Autonomous underwater vehicle fault diagnosis model based on a deep belief rule with attribute reliability
Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to...
Saved in:
Published in | Ocean engineering Vol. 321; p. 120472 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
30.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 |
DOI | 10.1016/j.oceaneng.2025.120472 |
Cover
Loading…
Abstract | Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to its sophisticated internal structure and the influence of its external environment, the fault diagnosis model faces many uncertainties. The belief rule base (BRB), which is capable of dealing with uncertain information, is an effective solution. However, the data generated by AUV sensors during actual operation are multi-dimensional and subject to disturbances. This can lead to problems such as rule explosion and attribute unreliability. To address these problems, a new deep belief rule base with attribute reliability (DBRB-r) is presented in this study. First, a gradient ascent framework is established to address the rule explosion issue. Second, a statistical approach for calculating attribute credibility is proposed to assess the reliability of attributes. Then, evidence reasoning is used as the model's inference engine. Finally, an interpretable whale optimization algorithm (WOA) is proposed to enhance the model parameters. The results of the verification experiment show that DBRB-r effectively solves the rule explosion problem and also manages unreliable data. This is an effective, accurate and interpretable diagnostic method.
•A method for constructing AUV fault diagnosis model based on deep belief rule base.•Evaluate the reliability of attributes to remove the influence of disturbance factors.•Use key attributes gradient modeling to solve rule explosion and improve accuracy.•Optimized interpretability allows scientists to better grasp diagnostic results.•This is an interpretable and reliable fault diagnosis method for AUVs. |
---|---|
AbstractList | Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to its sophisticated internal structure and the influence of its external environment, the fault diagnosis model faces many uncertainties. The belief rule base (BRB), which is capable of dealing with uncertain information, is an effective solution. However, the data generated by AUV sensors during actual operation are multi-dimensional and subject to disturbances. This can lead to problems such as rule explosion and attribute unreliability. To address these problems, a new deep belief rule base with attribute reliability (DBRB-r) is presented in this study. First, a gradient ascent framework is established to address the rule explosion issue. Second, a statistical approach for calculating attribute credibility is proposed to assess the reliability of attributes. Then, evidence reasoning is used as the model's inference engine. Finally, an interpretable whale optimization algorithm (WOA) is proposed to enhance the model parameters. The results of the verification experiment show that DBRB-r effectively solves the rule explosion problem and also manages unreliable data. This is an effective, accurate and interpretable diagnostic method.
•A method for constructing AUV fault diagnosis model based on deep belief rule base.•Evaluate the reliability of attributes to remove the influence of disturbance factors.•Use key attributes gradient modeling to solve rule explosion and improve accuracy.•Optimized interpretability allows scientists to better grasp diagnostic results.•This is an interpretable and reliable fault diagnosis method for AUVs. |
ArticleNumber | 120472 |
Author | Huang, Haolan Mai, Jiahao He, Wei Wei, Fanxu Yang, Cuiping |
Author_xml | – sequence: 1 givenname: Jiahao surname: Mai fullname: Mai, Jiahao – sequence: 2 givenname: Haolan surname: Huang fullname: Huang, Haolan – sequence: 3 givenname: Fanxu surname: Wei fullname: Wei, Fanxu – sequence: 4 givenname: Cuiping surname: Yang fullname: Yang, Cuiping – sequence: 5 givenname: Wei orcidid: 0000-0003-4523-8242 surname: He fullname: He, Wei email: hewei@hrbnu.edu.cn |
BookMark | eNqFkMtKAzEYhbOoYFt9BckLzPgnc99ZijcouNF1yCR_2gzTpCSZlr69lera1VkcvsPhW5CZ8w4JeWCQM2D145B7hdKh2-YceJUzDmXDZ2QOwLusBdbekkWMAwDUNRRzMqym5J3f-ynSyWkMJ5kw0CPurBqRGjmNiWort85HG-neaxxpLyNq6h2VVCMeaI-jRUPDdCFONu2oTCnYfkpIw6WSvR1tOt-RGyPHiPe_uSRfL8-f67ds8_H6vl5tMsWrLmW6VRx50WHV1I00DSslR1XpEo1CzsqqAaaglUUPddlpplmPupJQs54ZbnixJPV1VwUfY0AjDsHuZTgLBuLHkhjEnyXxY0lcLV3ApyuIl3dHi0FEZdEp1DagSkJ7-9_ENzo4emc |
Cites_doi | 10.1016/j.engfailanal.2011.06.014 10.1016/j.asoc.2023.110275 10.1016/j.engfailanal.2024.108037 10.1109/TSMC.2019.2944893 10.1016/j.ejor.2005.02.064 10.1016/j.heliyon.2022.e10481 10.1016/j.ijar.2019.02.006 10.1016/j.dib.2021.107477 10.1016/j.knosys.2014.09.010 10.1016/j.conengprac.2003.11.008 10.1109/TCYB.2021.3059002 10.1016/j.advengsoft.2016.01.008 10.1016/j.engfailanal.2023.107714 10.1016/j.oceaneng.2021.108874 10.1016/j.oceaneng.2020.107570 10.3390/machines11050551 10.1109/TSMC.2019.2944640 10.1016/j.isatra.2024.05.019 10.1016/j.engfailanal.2024.108662 10.1016/j.oceaneng.2023.113861 10.1016/j.eswa.2022.119451 10.1016/j.oceaneng.2021.110290 10.1016/j.psep.2024.08.119 10.1109/TSMCA.2005.851270 10.1016/j.eswa.2023.120485 10.1016/j.engfailanal.2007.02.002 10.1016/j.ifacol.2016.07.573 10.1016/j.asoc.2019.04.023 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2025.120472 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
ExternalDocumentID | 10_1016_j_oceaneng_2025_120472 S0029801825001878 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET WUQ |
ID | FETCH-LOGICAL-c259t-d8c2e239e5767af714a2ec5d4efce2145701c08a3b0649d1d1bed5a061b1f2f23 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 05:17:08 EDT 2025 Sat Apr 05 15:35:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Fault diagnosis Belief rule base Rule explosion Attribute reliability Autonomous underwater vehicle Evidential reasoning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-d8c2e239e5767af714a2ec5d4efce2145701c08a3b0649d1d1bed5a061b1f2f23 |
ORCID | 0000-0003-4523-8242 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2025_120472 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_120472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-30 |
PublicationDateYYYYMMDD | 2025-03-30 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Han, He, Cao (bib9) 2022; 12 Jacobo, Ortiz, Cerrud (bib12) 2007; 14 Yang, Ye, Wang (bib32) 2023; 140 Liu, Tang, Qin (bib17) 2022; 243 Xie, He, Zhu (bib29) 2022; 8 Zhou, Hu, Hu (bib36) 2021; 51 Yang, Huang, He (bib31) 2011; 18 Ji, Yao, Li (bib14) 2021; 39 Zhao, Zhang, He (bib35) 2024; 150 Ji, Yao, Li (bib13) 2021; 232 Sahu, Subudhi (bib23) 2014 Loebis, Sutton, Chudley (bib18) 2004; 12 Xu, Yang, Wang (bib30) 2006; 174 Qin, Zhang, Gao (bib22) 2018 Sun, Wang, Zhang (bib25) 2019; 470 Maaref, Abazi, Dhouibi (bib19) 2016; 49 Choudhury, Kleijn, Blincoe (bib6) 2023 Chen, Guestrin (bib3) 2016 Chen, Yang, Pan (bib4) 2015; 73 Qian, Peng, Tao (bib21) 2024; 191 Zhang, Ji, Liu (bib34) 2023; 273 Zhang, Zhang, Yan, Gao, Yu (bib33) 2023; 11 Chang, Chen, Hao (bib2) 2019; 108 Jian-Bo, Jun, Jin (bib15) 2006; 36 Tabatabaei Mirhosseini, Aflatoonian (bib26) 2024; 158 Mirjalili, Lewis (bib20) 2016; 95 Shumsky, Zhirabok, Hajiyev (bib24) 2010 Baigzadehnoe, Rezaie, Rahmani (bib1) 2019; 80 Chu, Chen, Zhu (bib7) 2020; 210 Li, Li, Fang (bib16) 2023; 154 Wang, Chen, Zeng (bib28) 2024; 164 Hu, He, Sun (bib11) 2023; 216 Chen, Xu, Peng (bib5) 2022; 52 Feng, Zhou, Hu (bib8) 2019; 27 He, Cheng, Zhao (bib10) 2023; 229 Tang, Zhou, Hu (bib27) 2021; 51 He (10.1016/j.oceaneng.2025.120472_bib10) 2023; 229 Loebis (10.1016/j.oceaneng.2025.120472_bib18) 2004; 12 Chu (10.1016/j.oceaneng.2025.120472_bib7) 2020; 210 Ji (10.1016/j.oceaneng.2025.120472_bib14) 2021; 39 Wang (10.1016/j.oceaneng.2025.120472_bib28) 2024; 164 Zhao (10.1016/j.oceaneng.2025.120472_bib35) 2024; 150 Han (10.1016/j.oceaneng.2025.120472_bib9) 2022; 12 Shumsky (10.1016/j.oceaneng.2025.120472_bib24) 2010 Chen (10.1016/j.oceaneng.2025.120472_bib4) 2015; 73 Liu (10.1016/j.oceaneng.2025.120472_bib17) 2022; 243 Sun (10.1016/j.oceaneng.2025.120472_bib25) 2019; 470 Xu (10.1016/j.oceaneng.2025.120472_bib30) 2006; 174 Ji (10.1016/j.oceaneng.2025.120472_bib13) 2021; 232 Zhang (10.1016/j.oceaneng.2025.120472_bib33) 2023; 11 Qian (10.1016/j.oceaneng.2025.120472_bib21) 2024; 191 Zhang (10.1016/j.oceaneng.2025.120472_bib34) 2023; 273 Choudhury (10.1016/j.oceaneng.2025.120472_bib6) 2023 Zhou (10.1016/j.oceaneng.2025.120472_bib36) 2021; 51 Qin (10.1016/j.oceaneng.2025.120472_bib22) 2018 Jian-Bo (10.1016/j.oceaneng.2025.120472_bib15) 2006; 36 Xie (10.1016/j.oceaneng.2025.120472_bib29) 2022; 8 Mirjalili (10.1016/j.oceaneng.2025.120472_bib20) 2016; 95 Hu (10.1016/j.oceaneng.2025.120472_bib11) 2023; 216 Chen (10.1016/j.oceaneng.2025.120472_bib3) 2016 Tabatabaei Mirhosseini (10.1016/j.oceaneng.2025.120472_bib26) 2024; 158 Li (10.1016/j.oceaneng.2025.120472_bib16) 2023; 154 Yang (10.1016/j.oceaneng.2025.120472_bib31) 2011; 18 Maaref (10.1016/j.oceaneng.2025.120472_bib19) 2016; 49 Jacobo (10.1016/j.oceaneng.2025.120472_bib12) 2007; 14 Tang (10.1016/j.oceaneng.2025.120472_bib27) 2021; 51 Yang (10.1016/j.oceaneng.2025.120472_bib32) 2023; 140 Feng (10.1016/j.oceaneng.2025.120472_bib8) 2019; 27 Chang (10.1016/j.oceaneng.2025.120472_bib2) 2019; 108 Sahu (10.1016/j.oceaneng.2025.120472_bib23) 2014 Baigzadehnoe (10.1016/j.oceaneng.2025.120472_bib1) 2019; 80 Chen (10.1016/j.oceaneng.2025.120472_bib5) 2022; 52 |
References_xml | – volume: 12 year: 2022 ident: bib9 article-title: Deep belief rule based photovoltaic power forecasting method with interpretability publication-title: Sci. Rep. – volume: 232 year: 2021 ident: bib13 article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network publication-title: Ocean Eng. – volume: 243 year: 2022 ident: bib17 article-title: Review on fault diagnosis of unmanned underwater vehicles publication-title: Ocean Eng. – start-page: 1 year: 2023 end-page: 6 ident: bib6 article-title: A deep learning based fault diagnosis method combining domain knowledge and transfer learning[C] publication-title: 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP) – volume: 140 year: 2023 ident: bib32 article-title: Extended belief rule-based system using bi-level joint optimization for environmental investment forecasting publication-title: Appl. Soft Comput. – volume: 8 year: 2022 ident: bib29 article-title: A new unmanned aerial vehicle intrusion detection method based on belief rule base with evidential reasoning publication-title: Heliyon – volume: 154 year: 2023 ident: bib16 article-title: Internal fault diagnosis method for lithium batteries based on a failure physical model publication-title: Eng. Fail. Anal. – volume: 51 start-page: 4895 year: 2021 end-page: 4910 ident: bib27 article-title: Perturbation analysis of evidential reasoning rule publication-title: IEEE Trans. Syst. Man Cybern.: Systems – volume: 164 year: 2024 ident: bib28 article-title: A deep learning fault diagnosis method for metro on-board detection on rail corrugation publication-title: Eng. Fail. Anal. – volume: 273 year: 2023 ident: bib34 article-title: Autonomous underwater vehicle navigation: a review publication-title: Ocean Eng. – start-page: 6067 year: 2018 end-page: 6072 ident: bib22 article-title: Sensor Fault diagnosis of autonomous underwater vehicle based on LSTM[C] publication-title: 2018 37th Chinese Control Conference (CCC) – volume: 80 start-page: 465 year: 2019 end-page: 474 ident: bib1 article-title: Fuzzy-model-based fault detection for nonlinear networked control systems with periodic access constraints and Bernoulli packet dropouts publication-title: Appl. Soft Comput. – volume: 191 start-page: 836 year: 2024 end-page: 851 ident: bib21 article-title: An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction publication-title: Process Saf. Environ. Protect. – volume: 11 start-page: 551 year: 2023 ident: bib33 article-title: Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach publication-title: Machines – volume: 36 start-page: 266 year: 2006 end-page: 285 ident: bib15 article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. – volume: 49 start-page: 1002 year: 2016 end-page: 1007 ident: bib19 article-title: Mixed approach for fault diagnosis and fault location of hybrid systems publication-title: IFAC-PapersOnLine – volume: 52 start-page: 9157 year: 2022 end-page: 9169 ident: bib5 article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge publication-title: IEEE Trans. Cybern. – volume: 108 start-page: 1 year: 2019 end-page: 20 ident: bib2 article-title: Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means publication-title: Int. J. Approx. Reason. – volume: 216 year: 2023 ident: bib11 article-title: Hierarchical belief rule-based model for imbalanced multi-classification publication-title: Expert Syst. Appl. – start-page: 11 year: 2010 end-page: 16 ident: bib24 article-title: Observer based fault diagnosis in thrusters of autonomous underwater vehicle[C] publication-title: 2010 Conference on Control and Fault-Tolerant Systems (SysTol) – year: 2016 ident: bib3 article-title: XGBoost: A Scalable Tree Boosting System – volume: 210 year: 2020 ident: bib7 article-title: Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV publication-title: Ocean Eng. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib20 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software – volume: 150 start-page: 77 year: 2024 end-page: 91 ident: bib35 article-title: A deep belief rule base-based fault diagnosis method for complex systems publication-title: ISA (Instrum. Soc. Am.) Trans. – volume: 14 start-page: 1435 year: 2007 end-page: 1443 ident: bib12 article-title: Hybrid expert system for the failure analysis of mechanical elements publication-title: Eng. Fail. Anal. – volume: 73 start-page: 124 year: 2015 end-page: 133 ident: bib4 article-title: Identification of uncertain nonlinear systems: constructing belief rule-based models publication-title: Knowl. Base Syst. – volume: 27 start-page: 903 year: 2019 end-page: 916 ident: bib8 article-title: A new belief rule base model with attribute reliability – volume: 39 year: 2021 ident: bib14 article-title: Autonomous underwater vehicle fault diagnosis dataset publication-title: Data Brief – volume: 51 start-page: 4944 year: 2021 end-page: 4958 ident: bib36 article-title: A survey of belief rule-base expert system publication-title: IEEE Trans. Syst. Man Cybern.: Systems – volume: 12 start-page: 1531 year: 2004 end-page: 1539 ident: bib18 article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system publication-title: Control Eng. Pract. – start-page: 1 year: 2014 end-page: 6 ident: bib23 article-title: The state of art of Autonomous Underwater Vehicles in current and future decades[C] publication-title: 2014 First International Conference on Automation, Control, Energy and Systems (ACES) – volume: 470 year: 2019 ident: bib25 article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 174 start-page: 1914 year: 2006 end-page: 1943 ident: bib30 article-title: The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty publication-title: Eur. J. Oper. Res. – volume: 158 year: 2024 ident: bib26 article-title: Optimizing fracture parameters in order to select based on theoretical concepts and concrete fracture energy prediction publication-title: Eng. Fail. Anal. – volume: 18 start-page: 2084 year: 2011 end-page: 2092 ident: bib31 article-title: Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty publication-title: Eng. Fail. Anal. – volume: 229 year: 2023 ident: bib10 article-title: An interval construction belief rule base with interpretability for complex systems publication-title: Expert Syst. Appl. – volume: 18 start-page: 2084 issue: 8 year: 2011 ident: 10.1016/j.oceaneng.2025.120472_bib31 article-title: Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2011.06.014 – volume: 140 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib32 article-title: Extended belief rule-based system using bi-level joint optimization for environmental investment forecasting publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110275 – volume: 158 year: 2024 ident: 10.1016/j.oceaneng.2025.120472_bib26 article-title: Optimizing fracture parameters in order to select based on theoretical concepts and concrete fracture energy prediction publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2024.108037 – start-page: 1 year: 2014 ident: 10.1016/j.oceaneng.2025.120472_bib23 article-title: The state of art of Autonomous Underwater Vehicles in current and future decades[C] – volume: 51 start-page: 4944 issue: 8 year: 2021 ident: 10.1016/j.oceaneng.2025.120472_bib36 article-title: A survey of belief rule-base expert system publication-title: IEEE Trans. Syst. Man Cybern.: Systems doi: 10.1109/TSMC.2019.2944893 – start-page: 6067 year: 2018 ident: 10.1016/j.oceaneng.2025.120472_bib22 article-title: Sensor Fault diagnosis of autonomous underwater vehicle based on LSTM[C] – start-page: 11 year: 2010 ident: 10.1016/j.oceaneng.2025.120472_bib24 article-title: Observer based fault diagnosis in thrusters of autonomous underwater vehicle[C] – year: 2016 ident: 10.1016/j.oceaneng.2025.120472_bib3 – volume: 174 start-page: 1914 issue: 3 year: 2006 ident: 10.1016/j.oceaneng.2025.120472_bib30 article-title: The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2005.02.064 – volume: 8 issue: 9 year: 2022 ident: 10.1016/j.oceaneng.2025.120472_bib29 article-title: A new unmanned aerial vehicle intrusion detection method based on belief rule base with evidential reasoning publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e10481 – volume: 108 start-page: 1 year: 2019 ident: 10.1016/j.oceaneng.2025.120472_bib2 article-title: Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means publication-title: Int. J. Approx. Reason. doi: 10.1016/j.ijar.2019.02.006 – volume: 39 year: 2021 ident: 10.1016/j.oceaneng.2025.120472_bib14 article-title: Autonomous underwater vehicle fault diagnosis dataset publication-title: Data Brief doi: 10.1016/j.dib.2021.107477 – volume: 73 start-page: 124 year: 2015 ident: 10.1016/j.oceaneng.2025.120472_bib4 article-title: Identification of uncertain nonlinear systems: constructing belief rule-based models publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2014.09.010 – volume: 12 start-page: 1531 issue: 12 year: 2004 ident: 10.1016/j.oceaneng.2025.120472_bib18 article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2003.11.008 – volume: 52 start-page: 9157 issue: 9 year: 2022 ident: 10.1016/j.oceaneng.2025.120472_bib5 article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3059002 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.oceaneng.2025.120472_bib20 article-title: The whale optimization algorithm publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 154 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib16 article-title: Internal fault diagnosis method for lithium batteries based on a failure physical model publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2023.107714 – volume: 232 year: 2021 ident: 10.1016/j.oceaneng.2025.120472_bib13 article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108874 – volume: 210 year: 2020 ident: 10.1016/j.oceaneng.2025.120472_bib7 article-title: Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107570 – volume: 11 start-page: 551 issue: 5 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib33 article-title: Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach publication-title: Machines doi: 10.3390/machines11050551 – volume: 51 start-page: 4895 issue: 8 year: 2021 ident: 10.1016/j.oceaneng.2025.120472_bib27 article-title: Perturbation analysis of evidential reasoning rule publication-title: IEEE Trans. Syst. Man Cybern.: Systems doi: 10.1109/TSMC.2019.2944640 – start-page: 1 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib6 article-title: A deep learning based fault diagnosis method combining domain knowledge and transfer learning[C] – volume: 150 start-page: 77 year: 2024 ident: 10.1016/j.oceaneng.2025.120472_bib35 article-title: A deep belief rule base-based fault diagnosis method for complex systems publication-title: ISA (Instrum. Soc. Am.) Trans. doi: 10.1016/j.isatra.2024.05.019 – volume: 164 year: 2024 ident: 10.1016/j.oceaneng.2025.120472_bib28 article-title: A deep learning fault diagnosis method for metro on-board detection on rail corrugation publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2024.108662 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib34 article-title: Autonomous underwater vehicle navigation: a review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113861 – volume: 216 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib11 article-title: Hierarchical belief rule-based model for imbalanced multi-classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119451 – volume: 243 year: 2022 ident: 10.1016/j.oceaneng.2025.120472_bib17 article-title: Review on fault diagnosis of unmanned underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.110290 – volume: 470 issue: 1 year: 2019 ident: 10.1016/j.oceaneng.2025.120472_bib25 article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning publication-title: IOP Conf. Ser. Mater. Sci. Eng. – volume: 191 start-page: 836 year: 2024 ident: 10.1016/j.oceaneng.2025.120472_bib21 article-title: An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2024.08.119 – volume: 36 start-page: 266 issue: 2 year: 2006 ident: 10.1016/j.oceaneng.2025.120472_bib15 article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum. doi: 10.1109/TSMCA.2005.851270 – volume: 27 start-page: 903 year: 2019 ident: 10.1016/j.oceaneng.2025.120472_bib8 article-title: A new belief rule base model with attribute reliability – volume: 229 year: 2023 ident: 10.1016/j.oceaneng.2025.120472_bib10 article-title: An interval construction belief rule base with interpretability for complex systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120485 – volume: 12 issue: 1 year: 2022 ident: 10.1016/j.oceaneng.2025.120472_bib9 article-title: Deep belief rule based photovoltaic power forecasting method with interpretability publication-title: Sci. Rep. – volume: 14 start-page: 1435 issue: 8 year: 2007 ident: 10.1016/j.oceaneng.2025.120472_bib12 article-title: Hybrid expert system for the failure analysis of mechanical elements publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2007.02.002 – volume: 49 start-page: 1002 issue: 12 year: 2016 ident: 10.1016/j.oceaneng.2025.120472_bib19 article-title: Mixed approach for fault diagnosis and fault location of hybrid systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2016.07.573 – volume: 80 start-page: 465 year: 2019 ident: 10.1016/j.oceaneng.2025.120472_bib1 article-title: Fuzzy-model-based fault detection for nonlinear networked control systems with periodic access constraints and Bernoulli packet dropouts publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.04.023 |
SSID | ssj0006603 |
Score | 2.4174237 |
Snippet | Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 120472 |
SubjectTerms | Attribute reliability Autonomous underwater vehicle Belief rule base Evidential reasoning Fault diagnosis Rule explosion |
Title | Autonomous underwater vehicle fault diagnosis model based on a deep belief rule with attribute reliability |
URI | https://dx.doi.org/10.1016/j.oceaneng.2025.120472 |
Volume | 321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KvaggWhXrR9mD17TZzSbbHEtRqmK9WOgtbLKz2iJpiYnixd_ubD6wguDBY5LdJQyTmXlh3htCLqVRHpgAvzRmPEeEHnMU01YIWWJ1HmvNy2kN99NgMhO3c3_eIuOGC2PbKuvYX8X0MlrXdwa1NQfrxcJyfHmI8RUhTjlZzhJ-hZDWy_uf320eQeB6TZuHXb3BEl72MUWoFNInxInc7zNupRN_T1AbSed6n-zV1SIdVS90QFqQdsjOhoZgh-w-2NNr4elDshwVueUpIKCnlh-WvWMxmdE3eLYnUKOKl5zqqr9u8UrLQTjUpjJNVylVVAOsaQxYmRqaFbjD_qilKq8GYwHN8FEl7f1xRGbXV4_jiVPPU3ASBDm5o4cJB-6FgBhDKiOZUBwSXwswCVjFcumyxB0qL8Y6JdRMsxi0rzDjx8xww71j0k5XKZwQyiXnsdAK4ZUvgqFSzDNMQij8MPZBul0yaIwYrSvZjKjpJ1tGjdkja_aoMnuXhI2tox8OEGFs_2Pv6T_2npFte1XSDN1z0s6zAi6wzsjjXulIPbI1urmbTL8AWabTxQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PfgA8Ylv9-A1bXbzao6lKK219VKht7DJzmqLxBJTxX_vbB5SQfDgdZdZwrCZ-b5l5huA60BLB7VPfxrXjuWGDrckV0YIOSB0HislimkNo7Hff3Tvpt50DXp1L4wpq6xifxnTi2hdrbQrb7YXs5np8RUhxVeiOMVkuc46NI06ldeAZncw7I-_A7Lv205d6WEMVhqF5y3KEjLF9ImoovBaXBj1xN9z1Ereud2FnQowsm75TXuwhuk-bK3ICO7D9oM5vdKePoB5d5mbVgXi9My0iGUfhCcz9o7P5gSm5fIlZ6ossZu9sWIWDjPZTLHXlEmmEBcsRgKnmmVLsjBvtUzm5WwsZBltleren4fweHsz6fWtaqSClRDPyS3VSQQKJ0SiGYHUAXelwMRTLuoEjWh5YPPE7kgnJqgSKq54jMqTlPRjroUWzhE00tcUj4GJQIjYVZIYluf6HSm5o3mAoeuFsYeBfQLt2onRolTOiOqSsnlUuz0ybo9Kt59AWPs6-nEHIgrvf9ie_sP2Cjb6k9F9dD8YD89g0-wUXYf2OTTybIkXBDvy-LK6Vl-l5dZ2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+underwater+vehicle+fault+diagnosis+model+based+on+a+deep+belief+rule+with+attribute+reliability&rft.jtitle=Ocean+engineering&rft.au=Mai%2C+Jiahao&rft.au=Huang%2C+Haolan&rft.au=Wei%2C+Fanxu&rft.au=Yang%2C+Cuiping&rft.date=2025-03-30&rft.issn=0029-8018&rft.volume=321&rft.spage=120472&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.120472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_120472 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |