Composite Learning Based Adaptive Control of Linear 2 × 2 Hyperbolic PDE Systems
This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters....
Saved in:
Published in | IEEE transactions on cybernetics Vol. 55; no. 1; pp. 295 - 306 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme. |
---|---|
AbstractList | This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme. This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme. This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme. |
Author | Li, Hanxiong Luo, Biao Xiao, Yu Xu, Xiaodong Feng, Yun |
Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-3695-6325 surname: Xiao fullname: Xiao, Yu email: yu_xiao@csu.edu.cn organization: School of Automation, Central South University, Changsha, China – sequence: 2 givenname: Yun orcidid: 0000-0002-6512-3293 surname: Feng fullname: Feng, Yun email: fyrobot@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Biao orcidid: 0000-0002-3353-2586 surname: Luo fullname: Luo, Biao email: biao.luo@hotmail.com organization: School of Automation, Central South University, Changsha, China – sequence: 4 givenname: Hanxiong orcidid: 0000-0002-0707-5940 surname: Li fullname: Li, Hanxiong email: mehxli@cityu.edu.hk organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China – sequence: 5 givenname: Xiaodong orcidid: 0000-0003-4795-9967 surname: Xu fullname: Xu, Xiaodong email: xx1@ualberta.ca organization: School of Automation, Central South University, Changsha, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39480712$$D View this record in MEDLINE/PubMed |
BookMark | eNpNkM1Kw0AQgBep2Fr7AILIHr2k7k-SzR7bWK1QULEXT8tmM5FIko3ZVOiT-EC-mFtai3OYGYZvlp3vHA0a2wBCl5RMKSXydp2-zaeMsHDKwySKwvgEjRiNk4AxEQ2OfSyGaOLcB_GR-JFMztCQyzAhgrIReklt3VpX9oBXoLumbN7xXDvI8SzXbV9-AU5t03e2wrbAq7LxEGb459un5baFLrNVafDz3QK_bl0PtbtAp4WuHEwOdYzW94t1ugxWTw-P6WwVGBbJPjA8jjXJRG4glITo2HBJEklyQ0Ptf0ciU5gi05TlJIwkBelvzOIsiXhOjOBjdLN_tu3s5wZcr-rSGagq3YDdOMUp40QwLqhHrw_oJqshV21X1rrbqj8LHqB7wHTWuQ6KI0KJ2slWO9lqJ1sdZPudq_1OCQD_eBESLiX_BQjEeGY |
CODEN | ITCEB8 |
Cites_doi | 10.1109/TCYB.2022.3182981 10.1016/j.automatica.2017.11.032 10.1109/TAC.2018.2798704 10.1002/0471459100 10.1016/0005-1098(84)90009-8 10.1016/j.sysconle.2023.105676 10.1016/j.sysconle.2016.11.014 10.1016/j.automatica.2014.09.001 10.1137/120875739 10.1002/rnc.7311 10.1109/TNNLS.2022.3224245 10.1137/S0363012902402414 10.1016/j.automatica.2019.01.028 10.1109/TCYB.2022.3227899 10.1109/TCYB.2017.2655053 10.1109/TAC.2019.2933388 10.1016/j.automatica.2020.108824 10.1109/TSMC.2023.3256371 10.1109/TNN.2009.2030748 10.1007/978-3-030-05879-1 10.1016/0005-1098(85)90058-5 10.1109/TAC.2017.2737324 10.1016/j.automatica.2020.109379 10.1109/TCYB.2019.2946122 10.1109/TCST.2016.2631511 10.1016/j.automatica.2017.09.020 10.1109/TCYB.2023.3244559 10.1109/TAC.1987.1104543 10.1109/TAC.2023.3241830 10.1016/j.sysconle.2008.02.005 10.1109/TAC.2013.2274723 10.1016/j.arcontrol.2022.12.001 10.1137/16M1099662 10.1109/TAC.2019.2911863 10.1109/TAC.2015.2512847 10.1109/TAC.2021.3050447 10.1109/CDC49753.2023.10383834 10.1109/TCYB.2022.3223168 10.1002/acs.2297 10.1109/TAC.2015.2495232 10.1109/TSMC.2023.3296431 10.1109/CDC.2011.6160338 10.1109/TAC.2023.3326054 10.1002/acs.2945 10.1109/TAC.2017.2671343 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
DOI | 10.1109/TCYB.2024.3485546 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 2168-2275 |
EndPage | 306 |
ExternalDocumentID | 39480712 10_1109_TCYB_2024_3485546 10740399 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62473143 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China grantid: 2022JJ20082 funderid: 10.13039/501100004735 – fundername: National Key Research and Development Program of China; National Key R&D Program of China grantid: 2022YFB3304700 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG NPM 7X8 |
ID | FETCH-LOGICAL-c259t-c366a0b7dce4900a6c390890dc14a48005cfcfba12d04591e9554b6b853d0c73 |
IEDL.DBID | RIE |
ISSN | 2168-2267 2168-2275 |
IngestDate | Fri Jul 11 07:44:13 EDT 2025 Wed Mar 05 02:44:41 EST 2025 Tue Jul 01 00:54:07 EDT 2025 Wed Aug 27 02:30:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-c366a0b7dce4900a6c390890dc14a48005cfcfba12d04591e9554b6b853d0c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3695-6325 0000-0002-6512-3293 0000-0002-0707-5940 0000-0002-3353-2586 0000-0003-4795-9967 |
PMID | 39480712 |
PQID | 3123072371 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_TCYB_2024_3485546 pubmed_primary_39480712 proquest_miscellaneous_3123072371 ieee_primary_10740399 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-00-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – year: 2025 text: 2025-00-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on cybernetics |
PublicationTitleAbbrev | TCYB |
PublicationTitleAlternate | IEEE Trans Cybern |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 Ioannou (ref21) 1996; 1 ref30 ref11 ref33 ref10 ref32 Krstic (ref48) 1995; 2 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Wang (ref45) 2024 ref24 ref46 ref23 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref44 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref36 doi: 10.1109/TCYB.2022.3182981 – ident: ref37 doi: 10.1016/j.automatica.2017.11.032 – ident: ref42 doi: 10.1109/TAC.2018.2798704 – volume: 1 year: 1996 ident: ref21 publication-title: Robust Adaptive Control – ident: ref22 doi: 10.1002/0471459100 – ident: ref24 doi: 10.1016/0005-1098(84)90009-8 – ident: ref16 doi: 10.1016/j.sysconle.2023.105676 – ident: ref18 doi: 10.1016/j.sysconle.2016.11.014 – ident: ref13 doi: 10.1016/j.automatica.2014.09.001 – ident: ref8 doi: 10.1137/120875739 – ident: ref17 doi: 10.1002/rnc.7311 – ident: ref46 doi: 10.1109/TNNLS.2022.3224245 – ident: ref5 doi: 10.1137/S0363012902402414 – ident: ref44 doi: 10.1016/j.automatica.2019.01.028 – ident: ref11 doi: 10.1109/TCYB.2022.3227899 – ident: ref34 doi: 10.1109/TCYB.2017.2655053 – ident: ref43 doi: 10.1109/TAC.2019.2933388 – ident: ref2 doi: 10.1016/j.automatica.2020.108824 – ident: ref31 doi: 10.1109/TSMC.2023.3256371 – ident: ref26 doi: 10.1109/TNN.2009.2030748 – ident: ref20 doi: 10.1007/978-3-030-05879-1 – ident: ref23 doi: 10.1016/0005-1098(85)90058-5 – ident: ref40 doi: 10.1109/TAC.2017.2737324 – ident: ref1 doi: 10.1016/j.automatica.2020.109379 – ident: ref27 doi: 10.1109/TCYB.2019.2946122 – ident: ref4 doi: 10.1109/TCST.2016.2631511 – ident: ref15 doi: 10.1016/j.automatica.2017.09.020 – ident: ref29 doi: 10.1109/TCYB.2023.3244559 – ident: ref25 doi: 10.1109/TAC.1987.1104543 – ident: ref47 doi: 10.1109/TAC.2023.3241830 – ident: ref6 doi: 10.1016/j.sysconle.2008.02.005 – ident: ref9 doi: 10.1109/TAC.2013.2274723 – ident: ref38 doi: 10.1016/j.arcontrol.2022.12.001 – ident: ref19 doi: 10.1137/16M1099662 – ident: ref28 doi: 10.1109/TAC.2019.2911863 – ident: ref10 doi: 10.1109/TAC.2015.2512847 – volume-title: arXiv:2309.05596 year: 2024 ident: ref45 article-title: Safe adaptive control of hyperbolic PDE-ODE cascades – volume: 2 start-page: 69 year: 1995 ident: ref48 publication-title: Nonlinear and Adaptive Control Design – ident: ref3 doi: 10.1109/TAC.2021.3050447 – ident: ref41 doi: 10.1109/CDC49753.2023.10383834 – ident: ref14 doi: 10.1109/TCYB.2022.3223168 – ident: ref30 doi: 10.1002/acs.2297 – ident: ref35 doi: 10.1109/TAC.2015.2495232 – ident: ref12 doi: 10.1109/TSMC.2023.3296431 – ident: ref7 doi: 10.1109/CDC.2011.6160338 – ident: ref39 doi: 10.1109/TAC.2023.3326054 – ident: ref33 doi: 10.1002/acs.2945 – ident: ref32 doi: 10.1109/TAC.2017.2671343 |
SSID | ssj0000816898 |
Score | 2.3759892 |
Snippet | This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear... This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 295 |
SubjectTerms | Accuracy Adaptive control Asymptotic stability Backstepping composite learning Convergence distributed parameter system exponential convergence Iron Numerical stability Parameter estimation uncertain parameters Uncertainty Vectors |
Title | Composite Learning Based Adaptive Control of Linear 2 × 2 Hyperbolic PDE Systems |
URI | https://ieeexplore.ieee.org/document/10740399 https://www.ncbi.nlm.nih.gov/pubmed/39480712 https://www.proquest.com/docview/3123072371 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sD9KLWq1aX0TwoMK22U262xzb2lIEi0KFelo2j3oQ2tLHxT_iD_KPOcmmRQXBy5JDsuzOTDLzZV4AV6gWjKBcB5I3rJsxlIGkDDGPVsjxTIy5q7b_MIj7z_x-1Bj5ZHWXC2OMccFnpmaHzpevp2plr8rqNniQokYtQAGRW56stblQcR0kXO_bCAcBmhWJ92KGVNSHnZc2osGI1xh3kVkl2GbC5lOH0Q-V5Hqs_G1uOrXT24XB-oPzaJO32mopa-r9Vy3Hf__RHux4A5S0cokpw5aZ7EPZb_EFufZ1qG8O4MmeFTamyxBfhfWVtFHpadLS2cwek6STB7qT6ZggqMVJJCKfH_joI7ydS1tzmDzedYmvi16BYa877PQD34EhUAiLloFicZxRmWhluKA0ixWzfkKqVcgzJB5tqLEayyyMNJqGIjQCSStjiTaApiphh1CcTCfmGEjUlDpuInJvKpwpY4GWE-MoPs04Y4miVbhd8yCd5XU2UodPqEgt71LLu9TzrgoVS8pvE3MqVuFyzbYUd4l1fWQTM10tUhbagPeIJWEVjnJ-blavxeDkj7eeQimyTX_dvcsZFJfzlTlHS2QpL5wEfgH9bNR_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60gvbi-1GfETyosG2ySXebo61KfbQoVNDTsnnUg9CKthf_iD_IP-Ykm4oKgpclh2TZnZlk5su8AA5QLVhJhYmUqDs3I1ORohwxj9HI8Vz2ha-23-km7TtxeV-_D8nqPhfGWuuDz2zVDb0v3wz12F2V1VzwIEWNOg0zqPjrrEjX-rpS8T0kfPfbGAcRGhZp8GMyKmu91kMT8WAsqlz42KwyzHLpMqpZ_EMp-S4rfxucXvGcL0B38slFvMlTdTxSVf32q5rjv_9pEeaDCUpOCplZgik7WIalsMlfyWGoRH20ArfutHBRXZaEOqyPpIlqz5ATkz-7g5K0ilB3MuwThLU4icTk4x0fbQS4L8pVHSY3p2ckVEZfhd75Wa_VjkIPhkgjMBpFmidJTlVqtBWS0jzR3HkKqdFM5Eg8Wtd93Vc5iw0ah5JZiaRViUIrwFCd8jUoDYYDuwEkbiiTNBC7NzTOVIlE24kLFKBGkvNU0wocT3iQPReVNjKPUKjMHO8yx7ss8K4Cq46U3yYWVKzA_oRtGe4T5_zIB3Y4fs04cyHvMU9ZBdYLfn6tnojB5h9v3YO5dq9znV1fdK-2oBy7FsD-FmYbSqOXsd1Bu2Skdr00fgJC6tfI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Learning+Based+Adaptive+Control+of+Linear+2+%C3%97+2+Hyperbolic+PDE+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xiao%2C+Yu&rft.au=Feng%2C+Yun&rft.au=Luo%2C+Biao&rft.au=Li%2C+Hanxiong&rft.date=2025&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=55&rft.issue=1&rft.spage=295&rft.epage=306&rft_id=info:doi/10.1109%2FTCYB.2024.3485546&rft_id=info%3Apmid%2F39480712&rft.externalDocID=10740399 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |