Autonomous underwater vehicle fault diagnosis model based on a deep belief rule with attribute reliability

Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 321; p. 120472
Main Authors Mai, Jiahao, Huang, Haolan, Wei, Fanxu, Yang, Cuiping, He, Wei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.03.2025
Subjects
Online AccessGet full text
ISSN0029-8018
DOI10.1016/j.oceaneng.2025.120472

Cover

Loading…
Abstract Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to its sophisticated internal structure and the influence of its external environment, the fault diagnosis model faces many uncertainties. The belief rule base (BRB), which is capable of dealing with uncertain information, is an effective solution. However, the data generated by AUV sensors during actual operation are multi-dimensional and subject to disturbances. This can lead to problems such as rule explosion and attribute unreliability. To address these problems, a new deep belief rule base with attribute reliability (DBRB-r) is presented in this study. First, a gradient ascent framework is established to address the rule explosion issue. Second, a statistical approach for calculating attribute credibility is proposed to assess the reliability of attributes. Then, evidence reasoning is used as the model's inference engine. Finally, an interpretable whale optimization algorithm (WOA) is proposed to enhance the model parameters. The results of the verification experiment show that DBRB-r effectively solves the rule explosion problem and also manages unreliable data. This is an effective, accurate and interpretable diagnostic method. •A method for constructing AUV fault diagnosis model based on deep belief rule base.•Evaluate the reliability of attributes to remove the influence of disturbance factors.•Use key attributes gradient modeling to solve rule explosion and improve accuracy.•Optimized interpretability allows scientists to better grasp diagnostic results.•This is an interpretable and reliable fault diagnosis method for AUVs.
AbstractList Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them susceptible to malfunctions. Therefore, effective fault diagnosis is critical for ensuring the stable and reliable operation of AUVs. Owing to its sophisticated internal structure and the influence of its external environment, the fault diagnosis model faces many uncertainties. The belief rule base (BRB), which is capable of dealing with uncertain information, is an effective solution. However, the data generated by AUV sensors during actual operation are multi-dimensional and subject to disturbances. This can lead to problems such as rule explosion and attribute unreliability. To address these problems, a new deep belief rule base with attribute reliability (DBRB-r) is presented in this study. First, a gradient ascent framework is established to address the rule explosion issue. Second, a statistical approach for calculating attribute credibility is proposed to assess the reliability of attributes. Then, evidence reasoning is used as the model's inference engine. Finally, an interpretable whale optimization algorithm (WOA) is proposed to enhance the model parameters. The results of the verification experiment show that DBRB-r effectively solves the rule explosion problem and also manages unreliable data. This is an effective, accurate and interpretable diagnostic method. •A method for constructing AUV fault diagnosis model based on deep belief rule base.•Evaluate the reliability of attributes to remove the influence of disturbance factors.•Use key attributes gradient modeling to solve rule explosion and improve accuracy.•Optimized interpretability allows scientists to better grasp diagnostic results.•This is an interpretable and reliable fault diagnosis method for AUVs.
ArticleNumber 120472
Author Huang, Haolan
Mai, Jiahao
He, Wei
Wei, Fanxu
Yang, Cuiping
Author_xml – sequence: 1
  givenname: Jiahao
  surname: Mai
  fullname: Mai, Jiahao
– sequence: 2
  givenname: Haolan
  surname: Huang
  fullname: Huang, Haolan
– sequence: 3
  givenname: Fanxu
  surname: Wei
  fullname: Wei, Fanxu
– sequence: 4
  givenname: Cuiping
  surname: Yang
  fullname: Yang, Cuiping
– sequence: 5
  givenname: Wei
  orcidid: 0000-0003-4523-8242
  surname: He
  fullname: He, Wei
  email: hewei@hrbnu.edu.cn
BookMark eNqFkMtKAzEYhbOoYFt9BckLzPgnc99ZijcouNF1yCR_2gzTpCSZlr69lera1VkcvsPhW5CZ8w4JeWCQM2D145B7hdKh2-YceJUzDmXDZ2QOwLusBdbekkWMAwDUNRRzMqym5J3f-ynSyWkMJ5kw0CPurBqRGjmNiWort85HG-neaxxpLyNq6h2VVCMeaI-jRUPDdCFONu2oTCnYfkpIw6WSvR1tOt-RGyPHiPe_uSRfL8-f67ds8_H6vl5tMsWrLmW6VRx50WHV1I00DSslR1XpEo1CzsqqAaaglUUPddlpplmPupJQs54ZbnixJPV1VwUfY0AjDsHuZTgLBuLHkhjEnyXxY0lcLV3ApyuIl3dHi0FEZdEp1DagSkJ7-9_ENzo4emc
Cites_doi 10.1016/j.engfailanal.2011.06.014
10.1016/j.asoc.2023.110275
10.1016/j.engfailanal.2024.108037
10.1109/TSMC.2019.2944893
10.1016/j.ejor.2005.02.064
10.1016/j.heliyon.2022.e10481
10.1016/j.ijar.2019.02.006
10.1016/j.dib.2021.107477
10.1016/j.knosys.2014.09.010
10.1016/j.conengprac.2003.11.008
10.1109/TCYB.2021.3059002
10.1016/j.advengsoft.2016.01.008
10.1016/j.engfailanal.2023.107714
10.1016/j.oceaneng.2021.108874
10.1016/j.oceaneng.2020.107570
10.3390/machines11050551
10.1109/TSMC.2019.2944640
10.1016/j.isatra.2024.05.019
10.1016/j.engfailanal.2024.108662
10.1016/j.oceaneng.2023.113861
10.1016/j.eswa.2022.119451
10.1016/j.oceaneng.2021.110290
10.1016/j.psep.2024.08.119
10.1109/TSMCA.2005.851270
10.1016/j.eswa.2023.120485
10.1016/j.engfailanal.2007.02.002
10.1016/j.ifacol.2016.07.573
10.1016/j.asoc.2019.04.023
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2025.120472
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2025_120472
S0029801825001878
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSH
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFFNX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SAC
SET
WUQ
ID FETCH-LOGICAL-c259t-d8c2e239e5767af714a2ec5d4efce2145701c08a3b0649d1d1bed5a061b1f2f23
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Tue Jul 01 05:17:08 EDT 2025
Sat Apr 05 15:35:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Fault diagnosis
Belief rule base
Rule explosion
Attribute reliability
Autonomous underwater vehicle
Evidential reasoning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-d8c2e239e5767af714a2ec5d4efce2145701c08a3b0649d1d1bed5a061b1f2f23
ORCID 0000-0003-4523-8242
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2025_120472
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_120472
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-30
PublicationDateYYYYMMDD 2025-03-30
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-30
  day: 30
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Han, He, Cao (bib9) 2022; 12
Jacobo, Ortiz, Cerrud (bib12) 2007; 14
Yang, Ye, Wang (bib32) 2023; 140
Liu, Tang, Qin (bib17) 2022; 243
Xie, He, Zhu (bib29) 2022; 8
Zhou, Hu, Hu (bib36) 2021; 51
Yang, Huang, He (bib31) 2011; 18
Ji, Yao, Li (bib14) 2021; 39
Zhao, Zhang, He (bib35) 2024; 150
Ji, Yao, Li (bib13) 2021; 232
Sahu, Subudhi (bib23) 2014
Loebis, Sutton, Chudley (bib18) 2004; 12
Xu, Yang, Wang (bib30) 2006; 174
Qin, Zhang, Gao (bib22) 2018
Sun, Wang, Zhang (bib25) 2019; 470
Maaref, Abazi, Dhouibi (bib19) 2016; 49
Choudhury, Kleijn, Blincoe (bib6) 2023
Chen, Guestrin (bib3) 2016
Chen, Yang, Pan (bib4) 2015; 73
Qian, Peng, Tao (bib21) 2024; 191
Zhang, Ji, Liu (bib34) 2023; 273
Zhang, Zhang, Yan, Gao, Yu (bib33) 2023; 11
Chang, Chen, Hao (bib2) 2019; 108
Jian-Bo, Jun, Jin (bib15) 2006; 36
Tabatabaei Mirhosseini, Aflatoonian (bib26) 2024; 158
Mirjalili, Lewis (bib20) 2016; 95
Shumsky, Zhirabok, Hajiyev (bib24) 2010
Baigzadehnoe, Rezaie, Rahmani (bib1) 2019; 80
Chu, Chen, Zhu (bib7) 2020; 210
Li, Li, Fang (bib16) 2023; 154
Wang, Chen, Zeng (bib28) 2024; 164
Hu, He, Sun (bib11) 2023; 216
Chen, Xu, Peng (bib5) 2022; 52
Feng, Zhou, Hu (bib8) 2019; 27
He, Cheng, Zhao (bib10) 2023; 229
Tang, Zhou, Hu (bib27) 2021; 51
He (10.1016/j.oceaneng.2025.120472_bib10) 2023; 229
Loebis (10.1016/j.oceaneng.2025.120472_bib18) 2004; 12
Chu (10.1016/j.oceaneng.2025.120472_bib7) 2020; 210
Ji (10.1016/j.oceaneng.2025.120472_bib14) 2021; 39
Wang (10.1016/j.oceaneng.2025.120472_bib28) 2024; 164
Zhao (10.1016/j.oceaneng.2025.120472_bib35) 2024; 150
Han (10.1016/j.oceaneng.2025.120472_bib9) 2022; 12
Shumsky (10.1016/j.oceaneng.2025.120472_bib24) 2010
Chen (10.1016/j.oceaneng.2025.120472_bib4) 2015; 73
Liu (10.1016/j.oceaneng.2025.120472_bib17) 2022; 243
Sun (10.1016/j.oceaneng.2025.120472_bib25) 2019; 470
Xu (10.1016/j.oceaneng.2025.120472_bib30) 2006; 174
Ji (10.1016/j.oceaneng.2025.120472_bib13) 2021; 232
Zhang (10.1016/j.oceaneng.2025.120472_bib33) 2023; 11
Qian (10.1016/j.oceaneng.2025.120472_bib21) 2024; 191
Zhang (10.1016/j.oceaneng.2025.120472_bib34) 2023; 273
Choudhury (10.1016/j.oceaneng.2025.120472_bib6) 2023
Zhou (10.1016/j.oceaneng.2025.120472_bib36) 2021; 51
Qin (10.1016/j.oceaneng.2025.120472_bib22) 2018
Jian-Bo (10.1016/j.oceaneng.2025.120472_bib15) 2006; 36
Xie (10.1016/j.oceaneng.2025.120472_bib29) 2022; 8
Mirjalili (10.1016/j.oceaneng.2025.120472_bib20) 2016; 95
Hu (10.1016/j.oceaneng.2025.120472_bib11) 2023; 216
Chen (10.1016/j.oceaneng.2025.120472_bib3) 2016
Tabatabaei Mirhosseini (10.1016/j.oceaneng.2025.120472_bib26) 2024; 158
Li (10.1016/j.oceaneng.2025.120472_bib16) 2023; 154
Yang (10.1016/j.oceaneng.2025.120472_bib31) 2011; 18
Maaref (10.1016/j.oceaneng.2025.120472_bib19) 2016; 49
Jacobo (10.1016/j.oceaneng.2025.120472_bib12) 2007; 14
Tang (10.1016/j.oceaneng.2025.120472_bib27) 2021; 51
Yang (10.1016/j.oceaneng.2025.120472_bib32) 2023; 140
Feng (10.1016/j.oceaneng.2025.120472_bib8) 2019; 27
Chang (10.1016/j.oceaneng.2025.120472_bib2) 2019; 108
Sahu (10.1016/j.oceaneng.2025.120472_bib23) 2014
Baigzadehnoe (10.1016/j.oceaneng.2025.120472_bib1) 2019; 80
Chen (10.1016/j.oceaneng.2025.120472_bib5) 2022; 52
References_xml – volume: 12
  year: 2022
  ident: bib9
  article-title: Deep belief rule based photovoltaic power forecasting method with interpretability
  publication-title: Sci. Rep.
– volume: 232
  year: 2021
  ident: bib13
  article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network
  publication-title: Ocean Eng.
– volume: 243
  year: 2022
  ident: bib17
  article-title: Review on fault diagnosis of unmanned underwater vehicles
  publication-title: Ocean Eng.
– start-page: 1
  year: 2023
  end-page: 6
  ident: bib6
  article-title: A deep learning based fault diagnosis method combining domain knowledge and transfer learning[C]
  publication-title: 2023 29th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
– volume: 140
  year: 2023
  ident: bib32
  article-title: Extended belief rule-based system using bi-level joint optimization for environmental investment forecasting
  publication-title: Appl. Soft Comput.
– volume: 8
  year: 2022
  ident: bib29
  article-title: A new unmanned aerial vehicle intrusion detection method based on belief rule base with evidential reasoning
  publication-title: Heliyon
– volume: 154
  year: 2023
  ident: bib16
  article-title: Internal fault diagnosis method for lithium batteries based on a failure physical model
  publication-title: Eng. Fail. Anal.
– volume: 51
  start-page: 4895
  year: 2021
  end-page: 4910
  ident: bib27
  article-title: Perturbation analysis of evidential reasoning rule
  publication-title: IEEE Trans. Syst. Man Cybern.: Systems
– volume: 164
  year: 2024
  ident: bib28
  article-title: A deep learning fault diagnosis method for metro on-board detection on rail corrugation
  publication-title: Eng. Fail. Anal.
– volume: 273
  year: 2023
  ident: bib34
  article-title: Autonomous underwater vehicle navigation: a review
  publication-title: Ocean Eng.
– start-page: 6067
  year: 2018
  end-page: 6072
  ident: bib22
  article-title: Sensor Fault diagnosis of autonomous underwater vehicle based on LSTM[C]
  publication-title: 2018 37th Chinese Control Conference (CCC)
– volume: 80
  start-page: 465
  year: 2019
  end-page: 474
  ident: bib1
  article-title: Fuzzy-model-based fault detection for nonlinear networked control systems with periodic access constraints and Bernoulli packet dropouts
  publication-title: Appl. Soft Comput.
– volume: 191
  start-page: 836
  year: 2024
  end-page: 851
  ident: bib21
  article-title: An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction
  publication-title: Process Saf. Environ. Protect.
– volume: 11
  start-page: 551
  year: 2023
  ident: bib33
  article-title: Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach
  publication-title: Machines
– volume: 36
  start-page: 266
  year: 2006
  end-page: 285
  ident: bib15
  article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
– volume: 49
  start-page: 1002
  year: 2016
  end-page: 1007
  ident: bib19
  article-title: Mixed approach for fault diagnosis and fault location of hybrid systems
  publication-title: IFAC-PapersOnLine
– volume: 52
  start-page: 9157
  year: 2022
  end-page: 9169
  ident: bib5
  article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge
  publication-title: IEEE Trans. Cybern.
– volume: 108
  start-page: 1
  year: 2019
  end-page: 20
  ident: bib2
  article-title: Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means
  publication-title: Int. J. Approx. Reason.
– volume: 216
  year: 2023
  ident: bib11
  article-title: Hierarchical belief rule-based model for imbalanced multi-classification
  publication-title: Expert Syst. Appl.
– start-page: 11
  year: 2010
  end-page: 16
  ident: bib24
  article-title: Observer based fault diagnosis in thrusters of autonomous underwater vehicle[C]
  publication-title: 2010 Conference on Control and Fault-Tolerant Systems (SysTol)
– year: 2016
  ident: bib3
  article-title: XGBoost: A Scalable Tree Boosting System
– volume: 210
  year: 2020
  ident: bib7
  article-title: Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV
  publication-title: Ocean Eng.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib20
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
– volume: 150
  start-page: 77
  year: 2024
  end-page: 91
  ident: bib35
  article-title: A deep belief rule base-based fault diagnosis method for complex systems
  publication-title: ISA (Instrum. Soc. Am.) Trans.
– volume: 14
  start-page: 1435
  year: 2007
  end-page: 1443
  ident: bib12
  article-title: Hybrid expert system for the failure analysis of mechanical elements
  publication-title: Eng. Fail. Anal.
– volume: 73
  start-page: 124
  year: 2015
  end-page: 133
  ident: bib4
  article-title: Identification of uncertain nonlinear systems: constructing belief rule-based models
  publication-title: Knowl. Base Syst.
– volume: 27
  start-page: 903
  year: 2019
  end-page: 916
  ident: bib8
  article-title: A new belief rule base model with attribute reliability
– volume: 39
  year: 2021
  ident: bib14
  article-title: Autonomous underwater vehicle fault diagnosis dataset
  publication-title: Data Brief
– volume: 51
  start-page: 4944
  year: 2021
  end-page: 4958
  ident: bib36
  article-title: A survey of belief rule-base expert system
  publication-title: IEEE Trans. Syst. Man Cybern.: Systems
– volume: 12
  start-page: 1531
  year: 2004
  end-page: 1539
  ident: bib18
  article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system
  publication-title: Control Eng. Pract.
– start-page: 1
  year: 2014
  end-page: 6
  ident: bib23
  article-title: The state of art of Autonomous Underwater Vehicles in current and future decades[C]
  publication-title: 2014 First International Conference on Automation, Control, Energy and Systems (ACES)
– volume: 470
  year: 2019
  ident: bib25
  article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 174
  start-page: 1914
  year: 2006
  end-page: 1943
  ident: bib30
  article-title: The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty
  publication-title: Eur. J. Oper. Res.
– volume: 158
  year: 2024
  ident: bib26
  article-title: Optimizing fracture parameters in order to select based on theoretical concepts and concrete fracture energy prediction
  publication-title: Eng. Fail. Anal.
– volume: 18
  start-page: 2084
  year: 2011
  end-page: 2092
  ident: bib31
  article-title: Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty
  publication-title: Eng. Fail. Anal.
– volume: 229
  year: 2023
  ident: bib10
  article-title: An interval construction belief rule base with interpretability for complex systems
  publication-title: Expert Syst. Appl.
– volume: 18
  start-page: 2084
  issue: 8
  year: 2011
  ident: 10.1016/j.oceaneng.2025.120472_bib31
  article-title: Risk evaluation in failure mode and effects analysis of aircraft turbine rotor blades using Dempster–Shafer evidence theory under uncertainty
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2011.06.014
– volume: 140
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib32
  article-title: Extended belief rule-based system using bi-level joint optimization for environmental investment forecasting
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110275
– volume: 158
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120472_bib26
  article-title: Optimizing fracture parameters in order to select based on theoretical concepts and concrete fracture energy prediction
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2024.108037
– start-page: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2025.120472_bib23
  article-title: The state of art of Autonomous Underwater Vehicles in current and future decades[C]
– volume: 51
  start-page: 4944
  issue: 8
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120472_bib36
  article-title: A survey of belief rule-base expert system
  publication-title: IEEE Trans. Syst. Man Cybern.: Systems
  doi: 10.1109/TSMC.2019.2944893
– start-page: 6067
  year: 2018
  ident: 10.1016/j.oceaneng.2025.120472_bib22
  article-title: Sensor Fault diagnosis of autonomous underwater vehicle based on LSTM[C]
– start-page: 11
  year: 2010
  ident: 10.1016/j.oceaneng.2025.120472_bib24
  article-title: Observer based fault diagnosis in thrusters of autonomous underwater vehicle[C]
– year: 2016
  ident: 10.1016/j.oceaneng.2025.120472_bib3
– volume: 174
  start-page: 1914
  issue: 3
  year: 2006
  ident: 10.1016/j.oceaneng.2025.120472_bib30
  article-title: The evidential reasoning approach for multi-attribute decision analysis under interval uncertainty
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2005.02.064
– volume: 8
  issue: 9
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120472_bib29
  article-title: A new unmanned aerial vehicle intrusion detection method based on belief rule base with evidential reasoning
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e10481
– volume: 108
  start-page: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120472_bib2
  article-title: Indirect disjunctive belief rule base modeling using limited conjunctive rules: two possible means
  publication-title: Int. J. Approx. Reason.
  doi: 10.1016/j.ijar.2019.02.006
– volume: 39
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120472_bib14
  article-title: Autonomous underwater vehicle fault diagnosis dataset
  publication-title: Data Brief
  doi: 10.1016/j.dib.2021.107477
– volume: 73
  start-page: 124
  year: 2015
  ident: 10.1016/j.oceaneng.2025.120472_bib4
  article-title: Identification of uncertain nonlinear systems: constructing belief rule-based models
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2014.09.010
– volume: 12
  start-page: 1531
  issue: 12
  year: 2004
  ident: 10.1016/j.oceaneng.2025.120472_bib18
  article-title: Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2003.11.008
– volume: 52
  start-page: 9157
  issue: 9
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120472_bib5
  article-title: Graph convolutional network-based method for fault diagnosis using a hybrid of measurement and prior knowledge
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3059002
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.oceaneng.2025.120472_bib20
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 154
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib16
  article-title: Internal fault diagnosis method for lithium batteries based on a failure physical model
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2023.107714
– volume: 232
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120472_bib13
  article-title: Model-free fault diagnosis for autonomous underwater vehicles using sequence Convolutional Neural Network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108874
– volume: 210
  year: 2020
  ident: 10.1016/j.oceaneng.2025.120472_bib7
  article-title: Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107570
– volume: 11
  start-page: 551
  issue: 5
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib33
  article-title: Data-Driven Fault Detection of AUV Rudder System: A Mixture Model Approach
  publication-title: Machines
  doi: 10.3390/machines11050551
– volume: 51
  start-page: 4895
  issue: 8
  year: 2021
  ident: 10.1016/j.oceaneng.2025.120472_bib27
  article-title: Perturbation analysis of evidential reasoning rule
  publication-title: IEEE Trans. Syst. Man Cybern.: Systems
  doi: 10.1109/TSMC.2019.2944640
– start-page: 1
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib6
  article-title: A deep learning based fault diagnosis method combining domain knowledge and transfer learning[C]
– volume: 150
  start-page: 77
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120472_bib35
  article-title: A deep belief rule base-based fault diagnosis method for complex systems
  publication-title: ISA (Instrum. Soc. Am.) Trans.
  doi: 10.1016/j.isatra.2024.05.019
– volume: 164
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120472_bib28
  article-title: A deep learning fault diagnosis method for metro on-board detection on rail corrugation
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2024.108662
– volume: 273
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib34
  article-title: Autonomous underwater vehicle navigation: a review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113861
– volume: 216
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib11
  article-title: Hierarchical belief rule-based model for imbalanced multi-classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119451
– volume: 243
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120472_bib17
  article-title: Review on fault diagnosis of unmanned underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.110290
– volume: 470
  issue: 1
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120472_bib25
  article-title: Fault diagnosis method of autonomous underwater vehicle based on deep learning
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 191
  start-page: 836
  year: 2024
  ident: 10.1016/j.oceaneng.2025.120472_bib21
  article-title: An evolutionary deep learning model based on XGBoost feature selection and Gaussian data augmentation for AQI prediction
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2024.08.119
– volume: 36
  start-page: 266
  issue: 2
  year: 2006
  ident: 10.1016/j.oceaneng.2025.120472_bib15
  article-title: Belief rule-base inference methodology using the evidential reasoning Approach-RIMER
  publication-title: IEEE Trans. Syst. Man Cybern. Syst. Hum.
  doi: 10.1109/TSMCA.2005.851270
– volume: 27
  start-page: 903
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120472_bib8
  article-title: A new belief rule base model with attribute reliability
– volume: 229
  year: 2023
  ident: 10.1016/j.oceaneng.2025.120472_bib10
  article-title: An interval construction belief rule base with interpretability for complex systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120485
– volume: 12
  issue: 1
  year: 2022
  ident: 10.1016/j.oceaneng.2025.120472_bib9
  article-title: Deep belief rule based photovoltaic power forecasting method with interpretability
  publication-title: Sci. Rep.
– volume: 14
  start-page: 1435
  issue: 8
  year: 2007
  ident: 10.1016/j.oceaneng.2025.120472_bib12
  article-title: Hybrid expert system for the failure analysis of mechanical elements
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2007.02.002
– volume: 49
  start-page: 1002
  issue: 12
  year: 2016
  ident: 10.1016/j.oceaneng.2025.120472_bib19
  article-title: Mixed approach for fault diagnosis and fault location of hybrid systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2016.07.573
– volume: 80
  start-page: 465
  year: 2019
  ident: 10.1016/j.oceaneng.2025.120472_bib1
  article-title: Fuzzy-model-based fault detection for nonlinear networked control systems with periodic access constraints and Bernoulli packet dropouts
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.04.023
SSID ssj0006603
Score 2.4174237
Snippet Autonomous underwater vehicles (AUVs) are sophisticated equipment designed to autonomously navigate and execute missions in complex waters, which makes them...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 120472
SubjectTerms Attribute reliability
Autonomous underwater vehicle
Belief rule base
Evidential reasoning
Fault diagnosis
Rule explosion
Title Autonomous underwater vehicle fault diagnosis model based on a deep belief rule with attribute reliability
URI https://dx.doi.org/10.1016/j.oceaneng.2025.120472
Volume 321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF1KvaggWhXrR9mD17TZzSbbHEtRqmK9WOgtbLKz2iJpiYnixd_ubD6wguDBY5LdJQyTmXlh3htCLqVRHpgAvzRmPEeEHnMU01YIWWJ1HmvNy2kN99NgMhO3c3_eIuOGC2PbKuvYX8X0MlrXdwa1NQfrxcJyfHmI8RUhTjlZzhJ-hZDWy_uf320eQeB6TZuHXb3BEl72MUWoFNInxInc7zNupRN_T1AbSed6n-zV1SIdVS90QFqQdsjOhoZgh-w-2NNr4elDshwVueUpIKCnlh-WvWMxmdE3eLYnUKOKl5zqqr9u8UrLQTjUpjJNVylVVAOsaQxYmRqaFbjD_qilKq8GYwHN8FEl7f1xRGbXV4_jiVPPU3ASBDm5o4cJB-6FgBhDKiOZUBwSXwswCVjFcumyxB0qL8Y6JdRMsxi0rzDjx8xww71j0k5XKZwQyiXnsdAK4ZUvgqFSzDNMQij8MPZBul0yaIwYrSvZjKjpJ1tGjdkja_aoMnuXhI2tox8OEGFs_2Pv6T_2npFte1XSDN1z0s6zAi6wzsjjXulIPbI1urmbTL8AWabTxQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60PfgA8Ylv9-A1bXbzao6lKK219VKht7DJzmqLxBJTxX_vbB5SQfDgdZdZwrCZ-b5l5huA60BLB7VPfxrXjuWGDrckV0YIOSB0HislimkNo7Hff3Tvpt50DXp1L4wpq6xifxnTi2hdrbQrb7YXs5np8RUhxVeiOMVkuc46NI06ldeAZncw7I-_A7Lv205d6WEMVhqF5y3KEjLF9ImoovBaXBj1xN9z1Ereud2FnQowsm75TXuwhuk-bK3ICO7D9oM5vdKePoB5d5mbVgXi9My0iGUfhCcz9o7P5gSm5fIlZ6ossZu9sWIWDjPZTLHXlEmmEBcsRgKnmmVLsjBvtUzm5WwsZBltleren4fweHsz6fWtaqSClRDPyS3VSQQKJ0SiGYHUAXelwMRTLuoEjWh5YPPE7kgnJqgSKq54jMqTlPRjroUWzhE00tcUj4GJQIjYVZIYluf6HSm5o3mAoeuFsYeBfQLt2onRolTOiOqSsnlUuz0ybo9Kt59AWPs6-nEHIgrvf9ie_sP2Cjb6k9F9dD8YD89g0-wUXYf2OTTybIkXBDvy-LK6Vl-l5dZ2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autonomous+underwater+vehicle+fault+diagnosis+model+based+on+a+deep+belief+rule+with+attribute+reliability&rft.jtitle=Ocean+engineering&rft.au=Mai%2C+Jiahao&rft.au=Huang%2C+Haolan&rft.au=Wei%2C+Fanxu&rft.au=Yang%2C+Cuiping&rft.date=2025-03-30&rft.issn=0029-8018&rft.volume=321&rft.spage=120472&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.120472&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_120472
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon