Temporal signed gestures segmentation in an image sequence using deep reinforcement learning
Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extrac...
Saved in:
Published in | Engineering applications of artificial intelligence Vol. 131; p. 107879 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extracts segments from the image sequence corresponding to undistorted parts of gestures. This should simplify the task by reducing it to the easier problem of isolated gestures recognition. The proposed approach uses deep reinforcement learning for segmentation and a novel image sequence processing scheme to extract gradient changes over time. A dataset recorded by deaf people and annotated according to the proposed approach, was prepared to evaluate the method. The proposed deep learning architectures achieved leave-one-subject-out recognition accuracies in the range of 0.70 to 0.76. Considering the inability to compare with other works, the authors also proposed other evaluation protocols to thoroughly examine the employed approach. This work will be developed, and the main aspiration of the authors will be to create an integrated framework that converts the raw form of RGB video into a string of words representing the Sign Language user’s intentions.
•Specialized preprocessing video algorithm provides a comprehensive description.•Dynamic gestures extraction done by Deep Reinforcement Learning.•Dedicated database allows to tackle with Sign Language co-articulation problem.•Different Deep Convolutional Neural Network architectures investigation.•Filtering and Voting for segmentation accuracy improvement. |
---|---|
AbstractList | Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions depend on the temporal context and introduce additional intraclass variability. To address this issue, a new approach is proposed that extracts segments from the image sequence corresponding to undistorted parts of gestures. This should simplify the task by reducing it to the easier problem of isolated gestures recognition. The proposed approach uses deep reinforcement learning for segmentation and a novel image sequence processing scheme to extract gradient changes over time. A dataset recorded by deaf people and annotated according to the proposed approach, was prepared to evaluate the method. The proposed deep learning architectures achieved leave-one-subject-out recognition accuracies in the range of 0.70 to 0.76. Considering the inability to compare with other works, the authors also proposed other evaluation protocols to thoroughly examine the employed approach. This work will be developed, and the main aspiration of the authors will be to create an integrated framework that converts the raw form of RGB video into a string of words representing the Sign Language user’s intentions.
•Specialized preprocessing video algorithm provides a comprehensive description.•Dynamic gestures extraction done by Deep Reinforcement Learning.•Dedicated database allows to tackle with Sign Language co-articulation problem.•Different Deep Convolutional Neural Network architectures investigation.•Filtering and Voting for segmentation accuracy improvement. |
ArticleNumber | 107879 |
Author | Kalandyk, Dawid Kapuściński, Tomasz |
Author_xml | – sequence: 1 givenname: Dawid orcidid: 0000-0002-7317-5499 surname: Kalandyk fullname: Kalandyk, Dawid email: d.kalandyk@prz.edu.pl organization: Doctoral School of the Rzeszów University of Technology, al. Powstancow Warszawy 12, 35-959 Rzeszow, Poland – sequence: 2 givenname: Tomasz orcidid: 0000-0003-4084-8113 surname: Kapuściński fullname: Kapuściński, Tomasz email: tomekkap@prz.edu.pl organization: Department of Computer and Control Engineering, Rzeszow University of Technology, Wincentego Pola 2, 35-959 Rzeszow, Poland |
BookMark | eNqFkM1qwzAQhEVJoUnaVyh6AaeSZVvaW0voHwR6SW8FIctro5DIrmQX-vaVSXvuZRd2mGH2W5GF7z0ScsvZhjNe3R026DszDMZtcpYX6SiVhAuy5EqKrJIVLMiSQZlnHGR1RVYxHhhjQhXVknzs8TT0wRxpdJ3HhnYYxylgpBG7E_rRjK731Hlq0jyZDpPwOaG3SKfofEcbxIEGdL7tg8XZQo9ogk_aNblszTHize9ek_enx_32Jdu9Pb9uH3aZzUsYM6xLTNVAlmAEA1uBMrUSUDayZlALZQEKVBw5Wq5aIRAsNEK0vMwLyY1Yk-qca0MfY8BWDyF1Dd-aMz0z0gf9x0jPjPSZUTLen42Y2n05DDpaN__WuIB21E3v_ov4AbHidtc |
Cites_doi | 10.1007/s11263-018-1121-3 10.1109/ICCV.2017.424 10.28991/ESJ-2023-07-04-010 10.53106/160792642022112306022 10.5244/C.27.20 10.1016/j.neucom.2016.12.088 10.53106/160792642022032302015 10.1109/TIP.2019.2941267 10.1145/3308561.3353774 10.1109/CVPR.2019.00382 10.1109/ICCV48922.2021.01134 10.24963/ijcai.2018/123 10.1016/j.eswa.2018.01.051 10.1109/CVPR.2019.01025 10.1016/j.patrec.2004.06.016 10.1002/cpe.7159 10.1145/375735.376414 10.1007/s11042-020-08961-z 10.1038/nature14236 10.3390/s20082190 10.1016/j.cviu.2015.08.004 10.1016/j.patrec.2017.06.017 10.1109/CVPR.2019.01233 10.1007/s42979-021-00827-x 10.1109/MSP.2017.2743240 10.1109/CVPRW.2009.5206523 10.1145/3136755.3143012 10.28991/ESJ-2023-07-01-09 10.1109/TSMCC.2007.893280 10.1109/CVPR.2018.00708 10.1109/TPAMI.2019.2911077 10.1609/aaai.v30i1.10295 10.1006/cviu.2002.0967 10.1109/CVPR.2017.148 10.1109/ICME.2016.7552950 10.1613/jair.301 10.1109/CVPR.2017.175 10.53106/160792642022072304025 10.1109/ICCV.2017.43 10.1007/978-3-030-01234-2_5 10.1007/978-3-319-89327-3_9 10.1038/s41598-017-17682-7 10.1007/s10462-019-09750-3 10.1007/s10055-016-0301-0 10.3390/s19061429 10.1609/aaai.v31i1.10827 |
ContentType | Journal Article |
Copyright | 2024 Elsevier Ltd |
Copyright_xml | – notice: 2024 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.engappai.2024.107879 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1873-6769 |
ExternalDocumentID | 10_1016_j_engappai_2024_107879 S095219762400037X |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSZ T5K TN5 UHS WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c259t-eb5e1979759a309c698ab8395d7b09b38c994e81e1ec18f33e9c9d33f152471a3 |
IEDL.DBID | .~1 |
ISSN | 0952-1976 |
IngestDate | Tue Jul 01 02:23:43 EDT 2025 Sat Apr 13 16:38:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep reinforcement learning Image sequence segmentation Gesture database Gesture spotting |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-eb5e1979759a309c698ab8395d7b09b38c994e81e1ec18f33e9c9d33f152471a3 |
ORCID | 0000-0002-7317-5499 0000-0003-4084-8113 |
ParticipantIDs | crossref_primary_10_1016_j_engappai_2024_107879 elsevier_sciencedirect_doi_10_1016_j_engappai_2024_107879 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationTitle | Engineering applications of artificial intelligence |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Xu, Shu, Mei (b37) 2020 Jevtić, Colomé, Alenya, Torras (b26) 2018; 105 Singh, Gupta, Singh (b62) 2019; 7 Hung, W.-C., Zhang, J., Shen, X., Lin, Z., Lee, J.-Y., Yang, M.-H., 2018. Learning to blend photos. In: Proceedings of the European Conference on Computer Vision. (ECCV), pp. 70–86. Koller, Zargaran, Ney, Bowden (b34) 2018; 126 Mitra, Acharya (b40) 2007; 37 Hasan, Kareem (b22) 2012 Seok, Kim, Park (b60) 2018 Ruffieux, Lalanne, Mugellini, Abou Khaled (b56) 2014 Cruz, Parisi, Wermter (b13) 2018 Kapuscinski, Wysocki (b31) 2020; 20 Park, Ghimire, Poudel, Lee (b49) 2022; 23 Kaelbling, Littman, Moore (b28) 1996; 4 Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski (b42) 2015; 518 Arulkumaran, Deisenroth, Brundage, Bharath (b4) 2017; 34 Kim, Kirchner, Stefes, Kirchner (b32) 2017; 7 Sarma, Bhuyan (b59) 2021; 2 Nishimura, Oka (b47) 1996 Morguet, Lang (b43) 1998 Darrell (b15) 1997 Minut, S., Mahadevan, S., 2001. A reinforcement learning model of selective visual attention. In: Proceedings of the Fifth International Conference on Autonomous Agents. pp. 457–464. Thanathamathee, Sawangarreerak, Kongkla, Nizam (b64) 2023; 7 Tsironi, Barros, Weber, Wermter (b66) 2017; 268 Bolon-Canedo, Remeseiro (b7) 2020; 53 . Qiu, Z., Yao, T., Ngo, C., Tian, X., Mei, T., 2019. Learning spatio-temporal representation with local and global diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12056–12065. Supancic, III, J., Ramanan, D., 2017. Tracking as online decision-making: Learning a policy from streaming videos with reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 322–331. Pfister, T., Charles, J., Zisserman, A., 2013. Large-scale Learning of Sign Language by Watching TV (Using Co-occurrences). In: BMVC. Pu, J., Zhou, W., Li, H., 2018. Dilated convolutional network with iterative optimization for continuous sign language recognition. In: IJCAI, Vol. 3. p. 7. Duong, C.N., Luu, K., Quach, K.G., Nguyen, N., Patterson, E., Bui, T.D., Le, N., 2019. Automatic face aging in videos via deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10013–10022. Lan, S., Panda, R., Zhu, Q., Roy-Chowdhury, A.K., 2018. Ffnet: Video fast-forwarding via reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6771–6780. Pisharady, Saerbeck (b52) 2015; 141 Cui, R., Liu, H., Zhang, C., 2017. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7361–7369. Pezzuoli, F., Corona, D., Corradini, M., Cristofaro, A., 2019. Development of a wearable device for sign language translation. In: Human Friendly Robotics: 10th International Workshop. pp. 115–126. Neto, Pereira, Pires, Moreira (b45) 2013 Nicholl, Ahmad, Amira (b46) 2010 Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2711–2720. Zhang, J., Zhou, W., Xie, C., Pu, J., Li, H., 2016. Chinese sign language recognition with adaptive HMM. In: 2016 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1–6. Wilson, Bobick (b68) 2000 Zhang, Pu, Zhuang, Zhou, Li (b72) 2019 Kang, Lee, Jung (b30) 2004; 25 Trigueiros, Ribeiro, Reis (b65) 2012 Bragg, D., Koller, O., Bellard, M., Berke, L., Boudreault, P., Braffort, A., Caselli, N., Huenerfauth, M., Kacorri, H., Verhoef, T., 2019. & Others Sign language recognition, generation, and translation: An interdisciplinary perspective. In: Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility. pp. 16–31. Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30. Ye, Ye, Bouthillier, Ye (b70) 2021 Cruz, Parisi, Twiefel, Wermter (b12) 2016 Zhu, Xu, Kriegman (b74) 2002; 85 Simonyan, Zisserman (b61) 2015 Lample, G., Chaplot, D.S., 2017. Playing FPS games with deep reinforcement learning. In: Thirty-First AAAI Conference on Artificial Intelligence. Crasborn, O., Sloetjes, H., 2008. Enhanced ELAN functionality for sign language corpora. In: 6th International Conference on Language Resources and Evaluation (LREC 2008)/3rd Workshop on the Representation and Processing of Sign Languages: Construction and Exploitation of Sign Language Corpora. pp. 39–43. Ahmed, Khan, Ghaffar, Hussain, Cho (b1) 2019; 19 Neiva, Zanchettin (b44) 2018; 103 Ouyang, X., Kawaai, S., Goh, E.G.H., Shen, S., Ding, W., Ming, H., Huang, D.-Y., 2017. Audio-visual emotion recognition using deep transfer learning and multiple temporal models. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction. pp. 577–582. Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., Yang, M.-H., 2019. Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3703–3712. Aloysius, Geetha (b2) 2020; 79 Min, Y., Hao, A., Chai, X., Chen, X., 2021. Visual alignment constraint for continuous sign language recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11542–11551. Wirawan, Wardoyo, Lelono, Kusrohmaniah (b69) 2022; 7 Buehler, P., Zisserman, A., Everingham, M., 2009. Learning sign language by watching TV (using weakly aligned subtitles). In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 2961–2968. Darrell, Pentland (b17) 1996 Kalandyk (b29) 2021 Sarkar, Sanyal, Majumder (b58) 2024; 71 Anwar, Sinha, Vivek, Ashank (b3) 2019 Koller, Camgoz, Ney, Bowden (b33) 2019; 42 Cooper, H., Bowden, R., 2010. Sign language recognition using linguistically derived sub-units. In: Proceedings of 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies. pp. 57–61. Jain, Karsh, Barbhuiya (b25) 2022; 34 Hu, Zhou, Pu, Li (b23) 2021; 17 Guo, Zhou, Li, Li, Wang (b21) 2019; 29 Darrell, T., Pentland, A., 0000. Active gesture recognition using learned visual attention, Advances in Neural Information Processing Systems 8. Bi, Wu, Shan, Zhong (b6) 2022; 23 Durrani, Yasmin, Rho (b19) 2022; 23 Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 0000. Playing atari with deep reinforcement learning, arXiv preprint Kabir, Garg (b27) 2023; 13 Elmezain, Al-Hamadi, Michaelis (b20) 2009 Rao, Y., Lu, J., Zhou, J., 2017. Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3931–3940. Sagayam, Hemanth (b57) 2017; 21 Kim (10.1016/j.engappai.2024.107879_b32) 2017; 7 10.1016/j.engappai.2024.107879_b63 Anwar (10.1016/j.engappai.2024.107879_b3) 2019 10.1016/j.engappai.2024.107879_b24 Morguet (10.1016/j.engappai.2024.107879_b43) 1998 Tsironi (10.1016/j.engappai.2024.107879_b66) 2017; 268 10.1016/j.engappai.2024.107879_b67 Ye (10.1016/j.engappai.2024.107879_b70) 2021 Seok (10.1016/j.engappai.2024.107879_b60) 2018 Sarma (10.1016/j.engappai.2024.107879_b59) 2021; 2 Arulkumaran (10.1016/j.engappai.2024.107879_b4) 2017; 34 Jevtić (10.1016/j.engappai.2024.107879_b26) 2018; 105 Darrell (10.1016/j.engappai.2024.107879_b17) 1996 Nishimura (10.1016/j.engappai.2024.107879_b47) 1996 Wilson (10.1016/j.engappai.2024.107879_b68) 2000 10.1016/j.engappai.2024.107879_b71 Trigueiros (10.1016/j.engappai.2024.107879_b65) 2012 Elmezain (10.1016/j.engappai.2024.107879_b20) 2009 10.1016/j.engappai.2024.107879_b73 10.1016/j.engappai.2024.107879_b35 10.1016/j.engappai.2024.107879_b36 10.1016/j.engappai.2024.107879_b39 Sagayam (10.1016/j.engappai.2024.107879_b57) 2017; 21 10.1016/j.engappai.2024.107879_b5 10.1016/j.engappai.2024.107879_b38 Thanathamathee (10.1016/j.engappai.2024.107879_b64) 2023; 7 10.1016/j.engappai.2024.107879_b8 10.1016/j.engappai.2024.107879_b9 Kabir (10.1016/j.engappai.2024.107879_b27) 2023; 13 Cruz (10.1016/j.engappai.2024.107879_b13) 2018 Li (10.1016/j.engappai.2024.107879_b37) 2020 Sarkar (10.1016/j.engappai.2024.107879_b58) 2024; 71 Zhu (10.1016/j.engappai.2024.107879_b74) 2002; 85 Bolon-Canedo (10.1016/j.engappai.2024.107879_b7) 2020; 53 Ruffieux (10.1016/j.engappai.2024.107879_b56) 2014 Koller (10.1016/j.engappai.2024.107879_b34) 2018; 126 Kapuscinski (10.1016/j.engappai.2024.107879_b31) 2020; 20 10.1016/j.engappai.2024.107879_b41 Darrell (10.1016/j.engappai.2024.107879_b15) 1997 Pisharady (10.1016/j.engappai.2024.107879_b52) 2015; 141 Mnih (10.1016/j.engappai.2024.107879_b42) 2015; 518 Kaelbling (10.1016/j.engappai.2024.107879_b28) 1996; 4 Mitra (10.1016/j.engappai.2024.107879_b40) 2007; 37 Neiva (10.1016/j.engappai.2024.107879_b44) 2018; 103 10.1016/j.engappai.2024.107879_b48 Kalandyk (10.1016/j.engappai.2024.107879_b29) 2021 Guo (10.1016/j.engappai.2024.107879_b21) 2019; 29 Jain (10.1016/j.engappai.2024.107879_b25) 2022; 34 Bi (10.1016/j.engappai.2024.107879_b6) 2022; 23 Durrani (10.1016/j.engappai.2024.107879_b19) 2022; 23 Cruz (10.1016/j.engappai.2024.107879_b12) 2016 Park (10.1016/j.engappai.2024.107879_b49) 2022; 23 10.1016/j.engappai.2024.107879_b50 10.1016/j.engappai.2024.107879_b53 10.1016/j.engappai.2024.107879_b10 Hasan (10.1016/j.engappai.2024.107879_b22) 2012 10.1016/j.engappai.2024.107879_b54 10.1016/j.engappai.2024.107879_b51 10.1016/j.engappai.2024.107879_b14 10.1016/j.engappai.2024.107879_b11 10.1016/j.engappai.2024.107879_b55 Singh (10.1016/j.engappai.2024.107879_b62) 2019; 7 10.1016/j.engappai.2024.107879_b18 10.1016/j.engappai.2024.107879_b16 Neto (10.1016/j.engappai.2024.107879_b45) 2013 Kang (10.1016/j.engappai.2024.107879_b30) 2004; 25 Hu (10.1016/j.engappai.2024.107879_b23) 2021; 17 Nicholl (10.1016/j.engappai.2024.107879_b46) 2010 Koller (10.1016/j.engappai.2024.107879_b33) 2019; 42 Simonyan (10.1016/j.engappai.2024.107879_b61) 2015 Ahmed (10.1016/j.engappai.2024.107879_b1) 2019; 19 Wirawan (10.1016/j.engappai.2024.107879_b69) 2022; 7 Aloysius (10.1016/j.engappai.2024.107879_b2) 2020; 79 Zhang (10.1016/j.engappai.2024.107879_b72) 2019 |
References_xml | – start-page: 365 year: 2019 end-page: 371 ident: b3 article-title: Hand gesture recognition: A survey publication-title: Nanoelectronics, Circuits and Communication Systems – volume: 21 start-page: 91 year: 2017 end-page: 107 ident: b57 article-title: Hand posture and gesture recognition techniques for virtual reality applications: A survey publication-title: Virtual Real. – start-page: 285 year: 2019 end-page: 289 ident: b72 article-title: Continuous sign language recognition via reinforcement learning publication-title: 2019 IEEE International Conference on Image Processing – volume: 29 start-page: 1575 year: 2019 end-page: 1590 ident: b21 article-title: Hierarchical recurrent deep fusion using adaptive clip summarization for sign language translation publication-title: IEEE Trans. Image Process. – start-page: 759 year: 2016 end-page: 766 ident: b12 article-title: Multi-modal integration of dynamic audiovisual patterns for an interactive reinforcement learning scenario publication-title: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 518 start-page: 529 year: 2015 end-page: 533 ident: b42 article-title: Human-level control through deep reinforcement learning publication-title: Nature – reference: Min, Y., Hao, A., Chai, X., Chen, X., 2021. Visual alignment constraint for continuous sign language recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 11542–11551. – volume: 34 year: 2022 ident: b25 article-title: Literature review of vision-based dynamic gesture recognition using deep learning techniques publication-title: Concurr. Comput.: Pract. Exper. – reference: Supancic, III, J., Ramanan, D., 2017. Tracking as online decision-making: Learning a policy from streaming videos with reinforcement learning. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 322–331. – reference: Crasborn, O., Sloetjes, H., 2008. Enhanced ELAN functionality for sign language corpora. In: 6th International Conference on Language Resources and Evaluation (LREC 2008)/3rd Workshop on the Representation and Processing of Sign Languages: Construction and Exploitation of Sign Language Corpora. pp. 39–43. – reference: Lan, S., Panda, R., Zhu, Q., Roy-Chowdhury, A.K., 2018. Ffnet: Video fast-forwarding via reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6771–6780. – start-page: 55 year: 2012 end-page: 60 ident: b22 article-title: Human computer interaction for vision based hand gesture recognition: A survey publication-title: 2012 International Conference on Advanced Computer Science Applications and Technologies – volume: 37 start-page: 311 year: 2007 end-page: 324 ident: b40 article-title: Gesture recognition: A survey publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) – volume: 7 start-page: 116 year: 2022 end-page: 134 ident: b69 article-title: Continuous capsule network method for improving electroencephalogram-based emotion recognition publication-title: Emerg. Sci. J. – volume: 2 start-page: 1 year: 2021 end-page: 40 ident: b59 article-title: Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review publication-title: SN Comput. Sci. – volume: 85 start-page: 189 year: 2002 end-page: 208 ident: b74 article-title: A real-time approach to the spotting, representation, and recognition of hand gestures for human–computer interaction publication-title: Comput. Vis. Image Underst. – year: 2015 ident: b61 article-title: Very deep convolutional networks for large-scale image recognition – reference: Qiu, Z., Yao, T., Ngo, C., Tian, X., Mei, T., 2019. Learning spatio-temporal representation with local and global diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12056–12065. – reference: Duong, C.N., Luu, K., Quach, K.G., Nguyen, N., Patterson, E., Bui, T.D., Le, N., 2019. Automatic face aging in videos via deep reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10013–10022. – volume: 79 start-page: 22177 year: 2020 end-page: 22209 ident: b2 article-title: Understanding vision-based continuous sign language recognition publication-title: Multimedia Tools Appl. – reference: Minut, S., Mahadevan, S., 2001. A reinforcement learning model of selective visual attention. In: Proceedings of the Fifth International Conference on Autonomous Agents. pp. 457–464. – reference: Bragg, D., Koller, O., Bellard, M., Berke, L., Boudreault, P., Braffort, A., Caselli, N., Huenerfauth, M., Kacorri, H., Verhoef, T., 2019. & Others Sign language recognition, generation, and translation: An interdisciplinary perspective. In: Proceedings of the 21st International ACM SIGACCESS Conference on Computers and Accessibility. pp. 16–31. – volume: 268 start-page: 76 year: 2017 end-page: 86 ident: b66 article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition publication-title: Neurocomputing – volume: 71 year: 2024 ident: b58 article-title: Hand gesture recognition systems: A survey publication-title: Int. J. Comput. Appl. – reference: Hung, W.-C., Zhang, J., Shen, X., Lin, Z., Lee, J.-Y., Yang, M.-H., 2018. Learning to blend photos. In: Proceedings of the European Conference on Computer Vision. (ECCV), pp. 70–86. – volume: 23 start-page: 903 year: 2022 end-page: 910 ident: b49 article-title: Deep learning for joint classification and segmentation of histopathology image publication-title: J. Internet Technol. – volume: 7 start-page: 1173 year: 2023 end-page: 1187 ident: b64 article-title: An optimized machine learning and deep learning framework for facial and masked facial recognition publication-title: Emerg. Sci. J. – volume: 53 start-page: 2905 year: 2020 end-page: 2931 ident: b7 article-title: Feature selection in image analysis: A survey publication-title: Artif. Intell. Rev., Springer – start-page: 178 year: 2013 end-page: 183 ident: b45 article-title: Real-time and continuous hand gesture spotting: An approach based on artificial neural networks publication-title: 2013 IEEE International Conference on Robotics and Automation – volume: 4 start-page: 237 year: 1996 end-page: 285 ident: b28 article-title: Reinforcement learning: A survey publication-title: J. Artif. Intell. Res. – reference: Bao, W., Lai, W.-S., Ma, C., Zhang, X., Gao, Z., Yang, M.-H., 2019. Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3703–3712. – volume: 126 start-page: 1311 year: 2018 end-page: 1325 ident: b34 article-title: Deep sign: Enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs publication-title: Int. J. Comput. Vis. – volume: 7 start-page: 548 year: 2019 end-page: 556 ident: b62 article-title: Computer vision based hand gesture recognition: A survey publication-title: Int. J. Comput. Sci. Eng – reference: Pu, J., Zhou, W., Li, H., 2018. Dilated convolutional network with iterative optimization for continuous sign language recognition. In: IJCAI, Vol. 3. p. 7. – year: 2021 ident: b70 article-title: Deepimagetranslator v2: analysis of multimodal medical images using semantic segmentation maps generated through deep learning – volume: 34 start-page: 26 year: 2017 end-page: 38 ident: b4 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. – start-page: 984 year: 1996 end-page: 988 ident: b17 article-title: Active gesture recognition using partially observable Markov decision processes publication-title: Proceedings of 13th International Conference on Pattern Recognition, Vol. 3 – start-page: 193 year: 1998 end-page: 197 ident: b43 article-title: Spotting dynamic hand gestures in video image sequences using hidden Markov models publication-title: Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No. 98CB36269) – volume: 23 start-page: 1405 year: 2022 end-page: 1416 ident: b6 article-title: Segmentation-based decision networks for steel surface defect detection publication-title: J. Internet Technol. – reference: Van Hasselt, H., Guez, A., Silver, D., 2016. Deep reinforcement learning with double q-learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30. – reference: Cui, R., Liu, H., Zhang, C., 2017. Recurrent convolutional neural networks for continuous sign language recognition by staged optimization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 7361–7369. – volume: 105 start-page: 67 year: 2018 end-page: 75 ident: b26 article-title: Robot motion adaptation through user intervention and reinforcement learning publication-title: Pattern Recognit. Lett. – start-page: 1 year: 2021 end-page: 8 ident: b29 article-title: Reinforcement learning in car control: A brief survey publication-title: 2021 Selected Issues of Electrical Engineering and Electronics – start-page: 917 year: 2018 end-page: 919 ident: b60 article-title: Pattern recognition of human arm movement using deep reinforcement learning publication-title: 2018 International Conference on Information Networking – start-page: 1 year: 2018 end-page: 8 ident: b13 article-title: Multi-modal feedback for affordance-driven interactive reinforcement learning publication-title: 2018 International Joint Conference on Neural Networks – start-page: 257 year: 2020 end-page: 262 ident: b37 article-title: AutoGesNet: Auto gesture recognition network based on neural architecture search publication-title: 2020 12th International Conference on Advanced Computational Intelligence – start-page: 318 year: 1996 end-page: 322 ident: b47 article-title: Spotting recognition of human gestures from time-varying images publication-title: Proceedings of the Second International Conference on Automatic Face and Gesture Recognition – volume: 141 start-page: 152 year: 2015 end-page: 165 ident: b52 article-title: Recent methods and databases in vision-based hand gesture recognition: A review publication-title: Comput. Vis. Image Underst. – volume: 42 start-page: 2306 year: 2019 end-page: 2320 ident: b33 article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Buehler, P., Zisserman, A., Everingham, M., 2009. Learning sign language by watching TV (using weakly aligned subtitles). In: 2009 IEEE Conference on Computer Vision and Pattern Recognition. pp. 2961–2968. – start-page: 73 year: 1997 end-page: 80 ident: b15 article-title: Reinforcement learning of active recognition behaviors publication-title: Portions of this paper previously appeared in Advances in Neural Information Processing Systems (NIPS 1995), 8(1997) – reference: Lample, G., Chaplot, D.S., 2017. Playing FPS games with deep reinforcement learning. In: Thirty-First AAAI Conference on Artificial Intelligence. – start-page: 3577 year: 2009 end-page: 3580 ident: b20 article-title: Hand trajectory-based gesture spotting and recognition using HMM publication-title: 2009 16th IEEE International Conference on Image Processing – volume: 13 start-page: 1497 year: 2023 ident: b27 article-title: Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements publication-title: Sci. Rep., Nature Publishing Group UK London – volume: 25 start-page: 1701 year: 2004 end-page: 1714 ident: b30 article-title: Recognition-based gesture spotting in video games publication-title: Pattern Recognit. Lett. – reference: Ouyang, X., Kawaai, S., Goh, E.G.H., Shen, S., Ding, W., Ming, H., Huang, D.-Y., 2017. Audio-visual emotion recognition using deep transfer learning and multiple temporal models. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction. pp. 577–582. – volume: 19 start-page: 1429 year: 2019 ident: b1 article-title: Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network publication-title: Sensors – volume: 103 start-page: 159 year: 2018 end-page: 183 ident: b44 article-title: Gesture recognition: A review focusing on sign language in a mobile context publication-title: Expert Syst. Appl. – reference: Pfister, T., Charles, J., Zisserman, A., 2013. Large-scale Learning of Sign Language by Watching TV (Using Co-occurrences). In: BMVC. – start-page: 1 year: 2012 end-page: 6 ident: b65 article-title: A comparison of machine learning algorithms applied to hand gesture recognition publication-title: 7th Iberian Conference on Information Systems and Technologies – reference: Rao, Y., Lu, J., Zhou, J., 2017. Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 3931–3940. – volume: 7 start-page: 1 year: 2017 end-page: 16 ident: b32 article-title: Intrinsic interactive reinforcement learning–using error-related potentials for real world human–robot interaction publication-title: Sci. Rep. – reference: Cooper, H., Bowden, R., 2010. Sign language recognition using linguistically derived sub-units. In: Proceedings of 4th Workshop on the Representation and Processing of Sign Languages: Corpora and Sign Language Technologies. pp. 57–61. – volume: 20 start-page: 2190 year: 2020 ident: b31 article-title: Recognition of signed expressions in an experimental system supporting deaf clients in the city office publication-title: Sensors – start-page: 337 year: 2014 end-page: 348 ident: b56 article-title: A survey of datasets for human gesture recognition publication-title: International Conference on Human–Computer Interaction – reference: . – start-page: 132 year: 2010 end-page: 135 ident: b46 article-title: Optimal discrete wavelet transform (DWT) features for face recognition publication-title: 2010 IEEE Asia Pacific Conference on Circuits and Systems – reference: Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J., 2017. Action-decision networks for visual tracking with deep reinforcement learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2711–2720. – volume: 17 start-page: 1 year: 2021 end-page: 19 ident: b23 article-title: Global-local enhancement network for NMF-aware sign language recognition publication-title: ACM Trans. Multimed. Comput., Commun., Appl. (TOMM) – volume: 23 start-page: 363 year: 2022 end-page: 375 ident: b19 article-title: An internet of medical things based liver tumor detection system using semantic segmentation publication-title: J. Internet Technol. – reference: Darrell, T., Pentland, A., 0000. Active gesture recognition using learned visual attention, Advances in Neural Information Processing Systems 8. – reference: Pezzuoli, F., Corona, D., Corradini, M., Cristofaro, A., 2019. Development of a wearable device for sign language translation. In: Human Friendly Robotics: 10th International Workshop. pp. 115–126. – start-page: 270 year: 2000 end-page: 275 ident: b68 article-title: Realtime online adaptive gesture recognition publication-title: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, Vol. 1 – reference: Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., Riedmiller, M., 0000. Playing atari with deep reinforcement learning, arXiv preprint – reference: Zhang, J., Zhou, W., Xie, C., Pu, J., Li, H., 2016. Chinese sign language recognition with adaptive HMM. In: 2016 IEEE International Conference on Multimedia and Expo. (ICME), pp. 1–6. – volume: 126 start-page: 1311 year: 2018 ident: 10.1016/j.engappai.2024.107879_b34 article-title: Deep sign: Enabling robust statistical continuous sign language recognition via hybrid CNN-HMMs publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1121-3 – ident: 10.1016/j.engappai.2024.107879_b55 doi: 10.1109/ICCV.2017.424 – ident: 10.1016/j.engappai.2024.107879_b10 – volume: 13 start-page: 1497 issue: 1 year: 2023 ident: 10.1016/j.engappai.2024.107879_b27 article-title: Machine learning enabled orthogonal camera goniometry for accurate and robust contact angle measurements publication-title: Sci. Rep., Nature Publishing Group UK London – volume: 7 start-page: 1173 year: 2023 ident: 10.1016/j.engappai.2024.107879_b64 article-title: An optimized machine learning and deep learning framework for facial and masked facial recognition publication-title: Emerg. Sci. J. doi: 10.28991/ESJ-2023-07-04-010 – volume: 23 start-page: 1405 year: 2022 ident: 10.1016/j.engappai.2024.107879_b6 article-title: Segmentation-based decision networks for steel surface defect detection publication-title: J. Internet Technol. doi: 10.53106/160792642022112306022 – start-page: 3577 year: 2009 ident: 10.1016/j.engappai.2024.107879_b20 article-title: Hand trajectory-based gesture spotting and recognition using HMM – ident: 10.1016/j.engappai.2024.107879_b51 doi: 10.5244/C.27.20 – volume: 268 start-page: 76 year: 2017 ident: 10.1016/j.engappai.2024.107879_b66 article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.088 – start-page: 178 year: 2013 ident: 10.1016/j.engappai.2024.107879_b45 article-title: Real-time and continuous hand gesture spotting: An approach based on artificial neural networks – start-page: 917 year: 2018 ident: 10.1016/j.engappai.2024.107879_b60 article-title: Pattern recognition of human arm movement using deep reinforcement learning – volume: 23 start-page: 363 year: 2022 ident: 10.1016/j.engappai.2024.107879_b19 article-title: An internet of medical things based liver tumor detection system using semantic segmentation publication-title: J. Internet Technol. doi: 10.53106/160792642022032302015 – volume: 29 start-page: 1575 year: 2019 ident: 10.1016/j.engappai.2024.107879_b21 article-title: Hierarchical recurrent deep fusion using adaptive clip summarization for sign language translation publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2941267 – start-page: 193 year: 1998 ident: 10.1016/j.engappai.2024.107879_b43 article-title: Spotting dynamic hand gestures in video image sequences using hidden Markov models – ident: 10.1016/j.engappai.2024.107879_b8 doi: 10.1145/3308561.3353774 – ident: 10.1016/j.engappai.2024.107879_b5 doi: 10.1109/CVPR.2019.00382 – ident: 10.1016/j.engappai.2024.107879_b38 doi: 10.1109/ICCV48922.2021.01134 – start-page: 365 year: 2019 ident: 10.1016/j.engappai.2024.107879_b3 article-title: Hand gesture recognition: A survey – start-page: 55 year: 2012 ident: 10.1016/j.engappai.2024.107879_b22 article-title: Human computer interaction for vision based hand gesture recognition: A survey – ident: 10.1016/j.engappai.2024.107879_b53 doi: 10.24963/ijcai.2018/123 – volume: 103 start-page: 159 year: 2018 ident: 10.1016/j.engappai.2024.107879_b44 article-title: Gesture recognition: A review focusing on sign language in a mobile context publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.01.051 – ident: 10.1016/j.engappai.2024.107879_b18 doi: 10.1109/CVPR.2019.01025 – volume: 25 start-page: 1701 issue: 15 year: 2004 ident: 10.1016/j.engappai.2024.107879_b30 article-title: Recognition-based gesture spotting in video games publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2004.06.016 – volume: 34 issue: 22 year: 2022 ident: 10.1016/j.engappai.2024.107879_b25 article-title: Literature review of vision-based dynamic gesture recognition using deep learning techniques publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.7159 – ident: 10.1016/j.engappai.2024.107879_b39 doi: 10.1145/375735.376414 – volume: 7 start-page: 548 issue: 5 year: 2019 ident: 10.1016/j.engappai.2024.107879_b62 article-title: Computer vision based hand gesture recognition: A survey publication-title: Int. J. Comput. Sci. Eng – volume: 79 start-page: 22177 issue: 31 year: 2020 ident: 10.1016/j.engappai.2024.107879_b2 article-title: Understanding vision-based continuous sign language recognition publication-title: Multimedia Tools Appl. doi: 10.1007/s11042-020-08961-z – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 10.1016/j.engappai.2024.107879_b42 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – start-page: 759 year: 2016 ident: 10.1016/j.engappai.2024.107879_b12 article-title: Multi-modal integration of dynamic audiovisual patterns for an interactive reinforcement learning scenario – start-page: 337 year: 2014 ident: 10.1016/j.engappai.2024.107879_b56 article-title: A survey of datasets for human gesture recognition – year: 2015 ident: 10.1016/j.engappai.2024.107879_b61 – volume: 20 start-page: 2190 issue: 8 year: 2020 ident: 10.1016/j.engappai.2024.107879_b31 article-title: Recognition of signed expressions in an experimental system supporting deaf clients in the city office publication-title: Sensors doi: 10.3390/s20082190 – start-page: 1 year: 2012 ident: 10.1016/j.engappai.2024.107879_b65 article-title: A comparison of machine learning algorithms applied to hand gesture recognition – volume: 141 start-page: 152 year: 2015 ident: 10.1016/j.engappai.2024.107879_b52 article-title: Recent methods and databases in vision-based hand gesture recognition: A review publication-title: Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.08.004 – start-page: 984 year: 1996 ident: 10.1016/j.engappai.2024.107879_b17 article-title: Active gesture recognition using partially observable Markov decision processes – start-page: 1 year: 2018 ident: 10.1016/j.engappai.2024.107879_b13 article-title: Multi-modal feedback for affordance-driven interactive reinforcement learning – volume: 105 start-page: 67 year: 2018 ident: 10.1016/j.engappai.2024.107879_b26 article-title: Robot motion adaptation through user intervention and reinforcement learning publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.06.017 – start-page: 270 year: 2000 ident: 10.1016/j.engappai.2024.107879_b68 article-title: Realtime online adaptive gesture recognition – ident: 10.1016/j.engappai.2024.107879_b54 doi: 10.1109/CVPR.2019.01233 – volume: 2 start-page: 1 issue: 6 year: 2021 ident: 10.1016/j.engappai.2024.107879_b59 article-title: Methods, databases and recent advancement of vision-based hand gesture recognition for hci systems: A review publication-title: SN Comput. Sci. doi: 10.1007/s42979-021-00827-x – start-page: 132 year: 2010 ident: 10.1016/j.engappai.2024.107879_b46 article-title: Optimal discrete wavelet transform (DWT) features for face recognition – volume: 34 start-page: 26 issue: 6 year: 2017 ident: 10.1016/j.engappai.2024.107879_b4 article-title: Deep reinforcement learning: A brief survey publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2743240 – ident: 10.1016/j.engappai.2024.107879_b9 doi: 10.1109/CVPRW.2009.5206523 – ident: 10.1016/j.engappai.2024.107879_b48 doi: 10.1145/3136755.3143012 – start-page: 257 year: 2020 ident: 10.1016/j.engappai.2024.107879_b37 article-title: AutoGesNet: Auto gesture recognition network based on neural architecture search – start-page: 285 year: 2019 ident: 10.1016/j.engappai.2024.107879_b72 article-title: Continuous sign language recognition via reinforcement learning – start-page: 318 year: 1996 ident: 10.1016/j.engappai.2024.107879_b47 article-title: Spotting recognition of human gestures from time-varying images – volume: 7 start-page: 116 year: 2022 ident: 10.1016/j.engappai.2024.107879_b69 article-title: Continuous capsule network method for improving electroencephalogram-based emotion recognition publication-title: Emerg. Sci. J. doi: 10.28991/ESJ-2023-07-01-09 – ident: 10.1016/j.engappai.2024.107879_b41 – volume: 37 start-page: 311 issue: 3 year: 2007 ident: 10.1016/j.engappai.2024.107879_b40 article-title: Gesture recognition: A survey publication-title: IEEE Trans. Syst., Man, Cybern., Part C (Appl. Rev.) doi: 10.1109/TSMCC.2007.893280 – ident: 10.1016/j.engappai.2024.107879_b36 doi: 10.1109/CVPR.2018.00708 – volume: 42 start-page: 2306 year: 2019 ident: 10.1016/j.engappai.2024.107879_b33 article-title: Weakly supervised learning with multi-stream CNN-LSTM-HMMs to discover sequential parallelism in sign language videos publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2911077 – volume: 71 issue: 15 year: 2024 ident: 10.1016/j.engappai.2024.107879_b58 article-title: Hand gesture recognition systems: A survey publication-title: Int. J. Comput. Appl. – ident: 10.1016/j.engappai.2024.107879_b67 doi: 10.1609/aaai.v30i1.10295 – year: 2021 ident: 10.1016/j.engappai.2024.107879_b70 – volume: 85 start-page: 189 issue: 3 year: 2002 ident: 10.1016/j.engappai.2024.107879_b74 article-title: A real-time approach to the spotting, representation, and recognition of hand gestures for human–computer interaction publication-title: Comput. Vis. Image Underst. doi: 10.1006/cviu.2002.0967 – start-page: 1 year: 2021 ident: 10.1016/j.engappai.2024.107879_b29 article-title: Reinforcement learning in car control: A brief survey – ident: 10.1016/j.engappai.2024.107879_b71 doi: 10.1109/CVPR.2017.148 – ident: 10.1016/j.engappai.2024.107879_b73 doi: 10.1109/ICME.2016.7552950 – volume: 4 start-page: 237 year: 1996 ident: 10.1016/j.engappai.2024.107879_b28 article-title: Reinforcement learning: A survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.301 – ident: 10.1016/j.engappai.2024.107879_b11 – ident: 10.1016/j.engappai.2024.107879_b14 doi: 10.1109/CVPR.2017.175 – volume: 23 start-page: 903 year: 2022 ident: 10.1016/j.engappai.2024.107879_b49 article-title: Deep learning for joint classification and segmentation of histopathology image publication-title: J. Internet Technol. doi: 10.53106/160792642022072304025 – ident: 10.1016/j.engappai.2024.107879_b63 doi: 10.1109/ICCV.2017.43 – ident: 10.1016/j.engappai.2024.107879_b24 doi: 10.1007/978-3-030-01234-2_5 – ident: 10.1016/j.engappai.2024.107879_b50 doi: 10.1007/978-3-319-89327-3_9 – start-page: 73 year: 1997 ident: 10.1016/j.engappai.2024.107879_b15 article-title: Reinforcement learning of active recognition behaviors – volume: 17 start-page: 1 year: 2021 ident: 10.1016/j.engappai.2024.107879_b23 article-title: Global-local enhancement network for NMF-aware sign language recognition publication-title: ACM Trans. Multimed. Comput., Commun., Appl. (TOMM) – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.engappai.2024.107879_b32 article-title: Intrinsic interactive reinforcement learning–using error-related potentials for real world human–robot interaction publication-title: Sci. Rep. doi: 10.1038/s41598-017-17682-7 – volume: 53 start-page: 2905 issue: 4 year: 2020 ident: 10.1016/j.engappai.2024.107879_b7 article-title: Feature selection in image analysis: A survey publication-title: Artif. Intell. Rev., Springer doi: 10.1007/s10462-019-09750-3 – volume: 21 start-page: 91 issue: 2 year: 2017 ident: 10.1016/j.engappai.2024.107879_b57 article-title: Hand posture and gesture recognition techniques for virtual reality applications: A survey publication-title: Virtual Real. doi: 10.1007/s10055-016-0301-0 – volume: 19 start-page: 1429 issue: 6 year: 2019 ident: 10.1016/j.engappai.2024.107879_b1 article-title: Finger-counting-based gesture recognition within cars using impulse radar with convolutional neural network publication-title: Sensors doi: 10.3390/s19061429 – ident: 10.1016/j.engappai.2024.107879_b16 – ident: 10.1016/j.engappai.2024.107879_b35 doi: 10.1609/aaai.v31i1.10827 |
SSID | ssj0003846 |
Score | 2.4105768 |
Snippet | Continuous sign language recognition is challenging due to coarticulatory distortions, which occur at the beginning and end of each gesture. These distortions... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 107879 |
SubjectTerms | Deep reinforcement learning Gesture database Gesture spotting Image sequence segmentation |
Title | Temporal signed gestures segmentation in an image sequence using deep reinforcement learning |
URI | https://dx.doi.org/10.1016/j.engappai.2024.107879 |
Volume | 131 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqsrDwRpRH5YE1TYLz8I1VRVWo6ACt6IAUOYkTpaIh6mPlt3NObFEkJAaWRDnZUnxn38P-7kzIrc9FAIkbWKngYHmpm6mNptSKeZwKh4ObSHWi-zQJRjPvce7PW2RgcmEUrFLr_kan19paU2zNTbsqCvsFnQNcbriYvbqKylxlsHuhmuW9z2-YB-NNsg42tlTrnSzhRU-WuagqUWCceOchEWcv_G6gdozO8IgcaG-R9psfOiYtWZ6QQ-05Ur0u10gylzMY2il5mzZFp96pgmhga3WQtMXgmq5lvtQZRyUtSirwuUS1Qg2smiowfE5TKSu6knVp1aTeRaT6jon8jMyG99PByNJXKVgJxjcbS8a-xNFD6INgDiQBcBGjb-SnYexAzHgC4EnuSlcmLs8Yk5BAyliG5h3Nl2DnpF1-lPKCUCfgocgcyEAFh1kWM-kKjjJHGYBwsg6xDf-iqqmYERko2SIyHI8Ux6OG4x0Chs3RD9lHqNb_6Hv5j75XZF99NfDFa9LerLbyBl2MTdyt51CX7PUfxqOJeo-fX8dfnr_UEw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR27TsMw8FTaARbeiPL0wBqa4CT1jVUFauljoZU6IEVO4kSpaIj6-H_OjYOKhMTAkuHik5I738u-B8CDJ6SPkeNbsRRoubGT6IOm2ApFGEtboBMpfaM7Gvu9qfs682Y16Fa1MDqt0uj-UqdvtbWBtAw1W0WWtd7IOSBxI2F2t11UZnvQ0N2pvDo0Ov1Bb_ytkLko63VovaURdgqF548qT2VRyIxCxSeXgLSB8XcbtWN3Xo7h0DiMrFN-0wnUVH4KR8Z5ZEY0VwSq5jNUsDN4n5R9pz6YztKg1fouaUPxNVupdGGKjnKW5UzSc0GahVWZ1Uznw6csVqpgS7XtrhptDxKZGTORnsP05XnS7VlmmoIVUYiztlToKfp7bHsouY2Rj0KG5B55cTu0MeQiQnSVcJSjIkcknCuMMOY8IQtPFkzyC6jnn7m6BGb7oi0TGxPU8WGShFw5UhDbiQ0o7aQJrYp-QVE2zQiqbLJ5UFE80BQPSoo3ASsyBz_YH5Bm_wP36h-497Dfm4yGwbA_HlzDgX5TZjPeQH293Khb8jjW4Z3ZUV9IHNUh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temporal+signed+gestures+segmentation+in+an+image+sequence+using+deep+reinforcement+learning&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Kalandyk%2C+Dawid&rft.au=Kapu%C5%9Bci%C5%84ski%2C+Tomasz&rft.date=2024-05-01&rft.issn=0952-1976&rft.volume=131&rft.spage=107879&rft_id=info:doi/10.1016%2Fj.engappai.2024.107879&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2024_107879 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |