photos. In: Proceedings of the European Conference on Computer Vision. (ECCV), pp. 70–86.
Koller, Zargaran, Ney, Bowden (b34) 2018; 126
Mitra, Acharya (b40) 2007; 37
Hasan, Kareem (b22) 2012
Seok, Kim, Park (b60) 2018
Ruffieux, Lalanne, Mugellini, Abou Khaled (b56) 2014
Cruz, Parisi, Wermter (b13) 2018
Kapuscinski, Wysocki (b31) 2020; 20
Park, Ghimire, Poudel, Lee (b49) 2022; 23
Kaelbling, Littman, Moore (b28) 1996; 4
Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b42) 2015; 518
Arulkumaran, Deisenroth, Brundage, Bharath (b4) 2017; 34
Kim, Kirchner, Stefes, Kirchner (b32) 2017; 7
Sarma, Bhuyan (b59) 2021; 2
Nishimura, Oka (b47) 1996
Morguet, Lang (b43) 1998
Darrell (b15) 1997
Minut, S., Mahadevan, S., 2001. A reinforcement learning model of selective visual attention. In: Proceedings of the Fifth International Conference on Autonomous Agents. pp. 457–464.
Thanathamathee, Sawangarreerak, Kongkla, Nizam (b64) 2023; 7
Tsironi, Barros, Weber, Wermter (b66) 2017; 268
Bolon-Canedo, Remeseiro (b7) 2020; 53
.
Qiu, Z., Yao, T., Ngo, C., Tian, X., Mei, T., 2019. Learning spatio-temporal representation with local and global diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12056–12065.
Supancic, III, J., Ramanan, D., 2017. Tracking as online decision-making: Learning a policy from streaming videos with reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 322–331.
Pfister, T., Charles, J., Zisserman, A., 2013. Large-scale Learning of Sign Language by Watching TV (Using Co-occurrences). In: BMVC.
Pu, J., Zhou, W., Li, H., 2018. Dilated convolutional network with iterative optimization for continuous sign language recognition. In: IJCAI, Vol. 3. p. 7.
Duong, C.N., Luu, K., Quach, K.G., Nguyen, N., Patterson, E., Bui, T.D., Le, N., 2019. Automatic face aging in videos via deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10013–10022.
Lan, S., Panda, R., Zhu, Q., Roy-Chowdhury, A.K., 2018. Ffnet: Video fast-forwarding via reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6771–6780.
Pisharady, Saerbeck (b52) 2015; 141
Cui, R., Liu, H., Zhang, C., 2017. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7361–7369.
Pezzuoli, F., Corona, D., Corradini, M., Cristofaro, A., 2019. Development of a wearable device for sign language translation. In: Human Friendly Robotics: 10th International Workshop. pp. 115–126.
Neto, Pereira, Pires, Moreira (b45) 2013
Nicholl, Ahmad, Amira (b46) 2010
Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2711–2720.
Zhang, J., Zhou, W., Xie, C., Pu, J., Li, H., 2016. Chinese sign language recognition with adaptive HMM. In: 2016 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1–6.
Wilson, Bobick (b68) 2000
Zhang, Pu, Zhuang, Zhou, Li (b72) 2019
Kang, Lee, Jung (b30) 2004; 25
Trigueiros, Ribeiro, Reis (b65) 2012
Bragg, D., Koller, O., Bellard, M., Berke, L., Boudreault, P., Braffort, A., Caselli, N., Huenerfauth, M., Kacorri, H., Verhoef, T., 2019. & Others Sign language recognition, generation, and translation: An interdisciplinary perspective. In: Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility. pp. 16–31.
Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
Ye, Ye, Bouthillier, Ye (b70) 2021
Cruz, Parisi, Twiefel, Wermter (b12) 2016
Zhu, Xu, Kriegman (b74) 2002; 85
Simonyan, Zisserman (b61) 2015
Lample, G., Chaplot, D.S., 2017. Playing FPS games with deep reinforcement learning. In: Thirty-First AAAI Conference on Artificial Intelligence.
Crasborn, O., Sloetjes, H., 2008. Enhanced ELAN functionality for sign language corpora. In: 6th International Conference on Language Resources and Evaluation (LREC 2008)/3rd Workshop on the Representation and Processing of Sign Languages: Construction and Exploitation of Sign Language Corpora. pp. 39–43.
Ahmed, Khan, Ghaffar, Hussain, Cho (b1) 2019; 19
Neiva, Zanchettin (b44) 2018; 103
Ouyang, X., Kawaai, S., Goh, E.G.H., Shen, S., Ding, W., Ming, H., Huang, D.-Y., 2017. Audio-visual emotion recognition using deep transfer learning and multiple temporal models. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction. pp. 577–582.
Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., Yang, M.-H., 2019. Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3703–3712.
Aloysius, Geetha (b2) 2020; 79
Min, Y., Hao, A., Chai, X., Chen, X., 2021. Visual alignment constraint for continuous sign language recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11542–11551.
Wirawan, Wardoyo, Lelono, Kusrohmaniah (b69) 2022; 7
Buehler, P., Zisserman, A., Everingham, M., 2009. Learning sign language by watching TV (using weakly aligned subtitles). In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 2961–2968.
Darrell, Pentland (b17) 1996
Kalandyk (b29) 2021
Sarkar, Sanyal, Majumder (b58) 2024; 71
Anwar, Sinha, Vivek, Ashank (b3) 2019
Koller, Camgoz, Ney, Bowden (b33) 2019; 42
Cooper, H., Bowden, R., 2010. Sign language recognition using linguistically derived sub-units. In: Proceedings of 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies. pp. 57–61.
Jain, Karsh, Barbhuiya (b25) 2022; 34
Hu, Zhou, Pu, Li (b23) 2021; 17
Guo, Zhou, Li, Li, Wang (b21) 2019; 29
Darrell, T., Pentland, A., 0000. Active gesture recognition using learned visual attention, Advances in Neural Information Processing Systems 8.
Bi, Wu, Shan, Zhong (b6) 2022; 23
Durrani, Yasmin, Rho (b19) 2022; 23
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 0000. Playing atari with deep reinforcement learning, arXiv preprint
Kabir, Garg (b27) 2023; 13
Elmezain, Al-Hamadi, Michaelis (b20) 2009
Rao, Y., Lu, J., Zhou, J., 2017. Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3931–3940.
Sagayam, Hemanth (b57) 2017; 21
Kim (10.1016/j.engappai.2024.107879_b32) 2017; 7
10.1016/j.engappai.2024.107879_b63
Anwar (10.1016/j.engappai.2024.107879_b3) 2019
10.1016/j.engappai.2024.107879_b24
Morguet (10.1016/j.engappai.2024.107879_b43) 1998
Tsironi (10.1016/j.engappai.2024.107879_b66) 2017; 268
10.1016/j.engappai.2024.107879_b67
Ye (10.1016/j.engappai.2024.107879_b70) 2021
Seok (10.1016/j.engappai.2024.107879_b60) 2018
Sarma (10.1016/j.engappai.2024.107879_b59) 2021; 2
Arulkumaran (10.1016/j.engappai.2024.107879_b4) 2017; 34
Jevtić (10.1016/j.engappai.2024.107879_b26) 2018; 105
Darrell (10.1016/j.engappai.2024.107879_b17) 1996
Nishimura (10.1016/j.engappai.2024.107879_b47) 1996
Wilson (10.1016/j.engappai.2024.107879_b68) 2000
10.1016/j.engappai.2024.107879_b71
Trigueiros (10.1016/j.engappai.2024.107879_b65) 2012
Elmezain (10.1016/j.engappai.2024.107879_b20) 2009
10.1016/j.engappai.2024.107879_b73
10.1016/j.engappai.2024.107879_b35
10.1016/j.engappai.2024.107879_b36
10.1016/j.engappai.2024.107879_b39
Sagayam (10.1016/j.engappai.2024.107879_b57) 2017; 21
10.1016/j.engappai.2024.107879_b5
10.1016/j.engappai.2024.107879_b38
Thanathamathee (10.1016/j.engappai.2024.107879_b64) 2023; 7
10.1016/j.engappai.2024.107879_b8
10.1016/j.engappai.2024.107879_b9
Kabir (10.1016/j.engappai.2024.107879_b27) 2023; 13
Cruz (10.1016/j.engappai.2024.107879_b13) 2018
Li (10.1016/j.engappai.2024.107879_b37) 2020
Sarkar (10.1016/j.engappai.2024.107879_b58) 2024; 71
Zhu (10.1016/j.engappai.2024.107879_b74) 2002; 85
Bolon-Canedo (10.1016/j.engappai.2024.107879_b7) 2020; 53
Ruffieux (10.1016/j.engappai.2024.107879_b56) 2014
Koller (10.1016/j.engappai.2024.107879_b34) 2018; 126
Kapuscinski (10.1016/j.engappai.2024.107879_b31) 2020; 20
10.1016/j.engappai.2024.107879_b41
Darrell (10.1016/j.engappai.2024.107879_b15) 1997
Pisharady (10.1016/j.engappai.2024.107879_b52) 2015; 141
Mnih (10.1016/j.engappai.2024.107879_b42) 2015; 518
Kaelbling (10.1016/j.engappai.2024.107879_b28) 1996; 4
Mitra (10.1016/j.engappai.2024.107879_b40) 2007; 37
Neiva (10.1016/j.engappai.2024.107879_b44) 2018; 103
10.1016/j.engappai.2024.107879_b48
Kalandyk (10.1016/j.engappai.2024.107879_b29) 2021
Guo (10.1016/j.engappai.2024.107879_b21) 2019; 29
Jain (10.1016/j.engappai.2024.107879_b25) 2022; 34
Bi (10.1016/j.engappai.2024.107879_b6) 2022; 23
Durrani (10.1016/j.engappai.2024.107879_b19) 2022; 23
Cruz (10.1016/j.engappai.2024.107879_b12) 2016
Park (10.1016/j.engappai.2024.107879_b49) 2022; 23
10.1016/j.engappai.2024.107879_b50
10.1016/j.engappai.2024.107879_b53
10.1016/j.engappai.2024.107879_b10
Hasan (10.1016/j.engappai.2024.107879_b22) 2012
10.1016/j.engappai.2024.107879_b54
10.1016/j.engappai.2024.107879_b51
10.1016/j.engappai.2024.107879_b14
10.1016/j.engappai.2024.107879_b11
10.1016/j.engappai.2024.107879_b55
Singh (10.1016/j.engappai.2024.107879_b62) 2019; 7
10.1016/j.engappai.2024.107879_b18
10.1016/j.engappai.2024.107879_b16
Neto (10.1016/j.engappai.2024.107879_b45) 2013
Kang (10.1016/j.engappai.2024.107879_b30) 2004; 25
Hu (10.1016/j.engappai.2024.107879_b23) 2021; 17
Nicholl (10.1016/j.engappai.2024.107879_b46) 2010
Koller (10.1016/j.engappai.2024.107879_b33) 2019; 42
Simonyan (10.1016/j.engappai.2024.107879_b61) 2015
Ahmed (10.1016/j.engappai.2024.107879_b1) 2019; 19
Wirawan (10.1016/j.engappai.2024.107879_b69) 2022; 7
Aloysius (10.1016/j.engappai.2024.107879_b2) 2020; 79
Zhang (10.1016/j.engappai.2024.107879_b72) 2019
References_xml – start-page: 365
  year: 2019
  end-page: 371
  ident: b3
  article-title: Hand gesture recognition: A survey
  publication-title: Nanoelectronics, Circuits and Communication Systems
– volume: 21
  start-page: 91
  year: 2017
  end-page: 107
  ident: b57
  article-title: Hand posture and gesture recognition techniques for virtual reality applications: A survey
  publication-title: Virtual Real.
– start-page: 285
  year: 2019
  end-page: 289
  ident: b72
  article-title: Continuous sign language recognition via reinforcement learning
  publication-title: 2019 IEEE International Conference on Image Processing
– volume: 29
  start-page: 1575
  year: 2019
  end-page: 1590
  ident: b21
  article-title: Hierarchical recurrent deep fusion using adaptive clip summarization for sign language translation
  publication-title: IEEE Trans. Image Process.
– start-page: 759
  year: 2016
  end-page: 766
  ident: b12
  article-title: Multi-modal integration of dynamic audiovisual patterns for an interactive reinforcement learning scenario
  publication-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 518
  start-page: 529
  year: 2015
  end-page: 533
  ident: b42
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
– reference: Min, Y., Hao, A., Chai, X., Chen, X., 2021. Visual alignment constraint for continuous sign language recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11542–11551.
– volume: 34
  year: 2022
  ident: b25
  article-title: Literature review of vision-based dynamic gesture recognition using deep learning techniques
  publication-title: Concurr. Comput.: Pract. Exper.
– reference: Supancic, III, J., Ramanan, D., 2017. Tracking as online decision-making: Learning a policy from streaming videos with reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 322–331.
– reference: Crasborn, O., Sloetjes, H., 2008. Enhanced ELAN functionality for sign language corpora. In: 6th International Conference on Language Resources and Evaluation (LREC 2008)/3rd Workshop on the Representation and Processing of Sign Languages: Construction and Exploitation of Sign Language Corpora. pp. 39–43.
– reference: Lan, S., Panda, R., Zhu, Q., Roy-Chowdhury, A.K., 2018. Ffnet: Video fast-forwarding via reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6771–6780.
– start-page: 55
  year: 2012
  end-page: 60
  ident: b22
  article-title: Human computer interaction for vision based hand gesture recognition: A survey
  publication-title: 2012 International Conference on Advanced Computer Science Applications and Technologies
– volume: 37
  start-page: 311
  year: 2007
  end-page: 324
  ident: b40
  article-title: Gesture recognition: A survey
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
– volume: 7
  start-page: 116
  year: 2022
  end-page: 134
  ident: b69
  article-title: Continuous capsule network method for improving electroencephalogram-based emotion recognition
  publication-title: Emerg. Sci. J.
– volume: 2
  start-page: 1
  year: 2021
  end-page: 40
  ident: b59
  article-title: Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review
  publication-title: SN Comput. Sci.
– volume: 85
  start-page: 189
  year: 2002
  end-page: 208
  ident: b74
  article-title: A real-time approach to the spotting, representation, and recognition of hand gestures for human–computer interaction
  publication-title: Comput. Vis. Image Underst.
– year: 2015
  ident: b61
  article-title: Very deep convolutional networks for large-scale image recognition
– reference: Qiu, Z., Yao, T., Ngo, C., Tian, X., Mei, T., 2019. Learning spatio-temporal representation with local and global diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12056–12065.
– reference: Duong, C.N., Luu, K., Quach, K.G., Nguyen, N., Patterson, E., Bui, T.D., Le, N., 2019. Automatic face aging in videos via deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10013–10022.
– volume: 79
  start-page: 22177
  year: 2020
  end-page: 22209
  ident: b2
  article-title: Understanding vision-based continuous sign language recognition
  publication-title: Multimedia Tools Appl.
– reference: Minut, S., Mahadevan, S., 2001. A reinforcement learning model of selective visual attention. In: Proceedings of the Fifth International Conference on Autonomous Agents. pp. 457–464.
– reference: Bragg, D., Koller, O., Bellard, M., Berke, L., Boudreault, P., Braffort, A., Caselli, N., Huenerfauth, M., Kacorri, H., Verhoef, T., 2019. & Others Sign language recognition, generation, and translation: An interdisciplinary perspective. In: Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility. pp. 16–31.
– volume: 268
  start-page: 76
  year: 2017
  end-page: 86
  ident: b66
  article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition
  publication-title: Neurocomputing
– volume: 71
  year: 2024
  ident: b58
  article-title: Hand gesture recognition systems: A survey
  publication-title: Int. J. Comput. Appl.
– reference: Hung, W.-C., Zhang, J., Shen, X., Lin, Z., Lee, J.-Y., Yang, M.-H., 2018. Learning to blend photos. In: Proceedings of the European Conference on Computer Vision. (ECCV), pp. 70–86.
– volume: 23
  start-page: 903
  year: 2022
  end-page: 910
  ident: b49
  article-title: Deep learning for joint classification and segmentation of histopathology image
  publication-title: J. Internet Technol.
– volume: 7
  start-page: 1173
  year: 2023
  end-page: 1187
  ident: b64
  article-title: An optimized machine learning and deep learning framework for facial and masked facial recognition
  publication-title: Emerg. Sci. J.
– volume: 53
  start-page: 2905
  year: 2020
  end-page: 2931
  ident: b7
  article-title: Feature selection in image analysis: A survey
  publication-title: Artif. Intell. Rev., Springer
– start-page: 178
  year: 2013
  end-page: 183
  ident: b45
  article-title: Real-time and continuous hand gesture spotting: An approach based on artificial neural networks
  publication-title: 2013 IEEE International Conference on Robotics and Automation
– volume: 4
  start-page: 237
  year: 1996
  end-page: 285
  ident: b28
  article-title: Reinforcement learning: A survey
  publication-title: J. Artif. Intell. Res.
– reference: Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., Yang, M.-H., 2019. Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3703–3712.
– volume: 126
  start-page: 1311
  year: 2018
  end-page: 1325
  ident: b34
  article-title: Deep sign: Enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs
  publication-title: Int. J. Comput. Vis.
– volume: 7
  start-page: 548
  year: 2019
  end-page: 556
  ident: b62
  article-title: Computer vision based hand gesture recognition: A survey
  publication-title: Int. J. Comput. Sci. Eng
– reference: Pu, J., Zhou, W., Li, H., 2018. Dilated convolutional network with iterative optimization for continuous sign language recognition. In: IJCAI, Vol. 3. p. 7.
– year: 2021
  ident: b70
  article-title: Deepimagetranslator v2: analysis of multimodal medical images using semantic segmentation maps generated through deep learning
– volume: 34
  start-page: 26
  year: 2017
  end-page: 38
  ident: b4
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
– start-page: 984
  year: 1996
  end-page: 988
  ident: b17
  article-title: Active gesture recognition using partially observable Markov decision processes
  publication-title: Proceedings of 13th International Conference on Pattern Recognition, Vol. 3
– start-page: 193
  year: 1998
  end-page: 197
  ident: b43
  article-title: Spotting dynamic hand gestures in video image sequences using hidden Markov models
  publication-title: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269)
– volume: 23
  start-page: 1405
  year: 2022
  end-page: 1416
  ident: b6
  article-title: Segmentation-based decision networks for steel surface defect detection
  publication-title: J. Internet Technol.
– reference: Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30.
– reference: Cui, R., Liu, H., Zhang, C., 2017. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7361–7369.
– volume: 105
  start-page: 67
  year: 2018
  end-page: 75
  ident: b26
  article-title: Robot motion adaptation through user intervention and reinforcement learning
  publication-title: Pattern Recognit. Lett.
– start-page: 1
  year: 2021
  end-page: 8
  ident: b29
  article-title: Reinforcement learning in car control: A brief survey
  publication-title: 2021 Selected Issues of Electrical Engineering and Electronics
– start-page: 917
  year: 2018
  end-page: 919
  ident: b60
  article-title: Pattern recognition of human arm movement using deep reinforcement learning
  publication-title: 2018 International Conference on Information Networking
– start-page: 1
  year: 2018
  end-page: 8
  ident: b13
  article-title: Multi-modal feedback for affordance-driven interactive reinforcement learning
  publication-title: 2018 International Joint Conference on Neural Networks
– start-page: 257
  year: 2020
  end-page: 262
  ident: b37
  article-title: AutoGesNet: Auto gesture recognition network based on neural architecture search
  publication-title: 2020 12th International Conference on Advanced Computational Intelligence
– start-page: 318
  year: 1996
  end-page: 322
  ident: b47
  article-title: Spotting recognition of human gestures from time-varying images
  publication-title: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition
– volume: 141
  start-page: 152
  year: 2015
  end-page: 165
  ident: b52
  article-title: Recent methods and databases in vision-based hand gesture recognition: A review
  publication-title: Comput. Vis. Image Underst.
– volume: 42
  start-page: 2306
  year: 2019
  end-page: 2320
  ident: b33
  article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Buehler, P., Zisserman, A., Everingham, M., 2009. Learning sign language by watching TV (using weakly aligned subtitles). In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 2961–2968.
– start-page: 73
  year: 1997
  end-page: 80
  ident: b15
  article-title: Reinforcement learning of active recognition behaviors
  publication-title: Portions of this paper previously appeared in Advances in Neural Information Processing Systems (NIPS 1995), 8(1997)
– reference: Lample, G., Chaplot, D.S., 2017. Playing FPS games with deep reinforcement learning. In: Thirty-First AAAI Conference on Artificial Intelligence.
– start-page: 3577
  year: 2009
  end-page: 3580
  ident: b20
  article-title: Hand trajectory-based gesture spotting and recognition using HMM
  publication-title: 2009 16th IEEE International Conference on Image Processing
– volume: 13
  start-page: 1497
  year: 2023
  ident: b27
  article-title: Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements
  publication-title: Sci. Rep., Nature Publishing Group UK London
– volume: 25
  start-page: 1701
  year: 2004
  end-page: 1714
  ident: b30
  article-title: Recognition-based gesture spotting in video games
  publication-title: Pattern Recognit. Lett.
– reference: Ouyang, X., Kawaai, S., Goh, E.G.H., Shen, S., Ding, W., Ming, H., Huang, D.-Y., 2017. Audio-visual emotion recognition using deep transfer learning and multiple temporal models. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction. pp. 577–582.
– volume: 19
  start-page: 1429
  year: 2019
  ident: b1
  article-title: Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network
  publication-title: Sensors
– volume: 103
  start-page: 159
  year: 2018
  end-page: 183
  ident: b44
  article-title: Gesture recognition: A review focusing on sign language in a mobile context
  publication-title: Expert Syst. Appl.
– reference: Pfister, T., Charles, J., Zisserman, A., 2013. Large-scale Learning of Sign Language by Watching TV (Using Co-occurrences). In: BMVC.
– start-page: 1
  year: 2012
  end-page: 6
  ident: b65
  article-title: A comparison of machine learning algorithms applied to hand gesture recognition
  publication-title: 7th Iberian Conference on Information Systems and Technologies
– reference: Rao, Y., Lu, J., Zhou, J., 2017. Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3931–3940.
– volume: 7
  start-page: 1
  year: 2017
  end-page: 16
  ident: b32
  article-title: Intrinsic interactive reinforcement learning–using error-related potentials for real world human–robot interaction
  publication-title: Sci. Rep.
– reference: Cooper, H., Bowden, R., 2010. Sign language recognition using linguistically derived sub-units. In: Proceedings of 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies. pp. 57–61.
– volume: 20
  start-page: 2190
  year: 2020
  ident: b31
  article-title: Recognition of signed expressions in an experimental system supporting deaf clients in the city office
  publication-title: Sensors
– start-page: 337
  year: 2014
  end-page: 348
  ident: b56
  article-title: A survey of datasets for human gesture recognition
  publication-title: International Conference on Human–Computer Interaction
– reference: .
– start-page: 132
  year: 2010
  end-page: 135
  ident: b46
  article-title: Optimal discrete wavelet transform (DWT) features for face recognition
  publication-title: 2010 IEEE Asia Pacific Conference on Circuits and Systems
– reference: Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2711–2720.
– volume: 17
  start-page: 1
  year: 2021
  end-page: 19
  ident: b23
  article-title: Global-local enhancement network for NMF-aware sign language recognition
  publication-title: ACM Trans. Multimed. Comput., Commun., Appl. (TOMM)
– volume: 23
  start-page: 363
  year: 2022
  end-page: 375
  ident: b19
  article-title: An internet of medical things based liver tumor detection system using semantic segmentation
  publication-title: J. Internet Technol.
– reference: Darrell, T., Pentland, A., 0000. Active gesture recognition using learned visual attention, Advances in Neural Information Processing Systems 8.
– reference: Pezzuoli, F., Corona, D., Corradini, M., Cristofaro, A., 2019. Development of a wearable device for sign language translation. In: Human Friendly Robotics: 10th International Workshop. pp. 115–126.
– start-page: 270
  year: 2000
  end-page: 275
  ident: b68
  article-title: Realtime online adaptive gesture recognition
  publication-title: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, Vol. 1
– reference: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 0000. Playing atari with deep reinforcement learning, arXiv preprint
– reference: Zhang, J., Zhou, W., Xie, C., Pu, J., Li, H., 2016. Chinese sign language recognition with adaptive HMM. In: 2016 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1–6.
– volume: 126
  start-page: 1311
  year: 2018
  ident: 10.1016/j.engappai.2024.107879_b34
  article-title: Deep sign: Enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1121-3
– ident: 10.1016/j.engappai.2024.107879_b55
  doi: 10.1109/ICCV.2017.424
– ident: 10.1016/j.engappai.2024.107879_b10
– volume: 13
  start-page: 1497
  issue: 1
  year: 2023
  ident: 10.1016/j.engappai.2024.107879_b27
  article-title: Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements
  publication-title: Sci. Rep., Nature Publishing Group UK London
– volume: 7
  start-page: 1173
  year: 2023
  ident: 10.1016/j.engappai.2024.107879_b64
  article-title: An optimized machine learning and deep learning framework for facial and masked facial recognition
  publication-title: Emerg. Sci. J.
  doi: 10.28991/ESJ-2023-07-04-010
– volume: 23
  start-page: 1405
  year: 2022
  ident: 10.1016/j.engappai.2024.107879_b6
  article-title: Segmentation-based decision networks for steel surface defect detection
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642022112306022
– start-page: 3577
  year: 2009
  ident: 10.1016/j.engappai.2024.107879_b20
  article-title: Hand trajectory-based gesture spotting and recognition using HMM
– ident: 10.1016/j.engappai.2024.107879_b51
  doi: 10.5244/C.27.20
– volume: 268
  start-page: 76
  year: 2017
  ident: 10.1016/j.engappai.2024.107879_b66
  article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.088
– start-page: 178
  year: 2013
  ident: 10.1016/j.engappai.2024.107879_b45
  article-title: Real-time and continuous hand gesture spotting: An approach based on artificial neural networks
– start-page: 917
  year: 2018
  ident: 10.1016/j.engappai.2024.107879_b60
  article-title: Pattern recognition of human arm movement using deep reinforcement learning
– volume: 23
  start-page: 363
  year: 2022
  ident: 10.1016/j.engappai.2024.107879_b19
  article-title: An internet of medical things based liver tumor detection system using semantic segmentation
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642022032302015
– volume: 29
  start-page: 1575
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b21
  article-title: Hierarchical recurrent deep fusion using adaptive clip summarization for sign language translation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2941267
– start-page: 193
  year: 1998
  ident: 10.1016/j.engappai.2024.107879_b43
  article-title: Spotting dynamic hand gestures in video image sequences using hidden Markov models
– ident: 10.1016/j.engappai.2024.107879_b8
  doi: 10.1145/3308561.3353774
– ident: 10.1016/j.engappai.2024.107879_b5
  doi: 10.1109/CVPR.2019.00382
– ident: 10.1016/j.engappai.2024.107879_b38
  doi: 10.1109/ICCV48922.2021.01134
– start-page: 365
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b3
  article-title: Hand gesture recognition: A survey
– start-page: 55
  year: 2012
  ident: 10.1016/j.engappai.2024.107879_b22
  article-title: Human computer interaction for vision based hand gesture recognition: A survey
– ident: 10.1016/j.engappai.2024.107879_b53
  doi: 10.24963/ijcai.2018/123
– volume: 103
  start-page: 159
  year: 2018
  ident: 10.1016/j.engappai.2024.107879_b44
  article-title: Gesture recognition: A review focusing on sign language in a mobile context
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.01.051
– ident: 10.1016/j.engappai.2024.107879_b18
  doi: 10.1109/CVPR.2019.01025
– volume: 25
  start-page: 1701
  issue: 15
  year: 2004
  ident: 10.1016/j.engappai.2024.107879_b30
  article-title: Recognition-based gesture spotting in video games
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2004.06.016
– volume: 34
  issue: 22
  year: 2022
  ident: 10.1016/j.engappai.2024.107879_b25
  article-title: Literature review of vision-based dynamic gesture recognition using deep learning techniques
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.7159
– ident: 10.1016/j.engappai.2024.107879_b39
  doi: 10.1145/375735.376414
– volume: 7
  start-page: 548
  issue: 5
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b62
  article-title: Computer vision based hand gesture recognition: A survey
  publication-title: Int. J. Comput. Sci. Eng
– volume: 79
  start-page: 22177
  issue: 31
  year: 2020
  ident: 10.1016/j.engappai.2024.107879_b2
  article-title: Understanding vision-based continuous sign language recognition
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-020-08961-z
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 10.1016/j.engappai.2024.107879_b42
  article-title: Human-level control through deep reinforcement learning
  publication-title: Nature
  doi: 10.1038/nature14236
– start-page: 759
  year: 2016
  ident: 10.1016/j.engappai.2024.107879_b12
  article-title: Multi-modal integration of dynamic audiovisual patterns for an interactive reinforcement learning scenario
– start-page: 337
  year: 2014
  ident: 10.1016/j.engappai.2024.107879_b56
  article-title: A survey of datasets for human gesture recognition
– year: 2015
  ident: 10.1016/j.engappai.2024.107879_b61
– volume: 20
  start-page: 2190
  issue: 8
  year: 2020
  ident: 10.1016/j.engappai.2024.107879_b31
  article-title: Recognition of signed expressions in an experimental system supporting deaf clients in the city office
  publication-title: Sensors
  doi: 10.3390/s20082190
– start-page: 1
  year: 2012
  ident: 10.1016/j.engappai.2024.107879_b65
  article-title: A comparison of machine learning algorithms applied to hand gesture recognition
– volume: 141
  start-page: 152
  year: 2015
  ident: 10.1016/j.engappai.2024.107879_b52
  article-title: Recent methods and databases in vision-based hand gesture recognition: A review
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.08.004
– start-page: 984
  year: 1996
  ident: 10.1016/j.engappai.2024.107879_b17
  article-title: Active gesture recognition using partially observable Markov decision processes
– start-page: 1
  year: 2018
  ident: 10.1016/j.engappai.2024.107879_b13
  article-title: Multi-modal feedback for affordance-driven interactive reinforcement learning
– volume: 105
  start-page: 67
  year: 2018
  ident: 10.1016/j.engappai.2024.107879_b26
  article-title: Robot motion adaptation through user intervention and reinforcement learning
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.06.017
– start-page: 270
  year: 2000
  ident: 10.1016/j.engappai.2024.107879_b68
  article-title: Realtime online adaptive gesture recognition
– ident: 10.1016/j.engappai.2024.107879_b54
  doi: 10.1109/CVPR.2019.01233
– volume: 2
  start-page: 1
  issue: 6
  year: 2021
  ident: 10.1016/j.engappai.2024.107879_b59
  article-title: Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review
  publication-title: SN Comput. Sci.
  doi: 10.1007/s42979-021-00827-x
– start-page: 132
  year: 2010
  ident: 10.1016/j.engappai.2024.107879_b46
  article-title: Optimal discrete wavelet transform (DWT) features for face recognition
– volume: 34
  start-page: 26
  issue: 6
  year: 2017
  ident: 10.1016/j.engappai.2024.107879_b4
  article-title: Deep reinforcement learning: A brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– ident: 10.1016/j.engappai.2024.107879_b9
  doi: 10.1109/CVPRW.2009.5206523
– ident: 10.1016/j.engappai.2024.107879_b48
  doi: 10.1145/3136755.3143012
– start-page: 257
  year: 2020
  ident: 10.1016/j.engappai.2024.107879_b37
  article-title: AutoGesNet: Auto gesture recognition network based on neural architecture search
– start-page: 285
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b72
  article-title: Continuous sign language recognition via reinforcement learning
– start-page: 318
  year: 1996
  ident: 10.1016/j.engappai.2024.107879_b47
  article-title: Spotting recognition of human gestures from time-varying images
– volume: 7
  start-page: 116
  year: 2022
  ident: 10.1016/j.engappai.2024.107879_b69
  article-title: Continuous capsule network method for improving electroencephalogram-based emotion recognition
  publication-title: Emerg. Sci. J.
  doi: 10.28991/ESJ-2023-07-01-09
– ident: 10.1016/j.engappai.2024.107879_b41
– volume: 37
  start-page: 311
  issue: 3
  year: 2007
  ident: 10.1016/j.engappai.2024.107879_b40
  article-title: Gesture recognition: A survey
  publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.)
  doi: 10.1109/TSMCC.2007.893280
– ident: 10.1016/j.engappai.2024.107879_b36
  doi: 10.1109/CVPR.2018.00708
– volume: 42
  start-page: 2306
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b33
  article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2911077
– volume: 71
  issue: 15
  year: 2024
  ident: 10.1016/j.engappai.2024.107879_b58
  article-title: Hand gesture recognition systems: A survey
  publication-title: Int. J. Comput. Appl.
– ident: 10.1016/j.engappai.2024.107879_b67
  doi: 10.1609/aaai.v30i1.10295
– year: 2021
  ident: 10.1016/j.engappai.2024.107879_b70
– volume: 85
  start-page: 189
  issue: 3
  year: 2002
  ident: 10.1016/j.engappai.2024.107879_b74
  article-title: A real-time approach to the spotting, representation, and recognition of hand gestures for human–computer interaction
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2002.0967
– start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.107879_b29
  article-title: Reinforcement learning in car control: A brief survey
– ident: 10.1016/j.engappai.2024.107879_b71
  doi: 10.1109/CVPR.2017.148
– ident: 10.1016/j.engappai.2024.107879_b73
  doi: 10.1109/ICME.2016.7552950
– volume: 4
  start-page: 237
  year: 1996
  ident: 10.1016/j.engappai.2024.107879_b28
  article-title: Reinforcement learning: A survey
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.301
– ident: 10.1016/j.engappai.2024.107879_b11
– ident: 10.1016/j.engappai.2024.107879_b14
  doi: 10.1109/CVPR.2017.175
– volume: 23
  start-page: 903
  year: 2022
  ident: 10.1016/j.engappai.2024.107879_b49
  article-title: Deep learning for joint classification and segmentation of histopathology image
  publication-title: J. Internet Technol.
  doi: 10.53106/160792642022072304025
– ident: 10.1016/j.engappai.2024.107879_b63
  doi: 10.1109/ICCV.2017.43
– ident: 10.1016/j.engappai.2024.107879_b24
  doi: 10.1007/978-3-030-01234-2_5
– ident: 10.1016/j.engappai.2024.107879_b50
  doi: 10.1007/978-3-319-89327-3_9
– start-page: 73
  year: 1997
  ident: 10.1016/j.engappai.2024.107879_b15
  article-title: Reinforcement learning of active recognition behaviors
– volume: 17
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2024.107879_b23
  article-title: Global-local enhancement network for NMF-aware sign language recognition
  publication-title: ACM Trans. Multimed. Comput., Commun., Appl. (TOMM)
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.engappai.2024.107879_b32
  article-title: Intrinsic interactive reinforcement learning–using error-related potentials for real world human–robot interaction
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17682-7
– volume: 53
  start-page: 2905
  issue: 4
  year: 2020
  ident: 10.1016/j.engappai.2024.107879_b7
  article-title: Feature selection in image analysis: A survey
  publication-title: Artif. Intell. Rev., Springer
  doi: 10.1007/s10462-019-09750-3
– volume: 21
  start-page: 91
  issue: 2
  year: 2017
  ident: 10.1016/j.engappai.2024.107879_b57
  article-title: Hand posture and gesture recognition techniques for virtual reality applications: A survey
  publication-title: Virtual Real.
  doi: 10.1007/s10055-016-0301-0
– volume: 19
  start-page: 1429
  issue: 6
  year: 2019
  ident: 10.1016/j.engappai.2024.107879_b1
  article-title: Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network
  publication-title: Sensors
  doi: 10.3390/s19061429
– ident: 10.1016/j.engappai.2024.107879_b16
– ident: 10.1016/j.engappai.2024.107879_b35
  doi: 10.1609/aaai.v31i1.10827
SSID ssj0003846
Score 2.4105768
Snippet Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 107879
SubjectTerms Deep reinforcement learning
Gesture database
Gesture spotting
Image sequence segmentation
Title Temporal signed gestures segmentation in an image sequence using deep reinforcement learning
URI https://dx.doi.org/10.1016/j.engappai.2024.107879
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRpRH5YE1TYLz8I1VRVWo6ACt6IAUOYkTpaIh6mPlt3NObFEkJAaWRDnZUnxn38P-7kzIrc9FAIkbWKngYHmpm6mNptSKeZwKh4ObSHWi-zQJRjPvce7PW2RgcmEUrFLr_kan19paU2zNTbsqCvsFnQNcbriYvbqKylxlsHuhmuW9z2-YB-NNsg42tlTrnSzhRU-WuagqUWCceOchEWcv_G6gdozO8IgcaG-R9psfOiYtWZ6QQ-05Ur0u10gylzMY2il5mzZFp96pgmhga3WQtMXgmq5lvtQZRyUtSirwuUS1Qg2smiowfE5TKSu6knVp1aTeRaT6jon8jMyG99PByNJXKVgJxjcbS8a-xNFD6INgDiQBcBGjb-SnYexAzHgC4EnuSlcmLs8Yk5BAyliG5h3Nl2DnpF1-lPKCUCfgocgcyEAFh1kWM-kKjjJHGYBwsg6xDf-iqqmYERko2SIyHI8Ux6OG4x0Chs3RD9lHqNb_6Hv5j75XZF99NfDFa9LerLbyBl2MTdyt51CX7PUfxqOJeo-fX8dfnr_UEw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw8FTaARbeiPL0wBqa4CT1jVUFauljoZU6IEVO4kSpaIj6-H_OjYOKhMTAkuHik5I738u-B8CDJ6SPkeNbsRRoubGT6IOm2ApFGEtboBMpfaM7Gvu9qfs682Y16Fa1MDqt0uj-UqdvtbWBtAw1W0WWtd7IOSBxI2F2t11UZnvQ0N2pvDo0Ov1Bb_ytkLko63VovaURdgqF548qT2VRyIxCxSeXgLSB8XcbtWN3Xo7h0DiMrFN-0wnUVH4KR8Z5ZEY0VwSq5jNUsDN4n5R9pz6YztKg1fouaUPxNVupdGGKjnKW5UzSc0GahVWZ1Uznw6csVqpgS7XtrhptDxKZGTORnsP05XnS7VlmmoIVUYiztlToKfp7bHsouY2Rj0KG5B55cTu0MeQiQnSVcJSjIkcknCuMMOY8IQtPFkzyC6jnn7m6BGb7oi0TGxPU8WGShFw5UhDbiQ0o7aQJrYp-QVE2zQiqbLJ5UFE80BQPSoo3ASsyBz_YH5Bm_wP36h-497Dfm4yGwbA_HlzDgX5TZjPeQH293Khb8jjW4Z3ZUV9IHNUh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+signed+gestures+segmentation+in+an+image+sequence+using+deep+reinforcement+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Kalandyk%2C+Dawid&rft.au=Kapu%C5%9Bci%C5%84ski%2C+Tomasz&rft.date=2024-05-01&rft.issn=0952-1976&rft.volume=131&rft.spage=107879&rft_id=info:doi/10.1016%2Fj.engappai.2024.107879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_107879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon