Composite Learning Based Adaptive Control of Linear 2 × 2 Hyperbolic PDE Systems

This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 55; no. 1; pp. 295 - 306
Main Authors Xiao, Yu, Feng, Yun, Luo, Biao, Li, Hanxiong, Xu, Xiaodong
Format Journal Article
LanguageEnglish
Published United States IEEE 2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.
AbstractList This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.
This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.
This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and boundary unknown parameters. A novel adaptive controller is developed by leveraging the swapping design technique and composite parameter learning law. With swapping design, several linear and static combinations, including carefully designed filters, unknown parameters, and error terms, are constructed to express the system states. From the static combinations, a composite learning based forgetting-factor least squares law is introduced to guarantee exponential parameter convergence without the persistent excitation (PE). Although inaccurate parameter estimation in the adaptive backstepping control results in asymptotic stability of the system, accurate parameter estimation ensures the exponential convergence of closed-loop system and concomitantly improves the transient performance. Finally, a comparative numerical simulation is performed to validate the effectiveness and advantage of the developed adaptive control scheme.
Author Li, Hanxiong
Luo, Biao
Xiao, Yu
Xu, Xiaodong
Feng, Yun
Author_xml – sequence: 1
  givenname: Yu
  orcidid: 0000-0002-3695-6325
  surname: Xiao
  fullname: Xiao, Yu
  email: yu_xiao@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, China
– sequence: 2
  givenname: Yun
  orcidid: 0000-0002-6512-3293
  surname: Feng
  fullname: Feng, Yun
  email: fyrobot@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Biao
  orcidid: 0000-0002-3353-2586
  surname: Luo
  fullname: Luo, Biao
  email: biao.luo@hotmail.com
  organization: School of Automation, Central South University, Changsha, China
– sequence: 4
  givenname: Hanxiong
  orcidid: 0000-0002-0707-5940
  surname: Li
  fullname: Li, Hanxiong
  email: mehxli@cityu.edu.hk
  organization: Department of Systems Engineering, City University of Hong Kong, Hong Kong, China
– sequence: 5
  givenname: Xiaodong
  orcidid: 0000-0003-4795-9967
  surname: Xu
  fullname: Xu, Xiaodong
  email: xx1@ualberta.ca
  organization: School of Automation, Central South University, Changsha, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39480712$$D View this record in MEDLINE/PubMed
BookMark eNpNkM1Kw0AQgBep2Fr7AILIHr2k7k-SzR7bWK1QULEXT8tmM5FIko3ZVOiT-EC-mFtai3OYGYZvlp3vHA0a2wBCl5RMKSXydp2-zaeMsHDKwySKwvgEjRiNk4AxEQ2OfSyGaOLcB_GR-JFMztCQyzAhgrIReklt3VpX9oBXoLumbN7xXDvI8SzXbV9-AU5t03e2wrbAq7LxEGb459un5baFLrNVafDz3QK_bl0PtbtAp4WuHEwOdYzW94t1ugxWTw-P6WwVGBbJPjA8jjXJRG4glITo2HBJEklyQ0Ptf0ciU5gi05TlJIwkBelvzOIsiXhOjOBjdLN_tu3s5wZcr-rSGagq3YDdOMUp40QwLqhHrw_oJqshV21X1rrbqj8LHqB7wHTWuQ6KI0KJ2slWO9lqJ1sdZPudq_1OCQD_eBESLiX_BQjEeGY
CODEN ITCEB8
Cites_doi 10.1109/TCYB.2022.3182981
10.1016/j.automatica.2017.11.032
10.1109/TAC.2018.2798704
10.1002/0471459100
10.1016/0005-1098(84)90009-8
10.1016/j.sysconle.2023.105676
10.1016/j.sysconle.2016.11.014
10.1016/j.automatica.2014.09.001
10.1137/120875739
10.1002/rnc.7311
10.1109/TNNLS.2022.3224245
10.1137/S0363012902402414
10.1016/j.automatica.2019.01.028
10.1109/TCYB.2022.3227899
10.1109/TCYB.2017.2655053
10.1109/TAC.2019.2933388
10.1016/j.automatica.2020.108824
10.1109/TSMC.2023.3256371
10.1109/TNN.2009.2030748
10.1007/978-3-030-05879-1
10.1016/0005-1098(85)90058-5
10.1109/TAC.2017.2737324
10.1016/j.automatica.2020.109379
10.1109/TCYB.2019.2946122
10.1109/TCST.2016.2631511
10.1016/j.automatica.2017.09.020
10.1109/TCYB.2023.3244559
10.1109/TAC.1987.1104543
10.1109/TAC.2023.3241830
10.1016/j.sysconle.2008.02.005
10.1109/TAC.2013.2274723
10.1016/j.arcontrol.2022.12.001
10.1137/16M1099662
10.1109/TAC.2019.2911863
10.1109/TAC.2015.2512847
10.1109/TAC.2021.3050447
10.1109/CDC49753.2023.10383834
10.1109/TCYB.2022.3223168
10.1002/acs.2297
10.1109/TAC.2015.2495232
10.1109/TSMC.2023.3296431
10.1109/CDC.2011.6160338
10.1109/TAC.2023.3326054
10.1002/acs.2945
10.1109/TAC.2017.2671343
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3485546
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 306
ExternalDocumentID 39480712
10_1109_TCYB_2024_3485546
10740399
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62473143
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China
  grantid: 2022JJ20082
  funderid: 10.13039/501100004735
– fundername: National Key Research and Development Program of China; National Key R&D Program of China
  grantid: 2022YFB3304700
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
NPM
7X8
ID FETCH-LOGICAL-c259t-c366a0b7dce4900a6c390890dc14a48005cfcfba12d04591e9554b6b853d0c73
IEDL.DBID RIE
ISSN 2168-2267
2168-2275
IngestDate Fri Jul 11 07:44:13 EDT 2025
Wed Mar 05 02:44:41 EST 2025
Tue Jul 01 00:54:07 EDT 2025
Wed Aug 27 02:30:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-c366a0b7dce4900a6c390890dc14a48005cfcfba12d04591e9554b6b853d0c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3695-6325
0000-0002-6512-3293
0000-0002-0707-5940
0000-0002-3353-2586
0000-0003-4795-9967
PMID 39480712
PQID 3123072371
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCYB_2024_3485546
pubmed_primary_39480712
proquest_miscellaneous_3123072371
ieee_primary_10740399
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-00-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – year: 2025
  text: 2025-00-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
Ioannou (ref21) 1996; 1
ref30
ref11
ref33
ref10
ref32
Krstic (ref48) 1995; 2
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Wang (ref45) 2024
ref24
ref46
ref23
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref36
  doi: 10.1109/TCYB.2022.3182981
– ident: ref37
  doi: 10.1016/j.automatica.2017.11.032
– ident: ref42
  doi: 10.1109/TAC.2018.2798704
– volume: 1
  year: 1996
  ident: ref21
  publication-title: Robust Adaptive Control
– ident: ref22
  doi: 10.1002/0471459100
– ident: ref24
  doi: 10.1016/0005-1098(84)90009-8
– ident: ref16
  doi: 10.1016/j.sysconle.2023.105676
– ident: ref18
  doi: 10.1016/j.sysconle.2016.11.014
– ident: ref13
  doi: 10.1016/j.automatica.2014.09.001
– ident: ref8
  doi: 10.1137/120875739
– ident: ref17
  doi: 10.1002/rnc.7311
– ident: ref46
  doi: 10.1109/TNNLS.2022.3224245
– ident: ref5
  doi: 10.1137/S0363012902402414
– ident: ref44
  doi: 10.1016/j.automatica.2019.01.028
– ident: ref11
  doi: 10.1109/TCYB.2022.3227899
– ident: ref34
  doi: 10.1109/TCYB.2017.2655053
– ident: ref43
  doi: 10.1109/TAC.2019.2933388
– ident: ref2
  doi: 10.1016/j.automatica.2020.108824
– ident: ref31
  doi: 10.1109/TSMC.2023.3256371
– ident: ref26
  doi: 10.1109/TNN.2009.2030748
– ident: ref20
  doi: 10.1007/978-3-030-05879-1
– ident: ref23
  doi: 10.1016/0005-1098(85)90058-5
– ident: ref40
  doi: 10.1109/TAC.2017.2737324
– ident: ref1
  doi: 10.1016/j.automatica.2020.109379
– ident: ref27
  doi: 10.1109/TCYB.2019.2946122
– ident: ref4
  doi: 10.1109/TCST.2016.2631511
– ident: ref15
  doi: 10.1016/j.automatica.2017.09.020
– ident: ref29
  doi: 10.1109/TCYB.2023.3244559
– ident: ref25
  doi: 10.1109/TAC.1987.1104543
– ident: ref47
  doi: 10.1109/TAC.2023.3241830
– ident: ref6
  doi: 10.1016/j.sysconle.2008.02.005
– ident: ref9
  doi: 10.1109/TAC.2013.2274723
– ident: ref38
  doi: 10.1016/j.arcontrol.2022.12.001
– ident: ref19
  doi: 10.1137/16M1099662
– ident: ref28
  doi: 10.1109/TAC.2019.2911863
– ident: ref10
  doi: 10.1109/TAC.2015.2512847
– volume-title: arXiv:2309.05596
  year: 2024
  ident: ref45
  article-title: Safe adaptive control of hyperbolic PDE-ODE cascades
– volume: 2
  start-page: 69
  year: 1995
  ident: ref48
  publication-title: Nonlinear and Adaptive Control Design
– ident: ref3
  doi: 10.1109/TAC.2021.3050447
– ident: ref41
  doi: 10.1109/CDC49753.2023.10383834
– ident: ref14
  doi: 10.1109/TCYB.2022.3223168
– ident: ref30
  doi: 10.1002/acs.2297
– ident: ref35
  doi: 10.1109/TAC.2015.2495232
– ident: ref12
  doi: 10.1109/TSMC.2023.3296431
– ident: ref7
  doi: 10.1109/CDC.2011.6160338
– ident: ref39
  doi: 10.1109/TAC.2023.3326054
– ident: ref33
  doi: 10.1002/acs.2945
– ident: ref32
  doi: 10.1109/TAC.2017.2671343
SSID ssj0000816898
Score 2.3759892
Snippet This article considers the adaptive stability control of a class of <inline-formula> <tex-math notation="LaTeX">2\times 2 </tex-math></inline-formula> linear...
This article considers the adaptive stability control of a class of linear hyperbolic PDE systems. The PDE model is subject to constant but in-domain and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 295
SubjectTerms Accuracy
Adaptive control
Asymptotic stability
Backstepping
composite learning
Convergence
distributed parameter system
exponential convergence
Iron
Numerical stability
Parameter estimation
uncertain parameters
Uncertainty
Vectors
Title Composite Learning Based Adaptive Control of Linear 2 × 2 Hyperbolic PDE Systems
URI https://ieeexplore.ieee.org/document/10740399
https://www.ncbi.nlm.nih.gov/pubmed/39480712
https://www.proquest.com/docview/3123072371
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB5sD9KLWq1aX0TwoMK22U262xzb2lIEi0KFelo2j3oQ2tLHxT_iD_KPOcmmRQXBy5JDsuzOTDLzZV4AV6gWjKBcB5I3rJsxlIGkDDGPVsjxTIy5q7b_MIj7z_x-1Bj5ZHWXC2OMccFnpmaHzpevp2plr8rqNniQokYtQAGRW56stblQcR0kXO_bCAcBmhWJ92KGVNSHnZc2osGI1xh3kVkl2GbC5lOH0Q-V5Hqs_G1uOrXT24XB-oPzaJO32mopa-r9Vy3Hf__RHux4A5S0cokpw5aZ7EPZb_EFufZ1qG8O4MmeFTamyxBfhfWVtFHpadLS2cwek6STB7qT6ZggqMVJJCKfH_joI7ydS1tzmDzedYmvi16BYa877PQD34EhUAiLloFicZxRmWhluKA0ixWzfkKqVcgzJB5tqLEayyyMNJqGIjQCSStjiTaApiphh1CcTCfmGEjUlDpuInJvKpwpY4GWE-MoPs04Y4miVbhd8yCd5XU2UodPqEgt71LLu9TzrgoVS8pvE3MqVuFyzbYUd4l1fWQTM10tUhbagPeIJWEVjnJ-blavxeDkj7eeQimyTX_dvcsZFJfzlTlHS2QpL5wEfgH9bNR_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB60gvbi-1GfETyosG2ySXebo61KfbQoVNDTsnnUg9CKthf_iD_IP-Ykm4oKgpclh2TZnZlk5su8AA5QLVhJhYmUqDs3I1ORohwxj9HI8Vz2ha-23-km7TtxeV-_D8nqPhfGWuuDz2zVDb0v3wz12F2V1VzwIEWNOg0zqPjrrEjX-rpS8T0kfPfbGAcRGhZp8GMyKmu91kMT8WAsqlz42KwyzHLpMqpZ_EMp-S4rfxucXvGcL0B38slFvMlTdTxSVf32q5rjv_9pEeaDCUpOCplZgik7WIalsMlfyWGoRH20ArfutHBRXZaEOqyPpIlqz5ATkz-7g5K0ilB3MuwThLU4icTk4x0fbQS4L8pVHSY3p2ckVEZfhd75Wa_VjkIPhkgjMBpFmidJTlVqtBWS0jzR3HkKqdFM5Eg8Wtd93Vc5iw0ah5JZiaRViUIrwFCd8jUoDYYDuwEkbiiTNBC7NzTOVIlE24kLFKBGkvNU0wocT3iQPReVNjKPUKjMHO8yx7ss8K4Cq46U3yYWVKzA_oRtGe4T5_zIB3Y4fs04cyHvMU9ZBdYLfn6tnojB5h9v3YO5dq9znV1fdK-2oBy7FsD-FmYbSqOXsd1Bu2Skdr00fgJC6tfI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Composite+Learning+Based+Adaptive+Control+of+Linear+2+%C3%97+2+Hyperbolic+PDE+Systems&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xiao%2C+Yu&rft.au=Feng%2C+Yun&rft.au=Luo%2C+Biao&rft.au=Li%2C+Hanxiong&rft.date=2025&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=55&rft.issue=1&rft.spage=295&rft.epage=306&rft_id=info:doi/10.1109%2FTCYB.2024.3485546&rft_id=info%3Apmid%2F39480712&rft.externalDocID=10740399
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon