Determination of core and mean skin temperatures for the evaluation of thermal comfort: A comparative study
•Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin...
Saved in:
Published in | Building and environment Vol. 271; p. 112605 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 |
DOI | 10.1016/j.buildenv.2025.112605 |
Cover
Abstract | •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin temperatures found.•Mean skin temp (r = 0.677) better correlates with TSV than core temp (r = −0.047).
Core temperature (CT) and mean skin temperature (MST) are key indicators of thermal sensation. However, methods for measuring CT and calculating MST based on ISO 9886 have certain limitations. Moreover, relationships between thermal sensation vote, CT, and MST remain controversial. In this study, at an air temperature of 22.7 °C, cool, neutral, and warm conditions were created by changing the clothing insulation Icl of the subjects to 0.53 clo, 0.83 clo, and 2.53 clo, respectively. The core and local skin temperatures of 20 subjects were measured, and their thermal sensations were inquired. For the measurement of CT, this study compared the intra-abdominal temperature (tab), the recommended gold standard for CT, with CORE sensor (tco), tympanic (tty), auditory canal (tac), oral (tor), and axillary (tar) temperatures. The results showed that tco had the least difference with tab (0.21 °C) and demonstrated great sensitivity, consistency, and correlation (0.448), making it the optimal non-invasive method for CT measurement. In cool and neutral conditions, MST (4c) had the least difference with MST (14) (−0.01 °C and 0.00 °C, respectively). In warm conditions, MST (10) had the least difference with MST (14) (0.01 °C). Both MST (4c) and MST (10) exhibited strong sensitivity, consistency, and correlation (0.902 and 0.982, respectively) with MST (14). Therefore, MST (4c) was the best calculation method in cool and neutral conditions, whereas MST (10) was optimal for warm conditions. Moreover, the MST reflected changes in human thermoregulation and thermal perception more sensitively than the CT. |
---|---|
AbstractList | •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin temperatures found.•Mean skin temp (r = 0.677) better correlates with TSV than core temp (r = −0.047).
Core temperature (CT) and mean skin temperature (MST) are key indicators of thermal sensation. However, methods for measuring CT and calculating MST based on ISO 9886 have certain limitations. Moreover, relationships between thermal sensation vote, CT, and MST remain controversial. In this study, at an air temperature of 22.7 °C, cool, neutral, and warm conditions were created by changing the clothing insulation Icl of the subjects to 0.53 clo, 0.83 clo, and 2.53 clo, respectively. The core and local skin temperatures of 20 subjects were measured, and their thermal sensations were inquired. For the measurement of CT, this study compared the intra-abdominal temperature (tab), the recommended gold standard for CT, with CORE sensor (tco), tympanic (tty), auditory canal (tac), oral (tor), and axillary (tar) temperatures. The results showed that tco had the least difference with tab (0.21 °C) and demonstrated great sensitivity, consistency, and correlation (0.448), making it the optimal non-invasive method for CT measurement. In cool and neutral conditions, MST (4c) had the least difference with MST (14) (−0.01 °C and 0.00 °C, respectively). In warm conditions, MST (10) had the least difference with MST (14) (0.01 °C). Both MST (4c) and MST (10) exhibited strong sensitivity, consistency, and correlation (0.902 and 0.982, respectively) with MST (14). Therefore, MST (4c) was the best calculation method in cool and neutral conditions, whereas MST (10) was optimal for warm conditions. Moreover, the MST reflected changes in human thermoregulation and thermal perception more sensitively than the CT. |
ArticleNumber | 112605 |
Author | Jin, Yumeng Feng, Chi Hou, Siqi Gao, Shan |
Author_xml | – sequence: 1 givenname: Siqi surname: Hou fullname: Hou, Siqi email: 202315021091t@stu.cqu.edu.cn organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China – sequence: 2 givenname: Shan orcidid: 0000-0002-2653-1411 surname: Gao fullname: Gao, Shan email: gaoshan@cqu.edu.cn organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China – sequence: 3 givenname: Yumeng orcidid: 0000-0003-3251-595X surname: Jin fullname: Jin, Yumeng email: jin_ym@usts.edu.cn organization: Jiangsu Province Engineering Research Center of Construction Carbon Neutral Technology, Suzhou University of Science and Technology, Suzhou, 215011, PR China – sequence: 4 givenname: Chi surname: Feng fullname: Feng, Chi email: fengchi860602@cqu.edu.cn organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China |
BookMark | eNqFkMtOwzAQRb0oEi3wC8g_kOJHYjesqMpTqsQG1pZjj4XbxKlsJ1L_nlQFtqxmNLrnanQWaBb6AAjdUrKkhIq73bIZfGshjEtGWLWklAlSzdCccEEKyhm_RIuUdmQK17yco_0jZIidDzr7PuDeYdNHwDpY3IEOOO19wBm6A0SdhwgJuz7i_AUYRt0Of9R0iZ1uJ7qbAvker0_rQU-UHwGnPNjjNbpwuk1w8zOv0Ofz08fmtdi-v7xt1tvCsKrOhSHcEckZ1I2TpWWwErKWGlwpnSOilNzWsmpWtGr0ylQWaiKdFZYRKwwRlF8hce41sU8pglOH6Dsdj4oSddKkdupXkzppUmdNE_hwBmH6bvQQVTIeggHrI5isbO__q_gGUpN6eQ |
Cites_doi | 10.1016/j.buildenv.2009.06.018 10.1007/s12273-024-1107-8 10.1016/j.buildenv.2010.08.011 10.1016/j.buildenv.2012.07.003 10.1016/j.buildenv.2023.110639 10.1007/s004840050056 10.1007/s00484-011-0516-4 10.1016/j.enbuild.2023.113827 10.1097/00000542-200003000-00014 10.1016/j.tjem.2018.09.001 10.3390/s21175932 10.1016/j.buildenv.2020.107573 10.1016/j.jtherbio.2022.103271 10.47102/annals-acadmedsg.V37N4p347 10.1016/j.buildenv.2009.11.002 10.1152/physrev.00047.2021 10.1016/j.apm.2020.12.021 10.1146/annurev-physiol-020518-114546 10.1016/j.jtherbio.2022.103389 10.1016/j.enbuild.2020.110390 10.1016/S0897-1897(05)80158-2 10.1057/jt.2009.5 10.3390/ijerph192315883 10.1016/j.jtherbio.2013.06.006 10.1080/17461391.2023.2193953 10.1016/j.jtherbio.2023.103600 10.1080/03091900600711415 10.1016/j.buildenv.2013.12.007 10.1016/j.buildenv.2021.107857 10.11613/BM.2015.015 10.1016/j.jtherbio.2019.102410 10.3390/s24030807 10.1016/j.jtherbio.2023.103486 10.1016/j.buildenv.2023.110322 10.1152/jappl.1969.26.5.616 10.51893/2021.1.SR1 10.1016/j.buildenv.2022.109820 10.1186/s40101-017-0133-y 10.1016/j.csite.2020.100619 10.1016/j.buildenv.2023.110540 10.1016/j.jtherbio.2005.11.028 10.1016/j.jtherbio.2021.102995 10.1016/j.buildenv.2019.03.029 10.1007/s00484-017-1333-1 10.1371/journal.pone.0104320 10.1016/S0378-7788(97)00009-1 10.1016/j.pedn.2024.05.032 10.1016/j.buildenv.2023.110008 10.1016/j.enbenv.2023.06.010 10.2486/indhealth.2021-0072 10.1016/j.jemermed.2023.10.027 10.1016/j.buildenv.2024.111217 10.1080/23328940.2020.1743605 10.1016/S0304-3940(02)00374-9 10.7748/ns.24.42.42.s49 10.1016/j.buildenv.2022.109919 10.1016/j.jad.2024.01.021 10.1016/j.buildenv.2019.106292 10.1007/s12273-023-1010-8 10.1016/j.buildenv.2013.05.020 10.1016/j.cca.2005.11.007 10.2165/00007256-200232140-00001 10.1016/j.buildenv.2020.107393 10.1016/j.buildenv.2022.109888 10.1016/j.buildenv.2023.111019 10.2165/00007256-200737080-00002 10.1016/S0306-4565(99)00039-X 10.1016/j.jtherbio.2024.103907 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.buildenv.2025.112605 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_buildenv_2025_112605 S0360132325000873 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIIUN AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSH SSJ SSR SST SSZ T5K ~G- AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEUPX AFPUW AGQPQ AI. AIGII AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c259t-c03f0732e9bf74d2e86797aef47ff06473d975b815ba8c5de907fd6d20d6c0613 |
IEDL.DBID | AIKHN |
ISSN | 0360-1323 |
IngestDate | Wed Sep 10 05:47:32 EDT 2025 Sat May 24 17:06:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Thermal comfort Mean skin temperature Core temperature Thermal sensation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-c03f0732e9bf74d2e86797aef47ff06473d975b815ba8c5de907fd6d20d6c0613 |
ORCID | 0000-0003-3251-595X 0000-0002-2653-1411 |
ParticipantIDs | crossref_primary_10_1016_j_buildenv_2025_112605 elsevier_sciencedirect_doi_10_1016_j_buildenv_2025_112605 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-01 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Building and environment |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Verdel, Podlogar, Ciuha, Holmberg, Debevec, Supej (bib0034) 2021; 21 CORE, The technology behind CORE- miniaturized thermal energy transfer sensors, 2023. Luo, Xu, Tang, Yu, Zhou, Chen (bib0077) 2023; 237 Wang, Kim, Xiong, Yin (bib0052) 2019; 154 Cramer, Gagnon, Laitano, Crandall (bib0017) 2022; 102 Wu, Zhang, Liu, Cui, Cheng (bib0044) 2023; 111 Song, Zhong, Calautit, Li (bib0042) 2024 Doğan (bib0082) 2018; 18 (accessed July 6, 2024). Rajbhandary, Nallathambi (bib0025) 2020 Cutuli, See, Osawa, Ancona, Marshall, Eastwood, Glassford, Bellomo (bib0078) 2021; 23 Xu, Lian (bib0004) 2023; 230 Xu, Yang, Cao, Nie, Lian (bib0094) 2023; 114 Wang, Deng, Lei, Wang, Wang (bib0005) 2023; 228 (bib0050) 1998 Liu, Wang, Liu, Di (bib0039) 2013; 38 Wendt, van Loon, Marken Lichtenbelt (bib0010) 2007; 37 Alonso, Machin (bib0079) 2022; 24 Kato, Masuda, Nagashima (bib0028) 2021; 59 Hymczak, Gołąb, Mendrala, Plicner, Darocha, Podsiadło, Hudziak, Gocoł, Kosiński (bib0021) 2021; 18 . McCarthy, Heusch (bib0030) 2006; 30 Chen, Xu, Leow, Ghahramani (bib0063) 2023; 228 Liu, Liang, Hu (bib0091) 2021; 100 Du, Li, Liu, Yang, Yu, Liao, Huang, Xia (bib0090) 2014; 9 Lan, Lian (bib0057) 2010; 45 Fumio (bib0093) 2016; 9 Ratner (bib0067) 2009; 17 Chen, Zhu, Lin, Liu (bib0071) 2022; 19 Mayer, Caldwell, O'Brien (bib0023) 2022; 108 Chen, Younes, Farahani, Kilpeläinen, Kosonen, Ghaddar, Ghali, Melikov (bib0046) 2024; 251 Lian (bib0002) 2024; 17 Zhang, Arens, Huizenga, Han (bib0047) 2010; 45 Lee, Zhang, Arens (bib0055) 2013 Zhang, Zhu, Lu (bib0084) 2021; 197 Lan, Xia, Tang, Wyon, Liu (bib0003) 2019; 162 Giuffre, Heidenreich, Carney-Gersten, Dorsch, Heidenreich (bib0060) 1990; 3 Marui, Misawa, Tanaka, Nagashima (bib0033) 2017; 36 Daanen, Hoitinga, Kruijt, Koning, Verheijen, de Baas, Bergsma, Snethlage, Al-Bander, Teunissen (bib0029) 2024; 66 Davie, Amoore (bib0027) 2010; 24 (bib0011) 2014 Liu, Lian, Deng, Liu (bib0009) 2011; 46 D.D. Pascoe, G.J.T.i. Fisher, Comparison of measuring sites for the assessment of body temperature, 19(1) (2009) 35–42. Gao, Ooka, Oh (bib0054) 2023; 243 Desroches, Naulleau, Deshayes, Pancrate, Goulet (bib0036) 2023; 115 Bulcao, Frank, Raja, Tran, Goldstein (bib0018) 2000; 25 Gao, Ooka, Oh (bib0053) 2021; 187 Olesen (bib0087) 1984 P. Rajbhandary, G. Nallathambi, Validity and reliability of oral temperature compared to ingestible core temperature pill in free-living conditions, arXiv arxiv:2108.00537. (2021). (accessed March 8, 2024). Service, Junker, Service, Coehoorn, Harrington, Martin, Stuart-Hill (bib0059) 2023; 112 Arens, Zhang, Huizenga (bib0092) 2006; 31 Moran, Mendal (bib0032) 2002; 32 Ko, Jung, Kim, Lee (bib0019) 2019; 85 Choi, Loftness (bib0040) 2012; 58 Nakada, Horie, Kawanami, Inoue, Iijima, Sato, Abe (bib0073) 2017; 61 Zhu, Lei, Tan, Zou (bib0058) 2024; 349 (bib0085) 1977 Lim, Byrne, Lee (bib0081) 2008; 37 Xu, Wu, Lian, Xu (bib0024) 2024; 303 Ji, Gao, Wang, Tu (bib0065) 2003; 39 Azizi (bib0069) 2021; 93 Iwase, Cui, Wallin, Kamiya, Mano (bib0075) 2002; 327 Goods, Maloney, Miller, Jennings, Fahey-Gilmour, Peeling, Galna (bib0037) 2023; 23 Kaltsatou, Anifanti, Flouris, Xiromerisiou, Kouidi (bib0038) 2024; 24 Newsham (bib0051) 1997; 26 Hao, Wang, Guan, Tang, Wang (bib0041) 2023; 242 Refinetti (bib0066) 2020; 7 (bib0008) 2013 (bib0020) 2020 Oh, Ooka, Nakano, Kikumoto, Ogawa (bib0048) 2021; 190 (bib0012) 2020 (bib0013) 2013 Wu, Liu, Li, Jokisalo, Kosonen, Cheng, Zhao, Yuan (bib0043) 2020; 229 (bib0056) 2017 (bib0016) 2017 Strigo, Carli, Bushnell (bib0083) 2000; 92 Choi, Miki, Sagawa, Shiraki (bib0062) 1997; 41 (bib0049) 2023 Henderson (bib0068) 2006; 366 (bib0088) 2018 Kavlak, Aktaş (bib0026) 2024; 77 Xia, Lin, Gao, Liu, Li, Li (bib0001) 2020; 19 Wang, He, Hou, Jiang (bib0086) 2013; 67 Liu, Ogura, Hokoi, Iba (bib0076) 2023; 228 Januário, Lessa, Schittine, Prata, Marins, Natali, Wanner, Prímola-Gomes (bib0035) 2024; 123 Zhang, Cui, Wang, Zheng, Zhu (bib0006) 2023; 16 Xu, Lian (bib0007) 2024; 5 Mitchell, Wyndham (bib0061) 1969; 26 Kawanami, Horie, Inoue, Yamashita (bib0031) 2012; 56 Li, Zhang, Wang (bib0064) 2002; 28 Morrison, Nakamura (bib0089) 2019; 81 Liu, Liao, Yang, Du, Hu, Yang, Li (bib0045) 2014; 73 (bib0015) 2004 BioRender, Scientific image and illustration software. Xu, Lian (bib0022) 2024; 247 Giavarina (bib0070) 2015; 25 Liu (10.1016/j.buildenv.2025.112605_bib0076) 2023; 228 Lan (10.1016/j.buildenv.2025.112605_bib0003) 2019; 162 Giuffre (10.1016/j.buildenv.2025.112605_bib0060) 1990; 3 Xu (10.1016/j.buildenv.2025.112605_bib0007) 2024; 5 (10.1016/j.buildenv.2025.112605_bib0013) 2013 Strigo (10.1016/j.buildenv.2025.112605_bib0083) 2000; 92 Chen (10.1016/j.buildenv.2025.112605_bib0063) 2023; 228 Wang (10.1016/j.buildenv.2025.112605_bib0086) 2013; 67 Zhang (10.1016/j.buildenv.2025.112605_bib0047) 2010; 45 Gao (10.1016/j.buildenv.2025.112605_bib0054) 2023; 243 Kavlak (10.1016/j.buildenv.2025.112605_bib0026) 2024; 77 Goods (10.1016/j.buildenv.2025.112605_bib0037) 2023; 23 Lee (10.1016/j.buildenv.2025.112605_bib0055) 2013 Mayer (10.1016/j.buildenv.2025.112605_bib0023) 2022; 108 Verdel (10.1016/j.buildenv.2025.112605_bib0034) 2021; 21 Luo (10.1016/j.buildenv.2025.112605_bib0077) 2023; 237 (10.1016/j.buildenv.2025.112605_bib0020) 2020 Lan (10.1016/j.buildenv.2025.112605_bib0057) 2010; 45 Xu (10.1016/j.buildenv.2025.112605_bib0094) 2023; 114 Newsham (10.1016/j.buildenv.2025.112605_bib0051) 1997; 26 Lian (10.1016/j.buildenv.2025.112605_bib0002) 2024; 17 Cramer (10.1016/j.buildenv.2025.112605_bib0017) 2022; 102 10.1016/j.buildenv.2025.112605_bib0074 Choi (10.1016/j.buildenv.2025.112605_bib0040) 2012; 58 Oh (10.1016/j.buildenv.2025.112605_bib0048) 2021; 190 Cutuli (10.1016/j.buildenv.2025.112605_bib0078) 2021; 23 Giavarina (10.1016/j.buildenv.2025.112605_bib0070) 2015; 25 Januário (10.1016/j.buildenv.2025.112605_bib0035) 2024; 123 Olesen (10.1016/j.buildenv.2025.112605_bib0087) 1984 (10.1016/j.buildenv.2025.112605_bib0008) 2013 Hao (10.1016/j.buildenv.2025.112605_bib0041) 2023; 242 (10.1016/j.buildenv.2025.112605_bib0050) 1998 Rajbhandary (10.1016/j.buildenv.2025.112605_bib0025) 2020 Daanen (10.1016/j.buildenv.2025.112605_bib0029) 2024; 66 (10.1016/j.buildenv.2025.112605_bib0016) 2017 Henderson (10.1016/j.buildenv.2025.112605_bib0068) 2006; 366 Gao (10.1016/j.buildenv.2025.112605_bib0053) 2021; 187 Xu (10.1016/j.buildenv.2025.112605_bib0024) 2024; 303 Wang (10.1016/j.buildenv.2025.112605_bib0052) 2019; 154 (10.1016/j.buildenv.2025.112605_bib0056) 2017 10.1016/j.buildenv.2025.112605_bib0080 Du (10.1016/j.buildenv.2025.112605_bib0090) 2014; 9 Liu (10.1016/j.buildenv.2025.112605_bib0091) 2021; 100 Moran (10.1016/j.buildenv.2025.112605_bib0032) 2002; 32 Song (10.1016/j.buildenv.2025.112605_bib0042) 2024 Chen (10.1016/j.buildenv.2025.112605_bib0071) 2022; 19 Wendt (10.1016/j.buildenv.2025.112605_bib0010) 2007; 37 (10.1016/j.buildenv.2025.112605_bib0012) 2020 Wu (10.1016/j.buildenv.2025.112605_bib0044) 2023; 111 Ko (10.1016/j.buildenv.2025.112605_bib0019) 2019; 85 Wu (10.1016/j.buildenv.2025.112605_bib0043) 2020; 229 Zhang (10.1016/j.buildenv.2025.112605_bib0006) 2023; 16 (10.1016/j.buildenv.2025.112605_bib0049) 2023 (10.1016/j.buildenv.2025.112605_bib0088) 2018 Ji (10.1016/j.buildenv.2025.112605_bib0065) 2003; 39 Iwase (10.1016/j.buildenv.2025.112605_bib0075) 2002; 327 Lim (10.1016/j.buildenv.2025.112605_bib0081) 2008; 37 Chen (10.1016/j.buildenv.2025.112605_bib0046) 2024; 251 Zhu (10.1016/j.buildenv.2025.112605_bib0058) 2024; 349 Liu (10.1016/j.buildenv.2025.112605_bib0045) 2014; 73 Doğan (10.1016/j.buildenv.2025.112605_bib0082) 2018; 18 Liu (10.1016/j.buildenv.2025.112605_bib0039) 2013; 38 Hymczak (10.1016/j.buildenv.2025.112605_bib0021) 2021; 18 Mitchell (10.1016/j.buildenv.2025.112605_bib0061) 1969; 26 Davie (10.1016/j.buildenv.2025.112605_bib0027) 2010; 24 Zhang (10.1016/j.buildenv.2025.112605_bib0084) 2021; 197 Arens (10.1016/j.buildenv.2025.112605_bib0092) 2006; 31 Xu (10.1016/j.buildenv.2025.112605_bib0022) 2024; 247 10.1016/j.buildenv.2025.112605_bib0072 Alonso (10.1016/j.buildenv.2025.112605_bib0079) 2022; 24 10.1016/j.buildenv.2025.112605_bib0014 Liu (10.1016/j.buildenv.2025.112605_bib0009) 2011; 46 Desroches (10.1016/j.buildenv.2025.112605_bib0036) 2023; 115 (10.1016/j.buildenv.2025.112605_bib0015) 2004 Wang (10.1016/j.buildenv.2025.112605_bib0005) 2023; 228 Service (10.1016/j.buildenv.2025.112605_bib0059) 2023; 112 Fumio (10.1016/j.buildenv.2025.112605_bib0093) 2016; 9 Ratner (10.1016/j.buildenv.2025.112605_bib0067) 2009; 17 McCarthy (10.1016/j.buildenv.2025.112605_bib0030) 2006; 30 Kaltsatou (10.1016/j.buildenv.2025.112605_bib0038) 2024; 24 Refinetti (10.1016/j.buildenv.2025.112605_bib0066) 2020; 7 Azizi (10.1016/j.buildenv.2025.112605_bib0069) 2021; 93 Xia (10.1016/j.buildenv.2025.112605_bib0001) 2020; 19 (10.1016/j.buildenv.2025.112605_bib0085) 1977 Li (10.1016/j.buildenv.2025.112605_bib0064) 2002; 28 Morrison (10.1016/j.buildenv.2025.112605_bib0089) 2019; 81 Kato (10.1016/j.buildenv.2025.112605_bib0028) 2021; 59 (10.1016/j.buildenv.2025.112605_bib0011) 2014 Choi (10.1016/j.buildenv.2025.112605_bib0062) 1997; 41 Marui (10.1016/j.buildenv.2025.112605_bib0033) 2017; 36 Xu (10.1016/j.buildenv.2025.112605_bib0004) 2023; 230 Kawanami (10.1016/j.buildenv.2025.112605_bib0031) 2012; 56 Bulcao (10.1016/j.buildenv.2025.112605_bib0018) 2000; 25 Nakada (10.1016/j.buildenv.2025.112605_bib0073) 2017; 61 |
References_xml | – volume: 5 start-page: 829 year: 2024 end-page: 839 ident: bib0007 article-title: Optimizing bedroom thermal environment: a review of human body temperature, sleeping thermal comfort and sleep quality publication-title: Energy and Built Environ. – year: 2020 ident: bib0025 article-title: Feasibility of continuous monitoring of core body temperature using chest-worn patch sensor publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) – volume: 45 start-page: 1202 year: 2010 end-page: 1213 ident: bib0057 article-title: Application of statistical power analysis – How to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. – volume: 24 start-page: 807 year: 2024 ident: bib0038 article-title: Validity of the CALERA research sensor to assess body core temperature during maximum exercise in patients with heart failure publication-title: Sensors – volume: 58 start-page: 258 year: 2012 end-page: 269 ident: bib0040 article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations publication-title: Build. Environ. – volume: 30 start-page: 242 year: 2006 end-page: 251 ident: bib0030 article-title: The vagaries of ear temperature assessment publication-title: J. Med. Eng. Technol. – volume: 21 start-page: 5932 year: 2021 ident: bib0034 article-title: Reliability and validity of the CORE sensor to assess core body temperature during cycling exercise publication-title: Sensors – volume: 23 start-page: 1509 year: 2023 end-page: 1517 ident: bib0037 article-title: Concurrent validity of the CORE wearable sensor with BodyCap temperature pill to assess core body temperature during an elite women's field hockey heat training camp publication-title: Eur. J. Sport Sci. – volume: 303 year: 2024 ident: bib0024 article-title: Feasibility analysis of applying non-invasive core body temperature measurement in sleep research publication-title: Energy Build. – volume: 77 start-page: e616 year: 2024 end-page: e624 ident: bib0026 article-title: Comparison of two non-invasive body temperature measurement methods for the detection of febrile neutropenia in children with cancer publication-title: J. Pediatr. Nurs. – volume: 9 year: 2014 ident: bib0090 article-title: The response of Human thermal sensation and its prediction to temperature step-change (Cool-Neutral-Cool) publication-title: PLoS One – start-page: 319 year: 2014 end-page: 365 ident: bib0011 article-title: 13 - The human Thermoregulatory System and Its Response to Thermal stress, Protective Clothing: Managing Thermal Stress – reference: P. Rajbhandary, G. Nallathambi, Validity and reliability of oral temperature compared to ingestible core temperature pill in free-living conditions, arXiv arxiv:2108.00537. (2021). – reference: BioRender, Scientific image and illustration software. – volume: 23 start-page: 6 year: 2021 end-page: 13 ident: bib0078 article-title: Accuracy of non-invasive body temperature measurement methods in adult patients admitted to the intensive care unit: a systematic review and meta-analysis publication-title: Critical Care and Resuscitat. – volume: 26 start-page: 616 year: 1969 end-page: 622 ident: bib0061 article-title: Comparison of weighting formulas for calculating mean skin temperature publication-title: J. Appl. Physiol. – volume: 81 start-page: 285 year: 2019 end-page: 308 ident: bib0089 article-title: Central mechanisms for thermoregulation publication-title: Annu. Rev. Physiol. – volume: 162 year: 2019 ident: bib0003 article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation publication-title: Build. Environ. – volume: 25 start-page: 141 year: 2015 end-page: 151 ident: bib0070 article-title: Understanding bland altman analysis publication-title: Biochem Med (Zagreb) – volume: 25 start-page: 147 year: 2000 end-page: 150 ident: bib0018 article-title: Relative contribution of core and skin temperatures to thermal comfort in humans publication-title: J. Therm. Biol. – volume: 243 year: 2023 ident: bib0054 article-title: Overall and local intrinsic clothing insulation using thermal manikin: iimpact of methods employed and postures publication-title: Build. Environ. – volume: 41 start-page: 68 year: 1997 end-page: 75 ident: bib0062 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. – volume: 61 start-page: 1545 year: 2017 end-page: 1554 ident: bib0073 article-title: Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal publication-title: Int. J. Biometeorol. – volume: 228 year: 2023 ident: bib0063 article-title: Personal thermal comfort models based on physiological measurements – A design of experiments based review publication-title: Build. Environ. – start-page: 49 year: 2020 end-page: 66 ident: bib0012 article-title: Chapter 5: Thermoregulation of the Human Body, Understanding Fever and Body Temperature – year: 1998 ident: bib0050 article-title: Ergonomics of the Thermal Environment - Instruments for Measuring and Monitoring Physical Quantities – volume: 92 start-page: 699 year: 2000 end-page: 707 ident: bib0083 article-title: Effect of ambient temperature on Human pain and temperature perception publication-title: Anesthesiology – volume: 228 year: 2023 ident: bib0005 article-title: Biophysical modelling predicts unreliable core temperature responses on healthy older adults using electric fans at residential homes during heatwaves publication-title: Build. Environ. – volume: 85 year: 2019 ident: bib0019 article-title: Auditory canal temperature measurement using a wearable device during sleep: ccomparisons with rectal temperatures at 6, 10, and 14 cm depths publication-title: J. Therm. Biol. – volume: 187 year: 2021 ident: bib0053 article-title: Experimental investigation of the effect of clothing insulation on thermal comfort indices publication-title: Build. Environ. – start-page: 105 year: 2013 end-page: 135 ident: bib0013 article-title: Chapter 6: Temperature regulation, Human Body Temperature: Its Measurement and Regulation – start-page: 9.12 year: 2017 end-page: 9.13 ident: bib0056 article-title: Chapter 9: Thermal comfort, ASHRAE Handbook Fundamentals – volume: 228 year: 2023 ident: bib0076 article-title: Study on physiological response considering blood flow volume in transient and non-uniform bathing thermal environment using thermo-cardiovascular regulation model publication-title: Build. Environ. – volume: 31 start-page: 53 year: 2006 end-page: 59 ident: bib0092 article-title: Partial- and whole-body thermal sensation and comfort— Part I: uuniform environmental conditions publication-title: J. Therm. Biol. – year: 2004 ident: bib0015 article-title: Ergonomics - Evaluation of Thermal Strain By Physiological Measurements – volume: 123 year: 2024 ident: bib0035 article-title: Validity and reproducibility of the CALERA Research Sensor to estimate core temperature at different intensities of a cycling exercise in the heat publication-title: J. Therm. Biol. – volume: 366 start-page: 112 year: 2006 end-page: 129 ident: bib0068 article-title: Testing experimental data for univariate normality publication-title: Clin. Chim. Acta – volume: 3 start-page: 52 year: 1990 end-page: 55 ident: bib0060 article-title: The relationship between axillary and core body temperature measurements publication-title: Appl. Nurs. Res. – volume: 24 start-page: 42 year: 2010 ident: bib0027 article-title: Best practice in the measurement of body temperature publication-title: Nurs. Stand. – volume: 19 year: 2020 ident: bib0001 article-title: Experimental and numerical studies on indoor thermal comfort in fluid flow: a case study on primary school classrooms publication-title: Case Studies in Thermal Eng. – reference: . (accessed March 8, 2024). – year: 2024 ident: bib0042 article-title: Exploring the role of skin temperature in thermal sensation and thermal comfort: a comprehensive review publication-title: Energy and Built Environ. – volume: 93 start-page: 657 year: 2021 end-page: 683 ident: bib0069 article-title: Atomic orbital search: a novel metaheuristic algorithm publication-title: Appl. Math. Model. – volume: 108 year: 2022 ident: bib0023 article-title: Agreement of telemetric temperature capsules ingested 48 h apart publication-title: J. Therm. Biol. – volume: 251 year: 2024 ident: bib0046 article-title: Evaluating thermal response when elderly people using local cooling devices: ccorrelation among overall and local thermal sensation with skin temperature publication-title: Build. Environ. – volume: 349 start-page: 39 year: 2024 end-page: 47 ident: bib0058 article-title: Sex difference in the association between BMI and cognitive impairment in Chinese older adults publication-title: J. Affect. Disord. – volume: 154 start-page: 200 year: 2019 end-page: 210 ident: bib0052 article-title: Optimal clothing insulation in naturally ventilated buildings publication-title: Build. Environ. – volume: 17 start-page: 185 year: 2024 end-page: 188 ident: bib0002 article-title: Revisiting thermal comfort and thermal sensation publication-title: Build. Simul. – volume: 56 start-page: 1025 year: 2012 end-page: 1031 ident: bib0031 article-title: Urine temperature as an index for the core temperature of industrial workers in hot or cold environments publication-title: Int. J. Biometeorol. – volume: 46 start-page: 478 year: 2011 end-page: 488 ident: bib0009 article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study publication-title: Build. Environ. – reference: D.D. Pascoe, G.J.T.i. Fisher, Comparison of measuring sites for the assessment of body temperature, 19(1) (2009) 35–42. – volume: 66 start-page: e277 year: 2024 end-page: e283 ident: bib0029 article-title: Body core temperature assessment in Emergency care departments publication-title: J. Emerg. Med. – volume: 37 start-page: 669 year: 2007 end-page: 682 ident: bib0010 article-title: Thermoregulation during exercise in the heat publication-title: Sports Medicine – volume: 327 start-page: 37 year: 2002 end-page: 40 ident: bib0075 article-title: Effects of increased ambient temperature on skin sympathetic nerve activity and core temperature in humans publication-title: Neurosci. Lett. – volume: 28 start-page: 13 year: 2002 end-page: 18 ident: bib0064 article-title: Study on skin sensitive difference of human body sections under clothing—Multiple analysis of skin surface temperature changes publication-title: J. Donghua Univ. – start-page: 34 year: 1984 end-page: 38 ident: bib0087 article-title: How many sites are necessary to estimate a mean skin temperature publication-title: Thermal Physiol. – volume: 39 start-page: 95 year: 2003 end-page: 99 ident: bib0065 article-title: Research of the effect of air velocity on thermal comfort publication-title: J. Lanzhou Univ. (Natural Sciences) – year: 2017 ident: bib0016 article-title: Ergonomics of the Thermal Environment - Assessment of Heat Stress Using the WBGT (wet bulb Globe temperature) Index – volume: 36 start-page: 18 year: 2017 ident: bib0033 article-title: Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment publication-title: J. Physiol. Anthropol. – volume: 229 year: 2020 ident: bib0043 article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions publication-title: Energy Build. – volume: 18 start-page: 139 year: 2018 end-page: 141 ident: bib0082 article-title: Bland-Altman analysis: a paradigm to understand correlation and agreement publication-title: Turkish J. Emergency Med. – volume: 100 year: 2021 ident: bib0091 article-title: Calculation method of mean skin temperature weighted by temperature sensitivity of various parts of human body publication-title: J. Therm. Biol. – volume: 26 start-page: 283 year: 1997 end-page: 291 ident: bib0051 article-title: Clothing as a thermal comfort moderator and the effect on energy consumption publication-title: Energy Build. – volume: 24 year: 2022 ident: bib0079 article-title: Body temperature measurement uncertainty arising from ear canal geometry and temperature gradients publication-title: Measurem.: Sensors – start-page: 477 year: 2020 end-page: 498 ident: bib0020 article-title: Monitoring of Core Body Temperature in Humans, Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies – reference: . (accessed July 6, 2024). – start-page: 2013 year: 2013 ident: bib0055 article-title: Typical clothing ensemble insulation levels for sixteen body parts publication-title: CLIMA Conference – volume: 230 year: 2023 ident: bib0004 article-title: Skin temperature for thermal sensation evaluation - is it valid everywhere? publication-title: Build. Environ. – volume: 242 year: 2023 ident: bib0041 article-title: Skin temperature indexes to evaluate thermal sensation and cognitive performance in hot environments publication-title: Build. Environ. – volume: 45 start-page: 380 year: 2010 end-page: 388 ident: bib0047 article-title: Thermal sensation and comfort models for non-uniform and transient environments: ppart I: llocal sensation of individual body parts publication-title: Build. Environ. – volume: 18 start-page: 10606 year: 2021 ident: bib0021 article-title: Core temperature measurement—Principles of correct measurement publication-title: Problems, and Complicat. – reference: CORE, The technology behind CORE- miniaturized thermal energy transfer sensors, 2023. – volume: 102 start-page: 1907 year: 2022 end-page: 1989 ident: bib0017 article-title: Human temperature regulation under heat stress in health, disease, and injury publication-title: Physiol. Rev. – volume: 7 start-page: 321 year: 2020 end-page: 362 ident: bib0066 article-title: Circadian rhythmicity of body temperature and metabolism publication-title: Temperature (Austin) – volume: 38 start-page: 440 year: 2013 end-page: 448 ident: bib0039 article-title: A study of human skin and surface temperatures in stable and unstable thermal environments publication-title: J. Therm. Biol. – volume: 112 year: 2023 ident: bib0059 article-title: An assessment of the validity and reliability of the P022–P version of e-celsius core temperature capsules publication-title: J. Therm. Biol. – start-page: 249 year: 2018 end-page: 260 ident: bib0088 article-title: Chapter 15 - Thermal comfort, Handbook of Clinical Neurology – year: 2023 ident: bib0049 article-title: Thermal Environmental Conditions For Human Occupancy – volume: 37 start-page: 347 year: 2008 ident: bib0081 article-title: Human thermoregulation and measurement of body temperature in exercise and clinical settings publication-title: Annals Acad. Med. Singapore – volume: 16 start-page: 1187 year: 2023 end-page: 1201 ident: bib0006 article-title: A human comfort prediction method for indoor personnel based on time-series analysis publication-title: Build. Simul. – start-page: 69 year: 1977 end-page: 92 ident: bib0085 article-title: Heat exchange between Human skin surface and thermal environment publication-title: Compr. Physiol. – volume: 19 start-page: 15883 year: 2022 ident: bib0071 article-title: A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions publication-title: Int. J. Environ. Res. Public Health – volume: 237 year: 2023 ident: bib0077 article-title: Dynamic thermal responses and showering thermal comfort under different conditions publication-title: Build. Environ. – volume: 67 start-page: 217 year: 2013 end-page: 223 ident: bib0086 article-title: Human skin temperature and thermal responses in asymmetrical cold radiation environments publication-title: Build. Environ. – volume: 247 year: 2024 ident: bib0022 article-title: Which physiological measurements can characterize core and surface body temperature? A case study in stable thermal environment publication-title: Build. Environ. – volume: 73 start-page: 232 year: 2014 end-page: 238 ident: bib0045 article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments publication-title: Build. Environ. – volume: 190 year: 2021 ident: bib0048 article-title: Extended standard effective temperature index for water-misting environment publication-title: Build. Environ. – volume: 17 start-page: 139 year: 2009 end-page: 142 ident: bib0067 article-title: The correlation coefficient: iits values range between +1/−1, or do they? publication-title: J. Target., Measurem. Analysis for Market. – reference: . – volume: 114 year: 2023 ident: bib0094 article-title: Four kinds of body temperatures and their relationships with thermal perception publication-title: J. Therm. Biol. – start-page: 81 year: 2013 end-page: 88 ident: bib0008 article-title: Chapter 5: Temperature distribution, Human Body Temperature: Its Measurement and Regulation – volume: 9 start-page: 9 year: 2016 end-page: 17 ident: bib0093 article-title: Changes in body temperature, circulatory function, and thermal comfort during and after bathing: eeffect of room temperature (in Japanese) publication-title: Yamaguchi Prefectural Univ. Acad. Inf. – volume: 115 year: 2023 ident: bib0036 article-title: CORE™ wearable sensor: ccomparison against gastrointestinal temperature during cold water ingestion and a 5 km running time-trial publication-title: J. Therm. Biol. – volume: 197 year: 2021 ident: bib0084 article-title: Responses of human perception and skin temperature to directed thermal radiation in hot environments publication-title: Build. Environ. – volume: 59 start-page: 325 year: 2021 end-page: 333 ident: bib0028 article-title: Surgical masks do not increase the risk of heat stroke during mild exercise in hot and humid environment publication-title: Ind. Health – volume: 32 start-page: 879 year: 2002 end-page: 885 ident: bib0032 article-title: Core temperature measurement publication-title: Sports Med. – volume: 111 year: 2023 ident: bib0044 article-title: Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments publication-title: J. Therm. Biol. – volume: 45 start-page: 380 issue: 2 year: 2010 ident: 10.1016/j.buildenv.2025.112605_bib0047 article-title: Thermal sensation and comfort models for non-uniform and transient environments: ppart I: llocal sensation of individual body parts publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.06.018 – volume: 17 start-page: 185 issue: 2 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0002 article-title: Revisiting thermal comfort and thermal sensation publication-title: Build. Simul. doi: 10.1007/s12273-024-1107-8 – volume: 18 start-page: 10606 issue: 20 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0021 article-title: Core temperature measurement—Principles of correct measurement publication-title: Problems, and Complicat. – start-page: 2013 year: 2013 ident: 10.1016/j.buildenv.2025.112605_bib0055 article-title: Typical clothing ensemble insulation levels for sixteen body parts – volume: 46 start-page: 478 issue: 2 year: 2011 ident: 10.1016/j.buildenv.2025.112605_bib0009 article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study publication-title: Build. Environ. doi: 10.1016/j.buildenv.2010.08.011 – volume: 58 start-page: 258 year: 2012 ident: 10.1016/j.buildenv.2025.112605_bib0040 article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations publication-title: Build. Environ. doi: 10.1016/j.buildenv.2012.07.003 – volume: 243 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0054 article-title: Overall and local intrinsic clothing insulation using thermal manikin: iimpact of methods employed and postures publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110639 – volume: 41 start-page: 68 issue: 2 year: 1997 ident: 10.1016/j.buildenv.2025.112605_bib0062 article-title: Evaluation of mean skin temperature formulas by infrared thermography publication-title: Int. J. Biometeorol. doi: 10.1007/s004840050056 – year: 2004 ident: 10.1016/j.buildenv.2025.112605_bib0015 – ident: 10.1016/j.buildenv.2025.112605_bib0014 – volume: 56 start-page: 1025 issue: 6 year: 2012 ident: 10.1016/j.buildenv.2025.112605_bib0031 article-title: Urine temperature as an index for the core temperature of industrial workers in hot or cold environments publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-011-0516-4 – volume: 303 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0024 article-title: Feasibility analysis of applying non-invasive core body temperature measurement in sleep research publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.113827 – volume: 92 start-page: 699 issue: 3 year: 2000 ident: 10.1016/j.buildenv.2025.112605_bib0083 article-title: Effect of ambient temperature on Human pain and temperature perception publication-title: Anesthesiology doi: 10.1097/00000542-200003000-00014 – volume: 18 start-page: 139 issue: 4 year: 2018 ident: 10.1016/j.buildenv.2025.112605_bib0082 article-title: Bland-Altman analysis: a paradigm to understand correlation and agreement publication-title: Turkish J. Emergency Med. doi: 10.1016/j.tjem.2018.09.001 – volume: 21 start-page: 5932 issue: 17 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0034 article-title: Reliability and validity of the CORE sensor to assess core body temperature during cycling exercise publication-title: Sensors doi: 10.3390/s21175932 – volume: 190 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0048 article-title: Extended standard effective temperature index for water-misting environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107573 – volume: 108 year: 2022 ident: 10.1016/j.buildenv.2025.112605_bib0023 article-title: Agreement of telemetric temperature capsules ingested 48 h apart publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2022.103271 – volume: 37 start-page: 347 issue: 4 year: 2008 ident: 10.1016/j.buildenv.2025.112605_bib0081 article-title: Human thermoregulation and measurement of body temperature in exercise and clinical settings publication-title: Annals Acad. Med. Singapore doi: 10.47102/annals-acadmedsg.V37N4p347 – volume: 45 start-page: 1202 issue: 5 year: 2010 ident: 10.1016/j.buildenv.2025.112605_bib0057 article-title: Application of statistical power analysis – How to determine the right sample size in human health, comfort and productivity research publication-title: Build. Environ. doi: 10.1016/j.buildenv.2009.11.002 – start-page: 319 year: 2014 ident: 10.1016/j.buildenv.2025.112605_bib0011 – ident: 10.1016/j.buildenv.2025.112605_bib0074 – volume: 102 start-page: 1907 issue: 4 year: 2022 ident: 10.1016/j.buildenv.2025.112605_bib0017 article-title: Human temperature regulation under heat stress in health, disease, and injury publication-title: Physiol. Rev. doi: 10.1152/physrev.00047.2021 – volume: 93 start-page: 657 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0069 article-title: Atomic orbital search: a novel metaheuristic algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.021 – start-page: 34 year: 1984 ident: 10.1016/j.buildenv.2025.112605_bib0087 article-title: How many sites are necessary to estimate a mean skin temperature publication-title: Thermal Physiol. – volume: 81 start-page: 285 year: 2019 ident: 10.1016/j.buildenv.2025.112605_bib0089 article-title: Central mechanisms for thermoregulation publication-title: Annu. Rev. Physiol. doi: 10.1146/annurev-physiol-020518-114546 – volume: 111 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0044 article-title: Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2022.103389 – volume: 229 year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0043 article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110390 – volume: 3 start-page: 52 issue: 2 year: 1990 ident: 10.1016/j.buildenv.2025.112605_bib0060 article-title: The relationship between axillary and core body temperature measurements publication-title: Appl. Nurs. Res. doi: 10.1016/S0897-1897(05)80158-2 – year: 2017 ident: 10.1016/j.buildenv.2025.112605_bib0016 – ident: 10.1016/j.buildenv.2025.112605_bib0080 – volume: 17 start-page: 139 issue: 2 year: 2009 ident: 10.1016/j.buildenv.2025.112605_bib0067 article-title: The correlation coefficient: iits values range between +1/−1, or do they? publication-title: J. Target., Measurem. Analysis for Market. doi: 10.1057/jt.2009.5 – start-page: 9.12 year: 2017 ident: 10.1016/j.buildenv.2025.112605_bib0056 – volume: 19 start-page: 15883 issue: 23 year: 2022 ident: 10.1016/j.buildenv.2025.112605_bib0071 article-title: A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions publication-title: Int. J. Environ. Res. Public Health doi: 10.3390/ijerph192315883 – volume: 38 start-page: 440 issue: 7 year: 2013 ident: 10.1016/j.buildenv.2025.112605_bib0039 article-title: A study of human skin and surface temperatures in stable and unstable thermal environments publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2013.06.006 – year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0025 article-title: Feasibility of continuous monitoring of core body temperature using chest-worn patch sensor – volume: 23 start-page: 1509 issue: 8 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0037 article-title: Concurrent validity of the CORE wearable sensor with BodyCap temperature pill to assess core body temperature during an elite women's field hockey heat training camp publication-title: Eur. J. Sport Sci. doi: 10.1080/17461391.2023.2193953 – volume: 114 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0094 article-title: Four kinds of body temperatures and their relationships with thermal perception publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2023.103600 – volume: 30 start-page: 242 issue: 4 year: 2006 ident: 10.1016/j.buildenv.2025.112605_bib0030 article-title: The vagaries of ear temperature assessment publication-title: J. Med. Eng. Technol. doi: 10.1080/03091900600711415 – volume: 73 start-page: 232 year: 2014 ident: 10.1016/j.buildenv.2025.112605_bib0045 article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.12.007 – volume: 197 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0084 article-title: Responses of human perception and skin temperature to directed thermal radiation in hot environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.107857 – volume: 25 start-page: 141 issue: 2 year: 2015 ident: 10.1016/j.buildenv.2025.112605_bib0070 article-title: Understanding bland altman analysis publication-title: Biochem Med (Zagreb) doi: 10.11613/BM.2015.015 – volume: 9 start-page: 9 year: 2016 ident: 10.1016/j.buildenv.2025.112605_bib0093 article-title: Changes in body temperature, circulatory function, and thermal comfort during and after bathing: eeffect of room temperature (in Japanese) publication-title: Yamaguchi Prefectural Univ. Acad. Inf. – volume: 85 year: 2019 ident: 10.1016/j.buildenv.2025.112605_bib0019 article-title: Auditory canal temperature measurement using a wearable device during sleep: ccomparisons with rectal temperatures at 6, 10, and 14 cm depths publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2019.102410 – start-page: 249 year: 2018 ident: 10.1016/j.buildenv.2025.112605_bib0088 – volume: 24 start-page: 807 issue: 3 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0038 article-title: Validity of the CALERA research sensor to assess body core temperature during maximum exercise in patients with heart failure publication-title: Sensors doi: 10.3390/s24030807 – start-page: 105 year: 2013 ident: 10.1016/j.buildenv.2025.112605_bib0013 – start-page: 477 year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0020 – volume: 112 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0059 article-title: An assessment of the validity and reliability of the P022–P version of e-celsius core temperature capsules publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2023.103486 – volume: 237 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0077 article-title: Dynamic thermal responses and showering thermal comfort under different conditions publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110322 – year: 1998 ident: 10.1016/j.buildenv.2025.112605_bib0050 – volume: 26 start-page: 616 issue: 5 year: 1969 ident: 10.1016/j.buildenv.2025.112605_bib0061 article-title: Comparison of weighting formulas for calculating mean skin temperature publication-title: J. Appl. Physiol. doi: 10.1152/jappl.1969.26.5.616 – volume: 23 start-page: 6 issue: 1 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0078 article-title: Accuracy of non-invasive body temperature measurement methods in adult patients admitted to the intensive care unit: a systematic review and meta-analysis publication-title: Critical Care and Resuscitat. doi: 10.51893/2021.1.SR1 – year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0049 – volume: 228 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0076 article-title: Study on physiological response considering blood flow volume in transient and non-uniform bathing thermal environment using thermo-cardiovascular regulation model publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109820 – volume: 36 start-page: 18 issue: 1 year: 2017 ident: 10.1016/j.buildenv.2025.112605_bib0033 article-title: Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment publication-title: J. Physiol. Anthropol. doi: 10.1186/s40101-017-0133-y – volume: 19 year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0001 article-title: Experimental and numerical studies on indoor thermal comfort in fluid flow: a case study on primary school classrooms publication-title: Case Studies in Thermal Eng. doi: 10.1016/j.csite.2020.100619 – volume: 242 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0041 article-title: Skin temperature indexes to evaluate thermal sensation and cognitive performance in hot environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110540 – volume: 24 year: 2022 ident: 10.1016/j.buildenv.2025.112605_bib0079 article-title: Body temperature measurement uncertainty arising from ear canal geometry and temperature gradients publication-title: Measurem.: Sensors – volume: 31 start-page: 53 issue: 1 year: 2006 ident: 10.1016/j.buildenv.2025.112605_bib0092 article-title: Partial- and whole-body thermal sensation and comfort— Part I: uuniform environmental conditions publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2005.11.028 – volume: 100 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0091 article-title: Calculation method of mean skin temperature weighted by temperature sensitivity of various parts of human body publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2021.102995 – volume: 154 start-page: 200 year: 2019 ident: 10.1016/j.buildenv.2025.112605_bib0052 article-title: Optimal clothing insulation in naturally ventilated buildings publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.03.029 – start-page: 81 year: 2013 ident: 10.1016/j.buildenv.2025.112605_bib0008 – volume: 61 start-page: 1545 issue: 9 year: 2017 ident: 10.1016/j.buildenv.2025.112605_bib0073 article-title: Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal publication-title: Int. J. Biometeorol. doi: 10.1007/s00484-017-1333-1 – volume: 9 issue: 8 year: 2014 ident: 10.1016/j.buildenv.2025.112605_bib0090 article-title: The response of Human thermal sensation and its prediction to temperature step-change (Cool-Neutral-Cool) publication-title: PLoS One doi: 10.1371/journal.pone.0104320 – volume: 26 start-page: 283 issue: 3 year: 1997 ident: 10.1016/j.buildenv.2025.112605_bib0051 article-title: Clothing as a thermal comfort moderator and the effect on energy consumption publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00009-1 – volume: 77 start-page: e616 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0026 article-title: Comparison of two non-invasive body temperature measurement methods for the detection of febrile neutropenia in children with cancer publication-title: J. Pediatr. Nurs. doi: 10.1016/j.pedn.2024.05.032 – start-page: 49 year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0012 – volume: 39 start-page: 95 issue: 2 year: 2003 ident: 10.1016/j.buildenv.2025.112605_bib0065 article-title: Research of the effect of air velocity on thermal comfort publication-title: J. Lanzhou Univ. (Natural Sciences) – volume: 230 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0004 article-title: Skin temperature for thermal sensation evaluation - is it valid everywhere? publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.110008 – volume: 5 start-page: 829 issue: 6 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0007 article-title: Optimizing bedroom thermal environment: a review of human body temperature, sleeping thermal comfort and sleep quality publication-title: Energy and Built Environ. doi: 10.1016/j.enbenv.2023.06.010 – volume: 59 start-page: 325 issue: 5 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0028 article-title: Surgical masks do not increase the risk of heat stroke during mild exercise in hot and humid environment publication-title: Ind. Health doi: 10.2486/indhealth.2021-0072 – ident: 10.1016/j.buildenv.2025.112605_bib0072 – volume: 66 start-page: e277 issue: 3 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0029 article-title: Body core temperature assessment in Emergency care departments publication-title: J. Emerg. Med. doi: 10.1016/j.jemermed.2023.10.027 – volume: 251 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0046 article-title: Evaluating thermal response when elderly people using local cooling devices: ccorrelation among overall and local thermal sensation with skin temperature publication-title: Build. Environ. doi: 10.1016/j.buildenv.2024.111217 – volume: 7 start-page: 321 issue: 4 year: 2020 ident: 10.1016/j.buildenv.2025.112605_bib0066 article-title: Circadian rhythmicity of body temperature and metabolism publication-title: Temperature (Austin) doi: 10.1080/23328940.2020.1743605 – volume: 327 start-page: 37 issue: 1 year: 2002 ident: 10.1016/j.buildenv.2025.112605_bib0075 article-title: Effects of increased ambient temperature on skin sympathetic nerve activity and core temperature in humans publication-title: Neurosci. Lett. doi: 10.1016/S0304-3940(02)00374-9 – volume: 24 start-page: 42 issue: 42 year: 2010 ident: 10.1016/j.buildenv.2025.112605_bib0027 article-title: Best practice in the measurement of body temperature publication-title: Nurs. Stand. doi: 10.7748/ns.24.42.42.s49 – volume: 115 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0036 article-title: CORE™ wearable sensor: ccomparison against gastrointestinal temperature during cold water ingestion and a 5 km running time-trial publication-title: J. Therm. Biol. – volume: 228 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0063 article-title: Personal thermal comfort models based on physiological measurements – A design of experiments based review publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109919 – volume: 349 start-page: 39 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0058 article-title: Sex difference in the association between BMI and cognitive impairment in Chinese older adults publication-title: J. Affect. Disord. doi: 10.1016/j.jad.2024.01.021 – volume: 162 year: 2019 ident: 10.1016/j.buildenv.2025.112605_bib0003 article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106292 – volume: 16 start-page: 1187 issue: 7 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0006 article-title: A human comfort prediction method for indoor personnel based on time-series analysis publication-title: Build. Simul. doi: 10.1007/s12273-023-1010-8 – volume: 67 start-page: 217 year: 2013 ident: 10.1016/j.buildenv.2025.112605_bib0086 article-title: Human skin temperature and thermal responses in asymmetrical cold radiation environments publication-title: Build. Environ. doi: 10.1016/j.buildenv.2013.05.020 – volume: 366 start-page: 112 issue: 1 year: 2006 ident: 10.1016/j.buildenv.2025.112605_bib0068 article-title: Testing experimental data for univariate normality publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2005.11.007 – volume: 32 start-page: 879 issue: 14 year: 2002 ident: 10.1016/j.buildenv.2025.112605_bib0032 article-title: Core temperature measurement publication-title: Sports Med. doi: 10.2165/00007256-200232140-00001 – start-page: 69 year: 1977 ident: 10.1016/j.buildenv.2025.112605_bib0085 article-title: Heat exchange between Human skin surface and thermal environment publication-title: Compr. Physiol. – volume: 28 start-page: 13 year: 2002 ident: 10.1016/j.buildenv.2025.112605_bib0064 article-title: Study on skin sensitive difference of human body sections under clothing—Multiple analysis of skin surface temperature changes publication-title: J. Donghua Univ. – volume: 187 year: 2021 ident: 10.1016/j.buildenv.2025.112605_bib0053 article-title: Experimental investigation of the effect of clothing insulation on thermal comfort indices publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107393 – volume: 228 year: 2023 ident: 10.1016/j.buildenv.2025.112605_bib0005 article-title: Biophysical modelling predicts unreliable core temperature responses on healthy older adults using electric fans at residential homes during heatwaves publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.109888 – volume: 247 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0022 article-title: Which physiological measurements can characterize core and surface body temperature? A case study in stable thermal environment publication-title: Build. Environ. doi: 10.1016/j.buildenv.2023.111019 – year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0042 article-title: Exploring the role of skin temperature in thermal sensation and thermal comfort: a comprehensive review publication-title: Energy and Built Environ. – volume: 37 start-page: 669 issue: 8 year: 2007 ident: 10.1016/j.buildenv.2025.112605_bib0010 article-title: Thermoregulation during exercise in the heat publication-title: Sports Medicine doi: 10.2165/00007256-200737080-00002 – volume: 25 start-page: 147 issue: 1 year: 2000 ident: 10.1016/j.buildenv.2025.112605_bib0018 article-title: Relative contribution of core and skin temperatures to thermal comfort in humans publication-title: J. Therm. Biol. doi: 10.1016/S0306-4565(99)00039-X – volume: 123 year: 2024 ident: 10.1016/j.buildenv.2025.112605_bib0035 article-title: Validity and reproducibility of the CALERA Research Sensor to estimate core temperature at different intensities of a cycling exercise in the heat publication-title: J. Therm. Biol. doi: 10.1016/j.jtherbio.2024.103907 |
SSID | ssj0016934 |
Score | 2.4397805 |
Snippet | •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112605 |
SubjectTerms | Core temperature Mean skin temperature Thermal comfort Thermal sensation |
Title | Determination of core and mean skin temperatures for the evaluation of thermal comfort: A comparative study |
URI | https://dx.doi.org/10.1016/j.buildenv.2025.112605 |
Volume | 271 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywpkmdp9mqQlVAdIFK3SI7tqW2alrRwMhvx9c4tEhIDIyJckr02bn7Tr77DuCGUapR1cWRimFLjqYON07RYdTjOpNRoDUmis-jaDgOHifhpAb9qhcGyyqt7y99-sZb2zuuRdNdTafui_G9eFDgU9T0T2K_Dk3qsyhsQLP38DQcfR8mRMy3KlKegwY7jcKzjsDp0yr_MKkiDTcNNTjJ7rcYtRN3BodwYAkj6ZXfdAQ1lR_D_o6M4AnM76qaFkSZLDVBbUrCc0kWiudkPZ_mBDWorIDymhimSgzzI1utb7RCLrgw7zJYmAeKW9Ij2VYcnGyUaE9hPLh_7Q8dO0TByUxmUziZ52vzG1PFhI4DSRUq7MVc6SDWGjtNfcniUCTdUPAkC82SebGWkaSejDIM9mfQyJe5OgfCDZY8EDxORBTIwE-06ApFFTeUS_ue1wK3gi1dlVoZaVVENksroFMEOi2BbgGr0E1_rHpqHPofthf_sL2EPbwqa8muoFG8vatrQy4K0YZ657PbtlvoC8ig0Gg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMetUgZgQDxFeXpgTRMcJ07YqkJVoO1CK3Wz7NiW2qppRQMjnx1fHrRISAysiU-J_nbuzsrdzwjdxoQYoLo4SsfQkmOII6xTdGLiCZOokBoDG8X-IOyO6PM4GNdQu-qFgbLK0vcXPj331uUVt1TTXU4m7qv1vfCjwCfA9I-Yv4W2aeAzqOtrfn7XeQBspGRIeQ4M32gTnjYlnD2t0w-7USRB3k4D59j9FqE2ok7nAO2X6SJuFW90iGo6PUJ7GxDBYzR7qCpaQGO8MBjIlFikCs-1SPFqNkkxEKhKfPIK2zwV27wPr0nfYAWZ4Nw-yyphB2T3uIWTNRoc5xzaEzTqPA7bXac8QsFJ7L4mcxLPN_YjJjqWhlFFNPD1mNCGMmOgz9RXMQtkdBdIESWBnTCPGRUq4qkwgVB_iurpItVnCAurpaBSsEiGVFE_MvJOaqKFTbiM73kN5Fay8WVByuBVCdmUV0JzEJoXQjdQXKnLf8w5t-78D9vzf9jeoJ3usN_jvafBywXahTtFVdklqmdv7_rKphmZvM6X0ReLKNEz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+core+and+mean+skin+temperatures+for+the+evaluation+of+thermal+comfort%3A+A+comparative+study&rft.jtitle=Building+and+environment&rft.au=Hou%2C+Siqi&rft.au=Gao%2C+Shan&rft.au=Jin%2C+Yumeng&rft.au=Feng%2C+Chi&rft.date=2025-03-01&rft.issn=0360-1323&rft.volume=271&rft.spage=112605&rft_id=info:doi/10.1016%2Fj.buildenv.2025.112605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2025_112605 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |