Effect of Ti, Hf, Ni, Fe substitution on the hydrogen storage performance of porous ZrCo alloys
ZrCo alloys are regarded as the most promising hydrogen isotope storage materials to replace uranium in controlled fusion research. However, it is difficult to balance the kinetic and anti-disproportionation properties of conventional ZrCo alloys prepared by the smelting method. Here, we synthesize...
Saved in:
Published in | International journal of hydrogen energy Vol. 114; pp. 194 - 200 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
31.03.2025
|
Online Access | Get full text |
Cover
Loading…
Abstract | ZrCo alloys are regarded as the most promising hydrogen isotope storage materials to replace uranium in controlled fusion research. However, it is difficult to balance the kinetic and anti-disproportionation properties of conventional ZrCo alloys prepared by the smelting method. Here, we synthesize a series of porous ZrCoM (M = Ti, Hf, Ni, Fe) alloys using a wet-chemical method combining magnesiothermic reduction with electrospray deposition method, and systematically investigate the phase composition, microstructure, and hydrogen storage properties. Owing to the high specific surface area, high crystallinity, and elemental substitution effect, the porous Zr0.8Ti0.2Co simultaneously exhibits high hydrogen storage capacity (approach theoretical capacity), excellent anti-disproportionation properties (only 3.7% in 10 h) and ultrafast kinetics (reach maximum capacity within 30 s, one order of magnitude faster than smelting one). Moreover, the elemental substitution shortens the plateau width of the alloy, leading to improved thermodynamic properties as well. This work provides new insights into the development of ZrCo-based materials with excellent comprehensive hydrogen storage isotope properties for their engineering applications in nuclear fusion research.
•Elemental substitution strategy is combined with wet chemical method.•The porous materials have high purity, crystallinity and specific surface area.•The as-synthesized materials show fast kinetics due to the small size effect.•Porous Zr0.8Ti0.2Co alloy exhibits excellent anti-disproportionation properties. |
---|---|
AbstractList | ZrCo alloys are regarded as the most promising hydrogen isotope storage materials to replace uranium in controlled fusion research. However, it is difficult to balance the kinetic and anti-disproportionation properties of conventional ZrCo alloys prepared by the smelting method. Here, we synthesize a series of porous ZrCoM (M = Ti, Hf, Ni, Fe) alloys using a wet-chemical method combining magnesiothermic reduction with electrospray deposition method, and systematically investigate the phase composition, microstructure, and hydrogen storage properties. Owing to the high specific surface area, high crystallinity, and elemental substitution effect, the porous Zr0.8Ti0.2Co simultaneously exhibits high hydrogen storage capacity (approach theoretical capacity), excellent anti-disproportionation properties (only 3.7% in 10 h) and ultrafast kinetics (reach maximum capacity within 30 s, one order of magnitude faster than smelting one). Moreover, the elemental substitution shortens the plateau width of the alloy, leading to improved thermodynamic properties as well. This work provides new insights into the development of ZrCo-based materials with excellent comprehensive hydrogen storage isotope properties for their engineering applications in nuclear fusion research.
•Elemental substitution strategy is combined with wet chemical method.•The porous materials have high purity, crystallinity and specific surface area.•The as-synthesized materials show fast kinetics due to the small size effect.•Porous Zr0.8Ti0.2Co alloy exhibits excellent anti-disproportionation properties. |
Author | Li, Zhenyang Dong, Xiaohan Jiang, Zhao Yao, Dong Yu, Ronghai Yuan, Yingbo Qu, Linyu Huang, Ziteng |
Author_xml | – sequence: 1 givenname: Yingbo surname: Yuan fullname: Yuan, Yingbo organization: AECC Beijing Institute of Aeronautical Materials, Beijing, 100095, China – sequence: 2 givenname: Zhenyang surname: Li fullname: Li, Zhenyang email: lizhenyang@buaa.edu.cn organization: School of Remote Sensing Science and Technology, Aerospace Information Technology University, Jinan, 250200, China – sequence: 3 givenname: Ziteng surname: Huang fullname: Huang, Ziteng organization: Institute of Remote Sensing Satellite, Beijing, 100094, China – sequence: 4 givenname: Zhao surname: Jiang fullname: Jiang, Zhao organization: School of Remote Sensing Science and Technology, Aerospace Information Technology University, Jinan, 250200, China – sequence: 5 givenname: Xiaohan surname: Dong fullname: Dong, Xiaohan organization: QiLu Aerospace Information Research Institute, Jinan, 250100, China – sequence: 6 givenname: Linyu surname: Qu fullname: Qu, Linyu organization: QiLu Aerospace Information Research Institute, Jinan, 250100, China – sequence: 7 givenname: Dong surname: Yao fullname: Yao, Dong email: yaodong@aircas.ac.cn organization: QiLu Aerospace Information Research Institute, Jinan, 250100, China – sequence: 8 givenname: Ronghai surname: Yu fullname: Yu, Ronghai email: rhyu@buaa.edu.cn organization: School of Materials Science and Engineering, Beihang University, Xueyuan Road No.37, Beijing, 100191, China |
BookMark | eNqFkMFOAjEURbvAREB_wfQDmPF1ysx0dhoCYkJ0gxs3Tad9hU5gStrBhL-3RF2bvOSu7sl9Z0JGve-RkAcGOQNWPXa56_YXgz3mBRRlDjyHEkZkDLyCjLOmuSWTGDsAVsO8GRO5tBb1QL2lWzejazujbylXSOO5jYMbzoPzPU037JEmdPA77GkcfFA7pCcM1oej6jVeEScf_DnSz7DwVB0O_hLvyI1Vh4j3vzklH6vldrHONu8vr4vnTaaLshkyrOvSCN4iL6HWgKbSrNKFYtbMNdMtClEZPW9tITTWgiMooawpS9E0LW9bPiXVD1cHH2NAK0_BHVW4SAbyqkZ28k-NvKqRwGVSk4pPP0VM674cBhm1w_SPcSGJkca7_xDfjmx1sg |
Cites_doi | 10.1021/acsami.2c17173 10.1038/d41586-023-04045-8 10.1016/j.apenergy.2015.02.010 10.1016/j.ijhydene.2016.10.079 10.1016/S2095-4956(14)60111-X 10.1038/s41467-023-43828-5 10.13182/FST86-A24739 10.1016/0920-3796(89)90077-X 10.1016/j.ijhydene.2017.05.054 10.1038/s41567-020-0940-7 10.1016/j.ijhydene.2012.11.053 10.1016/j.ijhydene.2015.03.107 10.1016/j.cej.2023.145342 10.1038/nphys3735 10.1016/j.fusengdes.2013.03.027 10.1016/j.ijhydene.2023.12.257 10.1016/j.ijhydene.2023.08.338 10.13182/FST12-A14111 10.13182/FST08-26 10.3938/jkps.65.1239 10.1016/j.jallcom.2022.167552 10.1016/j.ijhydene.2017.11.151 |
ContentType | Journal Article |
Copyright | 2025 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2025 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2025.03.050 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EndPage | 200 |
ExternalDocumentID | 10_1016_j_ijhydene_2025_03_050 S036031992501136X |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSH SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB T9H WUQ |
ID | FETCH-LOGICAL-c259t-e775d83be3507c0ed6c16c2a1fd4c1cbe886dc4bf28ce783e0a8afd55899b3bb3 |
IEDL.DBID | .~1 |
ISSN | 0360-3199 |
IngestDate | Tue Jul 01 05:01:24 EDT 2025 Sat Apr 19 15:56:42 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-e775d83be3507c0ed6c16c2a1fd4c1cbe886dc4bf28ce783e0a8afd55899b3bb3 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2025_03_050 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_03_050 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-31 |
PublicationDateYYYYMMDD | 2025-03-31 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Liang, Xiao, Qi, Kou, Chen (bib5) 2023; 932 Shim, Chung, Cho, Yoshida (bib11) 2017; 53 Shi, Wang, Bao, Kou, Zhang, Zhang (bib14) 2024; 50 Barbarino (bib2) 2020; 16 Knaster, Moeslang, Muroga (bib3) 2016; 12 Peng, Jiang, Xu, Wu (bib19) 2013; 88 Yang, Liu, Han, Han, Qian, Zeng (bib23) 2017; 42 Liu, Yang, Zhou, Xiao, Qi, Bi (bib4) 2024; 4 Bekris, Sirch (bib12) 2017; 62 Kou, Huang, Luo, Sang, Meng, Luo (bib10) 2015; 145 Tollefson (bib1) 2024; 625 Nagasaki, Konishi, Katsuta, Naruse (bib8) 1986; 9 Liu, Zhang, Sun, Guo, Hou, Mu (bib15) 2024; 56 Jat, Pati, Parida, Agarwal, Mukerjee (bib17) 2017; 42 Lee, Park, Koo, Paek, Chung, Kang (bib6) 2014; 65 Li, Liu, Pu, Huang, Yuan, Zhu (bib7) 2023; 14 Zhang, Sang, Xiong, Kou, Liu, Luo (bib16) 2015; 40 Yuan, Liu, Tang, Li, Huang, Zou (bib21) 2023; 15 Jat, Parida, Agarwal, Kulkarni (bib13) 2013; 38 Huang, Liu, Li, Yuan, Li, Liu (bib22) 2023; 473 Xu, Wang, Tang, Wang, Yu (bib20) 2018; 43 Zhao, Li, Tang, Li, Yu, Liu (bib18) 2014; 23 Konishi, Nagasaki, Yokokawa, Naruse (bib9) 1989; 10 Tollefson (10.1016/j.ijhydene.2025.03.050_bib1) 2024; 625 Knaster (10.1016/j.ijhydene.2025.03.050_bib3) 2016; 12 Shi (10.1016/j.ijhydene.2025.03.050_bib14) 2024; 50 Bekris (10.1016/j.ijhydene.2025.03.050_bib12) 2017; 62 Jat (10.1016/j.ijhydene.2025.03.050_bib17) 2017; 42 Zhao (10.1016/j.ijhydene.2025.03.050_bib18) 2014; 23 Peng (10.1016/j.ijhydene.2025.03.050_bib19) 2013; 88 Jat (10.1016/j.ijhydene.2025.03.050_bib13) 2013; 38 Lee (10.1016/j.ijhydene.2025.03.050_bib6) 2014; 65 Liu (10.1016/j.ijhydene.2025.03.050_bib15) 2024; 56 Konishi (10.1016/j.ijhydene.2025.03.050_bib9) 1989; 10 Xu (10.1016/j.ijhydene.2025.03.050_bib20) 2018; 43 Huang (10.1016/j.ijhydene.2025.03.050_bib22) 2023; 473 Barbarino (10.1016/j.ijhydene.2025.03.050_bib2) 2020; 16 Kou (10.1016/j.ijhydene.2025.03.050_bib10) 2015; 145 Liu (10.1016/j.ijhydene.2025.03.050_bib4) 2024; 4 Liang (10.1016/j.ijhydene.2025.03.050_bib5) 2023; 932 Yuan (10.1016/j.ijhydene.2025.03.050_bib21) 2023; 15 Yang (10.1016/j.ijhydene.2025.03.050_bib23) 2017; 42 Nagasaki (10.1016/j.ijhydene.2025.03.050_bib8) 1986; 9 Zhang (10.1016/j.ijhydene.2025.03.050_bib16) 2015; 40 Li (10.1016/j.ijhydene.2025.03.050_bib7) 2023; 14 Shim (10.1016/j.ijhydene.2025.03.050_bib11) 2017; 53 |
References_xml | – volume: 16 start-page: 890 year: 2020 end-page: 893 ident: bib2 article-title: A brief history of nuclear fusion publication-title: Nat Phys – volume: 9 start-page: 506 year: 1986 end-page: 509 ident: bib8 article-title: A zirconium-cobalt compound as the material for a reversible tritium getter publication-title: Fusion Technol – volume: 38 start-page: 1490 year: 2013 end-page: 1500 ident: bib13 article-title: Effect of Ni content on the hydrogen storage behavior of ZrCo publication-title: Int J Hydrogen Energy – volume: 42 start-page: 2248 year: 2017 end-page: 2256 ident: bib17 article-title: Synthesis, characterization and hydrogen isotope storage properties of Zr-Ti-Co ternary alloys publication-title: Int J Hydrogen Energy – volume: 4 year: 2024 ident: bib4 article-title: A review of classical hydrogen isotopes storage materials publication-title: Mater Rep Energy – volume: 12 start-page: 424 year: 2016 end-page: 434 ident: bib3 article-title: Materials research for fusion publication-title: Nat Phys – volume: 43 start-page: 839 year: 2018 end-page: 847 ident: bib20 article-title: Microstructure and hydrogen storage properties of Zr publication-title: Int J Hydrogen Energy – volume: 145 start-page: 27 year: 2015 end-page: 35 ident: bib10 article-title: Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes publication-title: Appl Energy – volume: 42 start-page: 15782 year: 2017 end-page: 15789 ident: bib23 article-title: Effects of alloying substitutions on the anti-disproportionation behavior of ZrCo alloy publication-title: Int J Hydrogen Energy – volume: 65 start-page: 1239 year: 2014 end-page: 1242 ident: bib6 article-title: Isotope effects of hydrogen delivered from a ZrCo storage bed publication-title: J Korean Phys – volume: 10 start-page: 355 year: 1989 end-page: 358 ident: bib9 article-title: Development of zirconium-cobalt beds for recovery, storage and supply of tritium publication-title: Fusion Eng Des – volume: 15 start-page: 3904 year: 2023 end-page: 3911 ident: bib21 article-title: Honeycomb ZrCo intermetallic for high performance hydrogen and hydrogen isotope storage publication-title: ACS Appl Mater Interfaces – volume: 50 start-page: 1070 year: 2024 end-page: 1079 ident: bib14 article-title: Investigation of H atoms occupation within ZrCo alloys during hydrogen absorption and desorption publication-title: Int J Hydrogen Energy – volume: 56 start-page: 562 year: 2024 end-page: 569 ident: bib15 article-title: Effects and mechanism of Ti, Cu, Y, La, Ce, Pr, Nd and Sm substitutions on the anti-disproportionation performance of ZrCo alloy publication-title: Int J Hydrogen Energy – volume: 40 start-page: 6582 year: 2015 end-page: 6593 ident: bib16 article-title: Effects and mechanism of Ti, Ni, Sc, Fe substitution on the thermal stability of zirconium cobalt-hydrogen system publication-title: Int J Hydrogen Energy – volume: 53 start-page: 830 year: 2017 end-page: 840 ident: bib11 article-title: Disproportionation characteristics of a zirconium-cobalt hydride bed under ITER operating conditions publication-title: Fusion Sci Technol – volume: 932 year: 2023 ident: bib5 article-title: ZrCo-based hydrogen isotopes storage alloys: a review publication-title: J Alloys Compd – volume: 23 start-page: 9 year: 2014 end-page: 14 ident: bib18 article-title: Effect of Ti substitution on hydrogen storage properties of Zr publication-title: J Energy Chem – volume: 625 start-page: 12 year: 2024 ident: bib1 article-title: US nuclear-fusion lab enters new era: achieving ‘ignition’ over and over publication-title: Nature – volume: 88 start-page: 299 year: 2013 end-page: 303 ident: bib19 article-title: Hydrogen-induced disproportionation characteristics of Zr publication-title: Fusion Eng Des – volume: 473 year: 2023 ident: bib22 article-title: Spatial-confinement synthesis of single-crystal ZrCo nanoparticles for ultrafast and long-life hydrogen/hydrogen isotope storage publication-title: Chem Eng J – volume: 14 start-page: 7966 year: 2023 ident: bib7 article-title: Single-crystal ZrCo nanoparticle for advanced hydrogen and H-isotope storage publication-title: Nat Commun – volume: 62 start-page: 50 year: 2017 end-page: 55 ident: bib12 article-title: On the mechanism of the disproportionation of ZrCo hydrides publication-title: Fusion Sci Technol – volume: 15 start-page: 3904 year: 2023 ident: 10.1016/j.ijhydene.2025.03.050_bib21 article-title: Honeycomb ZrCo intermetallic for high performance hydrogen and hydrogen isotope storage publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.2c17173 – volume: 625 start-page: 12 year: 2024 ident: 10.1016/j.ijhydene.2025.03.050_bib1 article-title: US nuclear-fusion lab enters new era: achieving ‘ignition’ over and over publication-title: Nature doi: 10.1038/d41586-023-04045-8 – volume: 145 start-page: 27 year: 2015 ident: 10.1016/j.ijhydene.2025.03.050_bib10 article-title: Experimental study on full-scale ZrCo and depleted uranium beds applied for fast recovery and delivery of hydrogen isotopes publication-title: Appl Energy doi: 10.1016/j.apenergy.2015.02.010 – volume: 42 start-page: 2248 year: 2017 ident: 10.1016/j.ijhydene.2025.03.050_bib17 article-title: Synthesis, characterization and hydrogen isotope storage properties of Zr-Ti-Co ternary alloys publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2016.10.079 – volume: 23 start-page: 9 year: 2014 ident: 10.1016/j.ijhydene.2025.03.050_bib18 article-title: Effect of Ti substitution on hydrogen storage properties of Zr1−xTixCo (x = 0, 0.1, 0.2, 0.3) alloys publication-title: J Energy Chem doi: 10.1016/S2095-4956(14)60111-X – volume: 14 start-page: 7966 year: 2023 ident: 10.1016/j.ijhydene.2025.03.050_bib7 article-title: Single-crystal ZrCo nanoparticle for advanced hydrogen and H-isotope storage publication-title: Nat Commun doi: 10.1038/s41467-023-43828-5 – volume: 9 start-page: 506 year: 1986 ident: 10.1016/j.ijhydene.2025.03.050_bib8 article-title: A zirconium-cobalt compound as the material for a reversible tritium getter publication-title: Fusion Technol doi: 10.13182/FST86-A24739 – volume: 10 start-page: 355 year: 1989 ident: 10.1016/j.ijhydene.2025.03.050_bib9 article-title: Development of zirconium-cobalt beds for recovery, storage and supply of tritium publication-title: Fusion Eng Des doi: 10.1016/0920-3796(89)90077-X – volume: 42 start-page: 15782 year: 2017 ident: 10.1016/j.ijhydene.2025.03.050_bib23 article-title: Effects of alloying substitutions on the anti-disproportionation behavior of ZrCo alloy publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.054 – volume: 16 start-page: 890 year: 2020 ident: 10.1016/j.ijhydene.2025.03.050_bib2 article-title: A brief history of nuclear fusion publication-title: Nat Phys doi: 10.1038/s41567-020-0940-7 – volume: 38 start-page: 1490 year: 2013 ident: 10.1016/j.ijhydene.2025.03.050_bib13 article-title: Effect of Ni content on the hydrogen storage behavior of ZrCo1-xNix alloys publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2012.11.053 – volume: 40 start-page: 6582 year: 2015 ident: 10.1016/j.ijhydene.2025.03.050_bib16 article-title: Effects and mechanism of Ti, Ni, Sc, Fe substitution on the thermal stability of zirconium cobalt-hydrogen system publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2015.03.107 – volume: 473 year: 2023 ident: 10.1016/j.ijhydene.2025.03.050_bib22 article-title: Spatial-confinement synthesis of single-crystal ZrCo nanoparticles for ultrafast and long-life hydrogen/hydrogen isotope storage publication-title: Chem Eng J doi: 10.1016/j.cej.2023.145342 – volume: 12 start-page: 424 year: 2016 ident: 10.1016/j.ijhydene.2025.03.050_bib3 article-title: Materials research for fusion publication-title: Nat Phys doi: 10.1038/nphys3735 – volume: 88 start-page: 299 year: 2013 ident: 10.1016/j.ijhydene.2025.03.050_bib19 article-title: Hydrogen-induced disproportionation characteristics of Zr1−xHfxCo (x = 0, 0.1, 0.2 and 0.3) alloys publication-title: Fusion Eng Des doi: 10.1016/j.fusengdes.2013.03.027 – volume: 56 start-page: 562 year: 2024 ident: 10.1016/j.ijhydene.2025.03.050_bib15 article-title: Effects and mechanism of Ti, Cu, Y, La, Ce, Pr, Nd and Sm substitutions on the anti-disproportionation performance of ZrCo alloy publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.12.257 – volume: 4 year: 2024 ident: 10.1016/j.ijhydene.2025.03.050_bib4 article-title: A review of classical hydrogen isotopes storage materials publication-title: Mater Rep Energy – volume: 50 start-page: 1070 year: 2024 ident: 10.1016/j.ijhydene.2025.03.050_bib14 article-title: Investigation of H atoms occupation within ZrCo alloys during hydrogen absorption and desorption publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2023.08.338 – volume: 62 start-page: 50 year: 2017 ident: 10.1016/j.ijhydene.2025.03.050_bib12 article-title: On the mechanism of the disproportionation of ZrCo hydrides publication-title: Fusion Sci Technol doi: 10.13182/FST12-A14111 – volume: 53 start-page: 830 year: 2017 ident: 10.1016/j.ijhydene.2025.03.050_bib11 article-title: Disproportionation characteristics of a zirconium-cobalt hydride bed under ITER operating conditions publication-title: Fusion Sci Technol doi: 10.13182/FST08-26 – volume: 65 start-page: 1239 year: 2014 ident: 10.1016/j.ijhydene.2025.03.050_bib6 article-title: Isotope effects of hydrogen delivered from a ZrCo storage bed publication-title: J Korean Phys doi: 10.3938/jkps.65.1239 – volume: 932 year: 2023 ident: 10.1016/j.ijhydene.2025.03.050_bib5 article-title: ZrCo-based hydrogen isotopes storage alloys: a review publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.167552 – volume: 43 start-page: 839 year: 2018 ident: 10.1016/j.ijhydene.2025.03.050_bib20 article-title: Microstructure and hydrogen storage properties of Zr0.8Ti0.2Co1-xFex (x = 0, 0.1, 0.2, 0.3) alloys publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2017.11.151 |
SSID | ssj0017049 |
Score | 2.4661565 |
Snippet | ZrCo alloys are regarded as the most promising hydrogen isotope storage materials to replace uranium in controlled fusion research. However, it is difficult to... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 194 |
Title | Effect of Ti, Hf, Ni, Fe substitution on the hydrogen storage performance of porous ZrCo alloys |
URI | https://dx.doi.org/10.1016/j.ijhydene.2025.03.050 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED5CurRD6ZOmj6ChYxzbsWzJYwgNbkuzNIHQRViyTJ0hDk4yZOlv78mPNoVCh4KxsZGM-Hz69B26OwPco8uFVuE4Fp7NNiOlVuizxNKuRvkg0c0ti7i-TIJoRp_m_rwFoyYXxoRV1txfcXrJ1vUTu0bTXmWZ_Yrca1JwQlzEzY9J5iaDnTJj5f2PrzAPl9USGBtbpvVelvCiny3edzi9TbnMgV8WOzX5978tUHuLzvgEjmu1SIbVgE6hpZdncLRXQ_AcRFV_mOQpmWY9EqU9MsHrWJM1ckIZCIDQEzxQ6hEcSJGjzRATFIlUQlbfiQPmFajG8-2avBWjnJgt-d36Ambjh-kosuq_JlgKXZmNpRnzE-5J7aHUU45OAuUGahC7aUKVq6TmPEgUlemAK824p52Yx2ni--h5SU9K7xLay3ypr4DgZE4o9mVaOVRTxRlPlaRMMT8OeBp2wG6gEquqOIZoosYWogFXGHCF4wkEtwNhg6j48ZkFMvgffa__0fcGDs1dlUx4C-1NsdV3qCY2sluaSxcOho_P0eQTZhrJ-A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07a8MwED7SZGg7lD5p-tTQMa6dWLKUMYQGp3ksTSB0EZYs02SIQx5D_n1Psd2mUOhQMDbYPiM-S5_u0N0ngCcMubBXeJ6DZ7vMSKnTZDx2TN2g-6AwzN2JuA6GQTimrxM2KUG7qIWxaZU592ecvmPr_I6bo-kuplP3DbnXluA0cRK3G5NMDqBi1alYGSqtbi8cfi0m8NwLxvcda7BXKDx7ns4-tjjCrWJmg-30Tm0J_m9z1N680zmFk9xhJK2sTWdQMvNzON6TEbwAmUkQkzQho2mNhEmNDPHaMWSFtLDLBUD0CR7o7RFsyDLFbkNsXiSyCVl81w7YT6BDnm5W5H3ZToldld-uLmHceRm1QyffOMHRGM2sHcM5i4WvjI_envZMHOh6oBtRPYmprmtlhAhiTVXSENpw4RsvElESM4bBl_KV8q-gPE_n5hoIjueYoi032qOGasFFohXlmrMoEEmzCm4BlVxk-hiySBybyQJcacGVni8R3Co0C0Tljz8tkcT_sL35h-0jHIajQV_2u8PeLRzZJ1lt4R2U18uNuUfnYq0e8s7zCWCMzKk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effect+of+Ti%2C+Hf%2C+Ni%2C+Fe+substitution+on+the+hydrogen+storage+performance+of+porous+ZrCo+alloys&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Yuan%2C+Yingbo&rft.au=Li%2C+Zhenyang&rft.au=Huang%2C+Ziteng&rft.au=Jiang%2C+Zhao&rft.date=2025-03-31&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.volume=114&rft.spage=194&rft.epage=200&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.03.050&rft.externalDocID=S036031992501136X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |