Determination of core and mean skin temperatures for the evaluation of thermal comfort: A comparative study

•Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 271; p. 112605
Main Authors Hou, Siqi, Gao, Shan, Jin, Yumeng, Feng, Chi
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0360-1323
DOI10.1016/j.buildenv.2025.112605

Cover

Abstract •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin temperatures found.•Mean skin temp (r = 0.677) better correlates with TSV than core temp (r = −0.047). Core temperature (CT) and mean skin temperature (MST) are key indicators of thermal sensation. However, methods for measuring CT and calculating MST based on ISO 9886 have certain limitations. Moreover, relationships between thermal sensation vote, CT, and MST remain controversial. In this study, at an air temperature of 22.7 °C, cool, neutral, and warm conditions were created by changing the clothing insulation Icl of the subjects to 0.53 clo, 0.83 clo, and 2.53 clo, respectively. The core and local skin temperatures of 20 subjects were measured, and their thermal sensations were inquired. For the measurement of CT, this study compared the intra-abdominal temperature (tab), the recommended gold standard for CT, with CORE sensor (tco), tympanic (tty), auditory canal (tac), oral (tor), and axillary (tar) temperatures. The results showed that tco had the least difference with tab (0.21 °C) and demonstrated great sensitivity, consistency, and correlation (0.448), making it the optimal non-invasive method for CT measurement. In cool and neutral conditions, MST (4c) had the least difference with MST (14) (−0.01 °C and 0.00 °C, respectively). In warm conditions, MST (10) had the least difference with MST (14) (0.01 °C). Both MST (4c) and MST (10) exhibited strong sensitivity, consistency, and correlation (0.902 and 0.982, respectively) with MST (14). Therefore, MST (4c) was the best calculation method in cool and neutral conditions, whereas MST (10) was optimal for warm conditions. Moreover, the MST reflected changes in human thermoregulation and thermal perception more sensitively than the CT.
AbstractList •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement methods.•Mean skin temperature measured by 4 and 10 points methods was the most accurate.•Relationships of standard and other methods for core and skin temperatures found.•Mean skin temp (r = 0.677) better correlates with TSV than core temp (r = −0.047). Core temperature (CT) and mean skin temperature (MST) are key indicators of thermal sensation. However, methods for measuring CT and calculating MST based on ISO 9886 have certain limitations. Moreover, relationships between thermal sensation vote, CT, and MST remain controversial. In this study, at an air temperature of 22.7 °C, cool, neutral, and warm conditions were created by changing the clothing insulation Icl of the subjects to 0.53 clo, 0.83 clo, and 2.53 clo, respectively. The core and local skin temperatures of 20 subjects were measured, and their thermal sensations were inquired. For the measurement of CT, this study compared the intra-abdominal temperature (tab), the recommended gold standard for CT, with CORE sensor (tco), tympanic (tty), auditory canal (tac), oral (tor), and axillary (tar) temperatures. The results showed that tco had the least difference with tab (0.21 °C) and demonstrated great sensitivity, consistency, and correlation (0.448), making it the optimal non-invasive method for CT measurement. In cool and neutral conditions, MST (4c) had the least difference with MST (14) (−0.01 °C and 0.00 °C, respectively). In warm conditions, MST (10) had the least difference with MST (14) (0.01 °C). Both MST (4c) and MST (10) exhibited strong sensitivity, consistency, and correlation (0.902 and 0.982, respectively) with MST (14). Therefore, MST (4c) was the best calculation method in cool and neutral conditions, whereas MST (10) was optimal for warm conditions. Moreover, the MST reflected changes in human thermoregulation and thermal perception more sensitively than the CT.
ArticleNumber 112605
Author Jin, Yumeng
Feng, Chi
Hou, Siqi
Gao, Shan
Author_xml – sequence: 1
  givenname: Siqi
  surname: Hou
  fullname: Hou, Siqi
  email: 202315021091t@stu.cqu.edu.cn
  organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China
– sequence: 2
  givenname: Shan
  orcidid: 0000-0002-2653-1411
  surname: Gao
  fullname: Gao, Shan
  email: gaoshan@cqu.edu.cn
  organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China
– sequence: 3
  givenname: Yumeng
  orcidid: 0000-0003-3251-595X
  surname: Jin
  fullname: Jin, Yumeng
  email: jin_ym@usts.edu.cn
  organization: Jiangsu Province Engineering Research Center of Construction Carbon Neutral Technology, Suzhou University of Science and Technology, Suzhou, 215011, PR China
– sequence: 4
  givenname: Chi
  surname: Feng
  fullname: Feng, Chi
  email: fengchi860602@cqu.edu.cn
  organization: School of Architecture and Urban Planning, Chongqing University, Chongqing, 400045, PR China
BookMark eNqFkMtOwzAQRb0oEi3wC8g_kOJHYjesqMpTqsQG1pZjj4XbxKlsJ1L_nlQFtqxmNLrnanQWaBb6AAjdUrKkhIq73bIZfGshjEtGWLWklAlSzdCccEEKyhm_RIuUdmQK17yco_0jZIidDzr7PuDeYdNHwDpY3IEOOO19wBm6A0SdhwgJuz7i_AUYRt0Of9R0iZ1uJ7qbAvker0_rQU-UHwGnPNjjNbpwuk1w8zOv0Ofz08fmtdi-v7xt1tvCsKrOhSHcEckZ1I2TpWWwErKWGlwpnSOilNzWsmpWtGr0ylQWaiKdFZYRKwwRlF8hce41sU8pglOH6Dsdj4oSddKkdupXkzppUmdNE_hwBmH6bvQQVTIeggHrI5isbO__q_gGUpN6eQ
Cites_doi 10.1016/j.buildenv.2009.06.018
10.1007/s12273-024-1107-8
10.1016/j.buildenv.2010.08.011
10.1016/j.buildenv.2012.07.003
10.1016/j.buildenv.2023.110639
10.1007/s004840050056
10.1007/s00484-011-0516-4
10.1016/j.enbuild.2023.113827
10.1097/00000542-200003000-00014
10.1016/j.tjem.2018.09.001
10.3390/s21175932
10.1016/j.buildenv.2020.107573
10.1016/j.jtherbio.2022.103271
10.47102/annals-acadmedsg.V37N4p347
10.1016/j.buildenv.2009.11.002
10.1152/physrev.00047.2021
10.1016/j.apm.2020.12.021
10.1146/annurev-physiol-020518-114546
10.1016/j.jtherbio.2022.103389
10.1016/j.enbuild.2020.110390
10.1016/S0897-1897(05)80158-2
10.1057/jt.2009.5
10.3390/ijerph192315883
10.1016/j.jtherbio.2013.06.006
10.1080/17461391.2023.2193953
10.1016/j.jtherbio.2023.103600
10.1080/03091900600711415
10.1016/j.buildenv.2013.12.007
10.1016/j.buildenv.2021.107857
10.11613/BM.2015.015
10.1016/j.jtherbio.2019.102410
10.3390/s24030807
10.1016/j.jtherbio.2023.103486
10.1016/j.buildenv.2023.110322
10.1152/jappl.1969.26.5.616
10.51893/2021.1.SR1
10.1016/j.buildenv.2022.109820
10.1186/s40101-017-0133-y
10.1016/j.csite.2020.100619
10.1016/j.buildenv.2023.110540
10.1016/j.jtherbio.2005.11.028
10.1016/j.jtherbio.2021.102995
10.1016/j.buildenv.2019.03.029
10.1007/s00484-017-1333-1
10.1371/journal.pone.0104320
10.1016/S0378-7788(97)00009-1
10.1016/j.pedn.2024.05.032
10.1016/j.buildenv.2023.110008
10.1016/j.enbenv.2023.06.010
10.2486/indhealth.2021-0072
10.1016/j.jemermed.2023.10.027
10.1016/j.buildenv.2024.111217
10.1080/23328940.2020.1743605
10.1016/S0304-3940(02)00374-9
10.7748/ns.24.42.42.s49
10.1016/j.buildenv.2022.109919
10.1016/j.jad.2024.01.021
10.1016/j.buildenv.2019.106292
10.1007/s12273-023-1010-8
10.1016/j.buildenv.2013.05.020
10.1016/j.cca.2005.11.007
10.2165/00007256-200232140-00001
10.1016/j.buildenv.2020.107393
10.1016/j.buildenv.2022.109888
10.1016/j.buildenv.2023.111019
10.2165/00007256-200737080-00002
10.1016/S0306-4565(99)00039-X
10.1016/j.jtherbio.2024.103907
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2025.112605
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_buildenv_2025_112605
S0360132325000873
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIIUN
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
LY6
LY7
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSH
SSJ
SSR
SST
SSZ
T5K
~G-
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AKBMS
AKYEP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
SAC
SET
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c259t-c03f0732e9bf74d2e86797aef47ff06473d975b815ba8c5de907fd6d20d6c0613
IEDL.DBID AIKHN
ISSN 0360-1323
IngestDate Wed Sep 10 05:47:32 EDT 2025
Sat May 24 17:06:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Thermal comfort
Mean skin temperature
Core temperature
Thermal sensation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-c03f0732e9bf74d2e86797aef47ff06473d975b815ba8c5de907fd6d20d6c0613
ORCID 0000-0003-3251-595X
0000-0002-2653-1411
ParticipantIDs crossref_primary_10_1016_j_buildenv_2025_112605
elsevier_sciencedirect_doi_10_1016_j_buildenv_2025_112605
PublicationCentury 2000
PublicationDate 2025-03-01
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Verdel, Podlogar, Ciuha, Holmberg, Debevec, Supej (bib0034) 2021; 21
CORE, The technology behind CORE- miniaturized thermal energy transfer sensors, 2023.
Luo, Xu, Tang, Yu, Zhou, Chen (bib0077) 2023; 237
Wang, Kim, Xiong, Yin (bib0052) 2019; 154
Cramer, Gagnon, Laitano, Crandall (bib0017) 2022; 102
Wu, Zhang, Liu, Cui, Cheng (bib0044) 2023; 111
Song, Zhong, Calautit, Li (bib0042) 2024
Doğan (bib0082) 2018; 18
(accessed July 6, 2024).
Rajbhandary, Nallathambi (bib0025) 2020
Cutuli, See, Osawa, Ancona, Marshall, Eastwood, Glassford, Bellomo (bib0078) 2021; 23
Xu, Lian (bib0004) 2023; 230
Xu, Yang, Cao, Nie, Lian (bib0094) 2023; 114
Wang, Deng, Lei, Wang, Wang (bib0005) 2023; 228
(bib0050) 1998
Liu, Wang, Liu, Di (bib0039) 2013; 38
Wendt, van Loon, Marken Lichtenbelt (bib0010) 2007; 37
Alonso, Machin (bib0079) 2022; 24
Kato, Masuda, Nagashima (bib0028) 2021; 59
Hymczak, Gołąb, Mendrala, Plicner, Darocha, Podsiadło, Hudziak, Gocoł, Kosiński (bib0021) 2021; 18
.
McCarthy, Heusch (bib0030) 2006; 30
Chen, Xu, Leow, Ghahramani (bib0063) 2023; 228
Liu, Liang, Hu (bib0091) 2021; 100
Du, Li, Liu, Yang, Yu, Liao, Huang, Xia (bib0090) 2014; 9
Lan, Lian (bib0057) 2010; 45
Fumio (bib0093) 2016; 9
Ratner (bib0067) 2009; 17
Chen, Zhu, Lin, Liu (bib0071) 2022; 19
Mayer, Caldwell, O'Brien (bib0023) 2022; 108
Chen, Younes, Farahani, Kilpeläinen, Kosonen, Ghaddar, Ghali, Melikov (bib0046) 2024; 251
Lian (bib0002) 2024; 17
Zhang, Arens, Huizenga, Han (bib0047) 2010; 45
Lee, Zhang, Arens (bib0055) 2013
Zhang, Zhu, Lu (bib0084) 2021; 197
Lan, Xia, Tang, Wyon, Liu (bib0003) 2019; 162
Giuffre, Heidenreich, Carney-Gersten, Dorsch, Heidenreich (bib0060) 1990; 3
Marui, Misawa, Tanaka, Nagashima (bib0033) 2017; 36
Daanen, Hoitinga, Kruijt, Koning, Verheijen, de Baas, Bergsma, Snethlage, Al-Bander, Teunissen (bib0029) 2024; 66
Davie, Amoore (bib0027) 2010; 24
(bib0011) 2014
Liu, Lian, Deng, Liu (bib0009) 2011; 46
D.D. Pascoe, G.J.T.i. Fisher, Comparison of measuring sites for the assessment of body temperature, 19(1) (2009) 35–42.
Gao, Ooka, Oh (bib0054) 2023; 243
Desroches, Naulleau, Deshayes, Pancrate, Goulet (bib0036) 2023; 115
Bulcao, Frank, Raja, Tran, Goldstein (bib0018) 2000; 25
Gao, Ooka, Oh (bib0053) 2021; 187
Olesen (bib0087) 1984
P. Rajbhandary, G. Nallathambi, Validity and reliability of oral temperature compared to ingestible core temperature pill in free-living conditions, arXiv arxiv:2108.00537. (2021).
(accessed March 8, 2024).
Service, Junker, Service, Coehoorn, Harrington, Martin, Stuart-Hill (bib0059) 2023; 112
Arens, Zhang, Huizenga (bib0092) 2006; 31
Moran, Mendal (bib0032) 2002; 32
Ko, Jung, Kim, Lee (bib0019) 2019; 85
Choi, Loftness (bib0040) 2012; 58
Nakada, Horie, Kawanami, Inoue, Iijima, Sato, Abe (bib0073) 2017; 61
Zhu, Lei, Tan, Zou (bib0058) 2024; 349
(bib0085) 1977
Lim, Byrne, Lee (bib0081) 2008; 37
Xu, Wu, Lian, Xu (bib0024) 2024; 303
Ji, Gao, Wang, Tu (bib0065) 2003; 39
Azizi (bib0069) 2021; 93
Iwase, Cui, Wallin, Kamiya, Mano (bib0075) 2002; 327
Goods, Maloney, Miller, Jennings, Fahey-Gilmour, Peeling, Galna (bib0037) 2023; 23
Kaltsatou, Anifanti, Flouris, Xiromerisiou, Kouidi (bib0038) 2024; 24
Newsham (bib0051) 1997; 26
Hao, Wang, Guan, Tang, Wang (bib0041) 2023; 242
Refinetti (bib0066) 2020; 7
(bib0008) 2013
(bib0020) 2020
Oh, Ooka, Nakano, Kikumoto, Ogawa (bib0048) 2021; 190
(bib0012) 2020
(bib0013) 2013
Wu, Liu, Li, Jokisalo, Kosonen, Cheng, Zhao, Yuan (bib0043) 2020; 229
(bib0056) 2017
(bib0016) 2017
Strigo, Carli, Bushnell (bib0083) 2000; 92
Choi, Miki, Sagawa, Shiraki (bib0062) 1997; 41
(bib0049) 2023
Henderson (bib0068) 2006; 366
(bib0088) 2018
Kavlak, Aktaş (bib0026) 2024; 77
Xia, Lin, Gao, Liu, Li, Li (bib0001) 2020; 19
Wang, He, Hou, Jiang (bib0086) 2013; 67
Liu, Ogura, Hokoi, Iba (bib0076) 2023; 228
Januário, Lessa, Schittine, Prata, Marins, Natali, Wanner, Prímola-Gomes (bib0035) 2024; 123
Zhang, Cui, Wang, Zheng, Zhu (bib0006) 2023; 16
Xu, Lian (bib0007) 2024; 5
Mitchell, Wyndham (bib0061) 1969; 26
Kawanami, Horie, Inoue, Yamashita (bib0031) 2012; 56
Li, Zhang, Wang (bib0064) 2002; 28
Morrison, Nakamura (bib0089) 2019; 81
Liu, Liao, Yang, Du, Hu, Yang, Li (bib0045) 2014; 73
(bib0015) 2004
BioRender, Scientific image and illustration software.
Xu, Lian (bib0022) 2024; 247
Giavarina (bib0070) 2015; 25
Liu (10.1016/j.buildenv.2025.112605_bib0076) 2023; 228
Lan (10.1016/j.buildenv.2025.112605_bib0003) 2019; 162
Giuffre (10.1016/j.buildenv.2025.112605_bib0060) 1990; 3
Xu (10.1016/j.buildenv.2025.112605_bib0007) 2024; 5
(10.1016/j.buildenv.2025.112605_bib0013) 2013
Strigo (10.1016/j.buildenv.2025.112605_bib0083) 2000; 92
Chen (10.1016/j.buildenv.2025.112605_bib0063) 2023; 228
Wang (10.1016/j.buildenv.2025.112605_bib0086) 2013; 67
Zhang (10.1016/j.buildenv.2025.112605_bib0047) 2010; 45
Gao (10.1016/j.buildenv.2025.112605_bib0054) 2023; 243
Kavlak (10.1016/j.buildenv.2025.112605_bib0026) 2024; 77
Goods (10.1016/j.buildenv.2025.112605_bib0037) 2023; 23
Lee (10.1016/j.buildenv.2025.112605_bib0055) 2013
Mayer (10.1016/j.buildenv.2025.112605_bib0023) 2022; 108
Verdel (10.1016/j.buildenv.2025.112605_bib0034) 2021; 21
Luo (10.1016/j.buildenv.2025.112605_bib0077) 2023; 237
(10.1016/j.buildenv.2025.112605_bib0020) 2020
Lan (10.1016/j.buildenv.2025.112605_bib0057) 2010; 45
Xu (10.1016/j.buildenv.2025.112605_bib0094) 2023; 114
Newsham (10.1016/j.buildenv.2025.112605_bib0051) 1997; 26
Lian (10.1016/j.buildenv.2025.112605_bib0002) 2024; 17
Cramer (10.1016/j.buildenv.2025.112605_bib0017) 2022; 102
10.1016/j.buildenv.2025.112605_bib0074
Choi (10.1016/j.buildenv.2025.112605_bib0040) 2012; 58
Oh (10.1016/j.buildenv.2025.112605_bib0048) 2021; 190
Cutuli (10.1016/j.buildenv.2025.112605_bib0078) 2021; 23
Giavarina (10.1016/j.buildenv.2025.112605_bib0070) 2015; 25
Januário (10.1016/j.buildenv.2025.112605_bib0035) 2024; 123
Olesen (10.1016/j.buildenv.2025.112605_bib0087) 1984
(10.1016/j.buildenv.2025.112605_bib0008) 2013
Hao (10.1016/j.buildenv.2025.112605_bib0041) 2023; 242
(10.1016/j.buildenv.2025.112605_bib0050) 1998
Rajbhandary (10.1016/j.buildenv.2025.112605_bib0025) 2020
Daanen (10.1016/j.buildenv.2025.112605_bib0029) 2024; 66
(10.1016/j.buildenv.2025.112605_bib0016) 2017
Henderson (10.1016/j.buildenv.2025.112605_bib0068) 2006; 366
Gao (10.1016/j.buildenv.2025.112605_bib0053) 2021; 187
Xu (10.1016/j.buildenv.2025.112605_bib0024) 2024; 303
Wang (10.1016/j.buildenv.2025.112605_bib0052) 2019; 154
(10.1016/j.buildenv.2025.112605_bib0056) 2017
10.1016/j.buildenv.2025.112605_bib0080
Du (10.1016/j.buildenv.2025.112605_bib0090) 2014; 9
Liu (10.1016/j.buildenv.2025.112605_bib0091) 2021; 100
Moran (10.1016/j.buildenv.2025.112605_bib0032) 2002; 32
Song (10.1016/j.buildenv.2025.112605_bib0042) 2024
Chen (10.1016/j.buildenv.2025.112605_bib0071) 2022; 19
Wendt (10.1016/j.buildenv.2025.112605_bib0010) 2007; 37
(10.1016/j.buildenv.2025.112605_bib0012) 2020
Wu (10.1016/j.buildenv.2025.112605_bib0044) 2023; 111
Ko (10.1016/j.buildenv.2025.112605_bib0019) 2019; 85
Wu (10.1016/j.buildenv.2025.112605_bib0043) 2020; 229
Zhang (10.1016/j.buildenv.2025.112605_bib0006) 2023; 16
(10.1016/j.buildenv.2025.112605_bib0049) 2023
(10.1016/j.buildenv.2025.112605_bib0088) 2018
Ji (10.1016/j.buildenv.2025.112605_bib0065) 2003; 39
Iwase (10.1016/j.buildenv.2025.112605_bib0075) 2002; 327
Lim (10.1016/j.buildenv.2025.112605_bib0081) 2008; 37
Chen (10.1016/j.buildenv.2025.112605_bib0046) 2024; 251
Zhu (10.1016/j.buildenv.2025.112605_bib0058) 2024; 349
Liu (10.1016/j.buildenv.2025.112605_bib0045) 2014; 73
Doğan (10.1016/j.buildenv.2025.112605_bib0082) 2018; 18
Liu (10.1016/j.buildenv.2025.112605_bib0039) 2013; 38
Hymczak (10.1016/j.buildenv.2025.112605_bib0021) 2021; 18
Mitchell (10.1016/j.buildenv.2025.112605_bib0061) 1969; 26
Davie (10.1016/j.buildenv.2025.112605_bib0027) 2010; 24
Zhang (10.1016/j.buildenv.2025.112605_bib0084) 2021; 197
Arens (10.1016/j.buildenv.2025.112605_bib0092) 2006; 31
Xu (10.1016/j.buildenv.2025.112605_bib0022) 2024; 247
10.1016/j.buildenv.2025.112605_bib0072
Alonso (10.1016/j.buildenv.2025.112605_bib0079) 2022; 24
10.1016/j.buildenv.2025.112605_bib0014
Liu (10.1016/j.buildenv.2025.112605_bib0009) 2011; 46
Desroches (10.1016/j.buildenv.2025.112605_bib0036) 2023; 115
(10.1016/j.buildenv.2025.112605_bib0015) 2004
Wang (10.1016/j.buildenv.2025.112605_bib0005) 2023; 228
Service (10.1016/j.buildenv.2025.112605_bib0059) 2023; 112
Fumio (10.1016/j.buildenv.2025.112605_bib0093) 2016; 9
Ratner (10.1016/j.buildenv.2025.112605_bib0067) 2009; 17
McCarthy (10.1016/j.buildenv.2025.112605_bib0030) 2006; 30
Kaltsatou (10.1016/j.buildenv.2025.112605_bib0038) 2024; 24
Refinetti (10.1016/j.buildenv.2025.112605_bib0066) 2020; 7
Azizi (10.1016/j.buildenv.2025.112605_bib0069) 2021; 93
Xia (10.1016/j.buildenv.2025.112605_bib0001) 2020; 19
(10.1016/j.buildenv.2025.112605_bib0085) 1977
Li (10.1016/j.buildenv.2025.112605_bib0064) 2002; 28
Morrison (10.1016/j.buildenv.2025.112605_bib0089) 2019; 81
Kato (10.1016/j.buildenv.2025.112605_bib0028) 2021; 59
(10.1016/j.buildenv.2025.112605_bib0011) 2014
Choi (10.1016/j.buildenv.2025.112605_bib0062) 1997; 41
Marui (10.1016/j.buildenv.2025.112605_bib0033) 2017; 36
Xu (10.1016/j.buildenv.2025.112605_bib0004) 2023; 230
Kawanami (10.1016/j.buildenv.2025.112605_bib0031) 2012; 56
Bulcao (10.1016/j.buildenv.2025.112605_bib0018) 2000; 25
Nakada (10.1016/j.buildenv.2025.112605_bib0073) 2017; 61
References_xml – volume: 5
  start-page: 829
  year: 2024
  end-page: 839
  ident: bib0007
  article-title: Optimizing bedroom thermal environment: a review of human body temperature, sleeping thermal comfort and sleep quality
  publication-title: Energy and Built Environ.
– year: 2020
  ident: bib0025
  article-title: Feasibility of continuous monitoring of core body temperature using chest-worn patch sensor
  publication-title: 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)
– volume: 45
  start-page: 1202
  year: 2010
  end-page: 1213
  ident: bib0057
  article-title: Application of statistical power analysis – How to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
– volume: 24
  start-page: 807
  year: 2024
  ident: bib0038
  article-title: Validity of the CALERA research sensor to assess body core temperature during maximum exercise in patients with heart failure
  publication-title: Sensors
– volume: 58
  start-page: 258
  year: 2012
  end-page: 269
  ident: bib0040
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
– volume: 30
  start-page: 242
  year: 2006
  end-page: 251
  ident: bib0030
  article-title: The vagaries of ear temperature assessment
  publication-title: J. Med. Eng. Technol.
– volume: 21
  start-page: 5932
  year: 2021
  ident: bib0034
  article-title: Reliability and validity of the CORE sensor to assess core body temperature during cycling exercise
  publication-title: Sensors
– volume: 23
  start-page: 1509
  year: 2023
  end-page: 1517
  ident: bib0037
  article-title: Concurrent validity of the CORE wearable sensor with BodyCap temperature pill to assess core body temperature during an elite women's field hockey heat training camp
  publication-title: Eur. J. Sport Sci.
– volume: 303
  year: 2024
  ident: bib0024
  article-title: Feasibility analysis of applying non-invasive core body temperature measurement in sleep research
  publication-title: Energy Build.
– volume: 77
  start-page: e616
  year: 2024
  end-page: e624
  ident: bib0026
  article-title: Comparison of two non-invasive body temperature measurement methods for the detection of febrile neutropenia in children with cancer
  publication-title: J. Pediatr. Nurs.
– volume: 9
  year: 2014
  ident: bib0090
  article-title: The response of Human thermal sensation and its prediction to temperature step-change (Cool-Neutral-Cool)
  publication-title: PLoS One
– start-page: 319
  year: 2014
  end-page: 365
  ident: bib0011
  article-title: 13 - The human Thermoregulatory System and Its Response to Thermal stress, Protective Clothing: Managing Thermal Stress
– reference: P. Rajbhandary, G. Nallathambi, Validity and reliability of oral temperature compared to ingestible core temperature pill in free-living conditions, arXiv arxiv:2108.00537. (2021).
– reference: BioRender, Scientific image and illustration software.
– volume: 23
  start-page: 6
  year: 2021
  end-page: 13
  ident: bib0078
  article-title: Accuracy of non-invasive body temperature measurement methods in adult patients admitted to the intensive care unit: a systematic review and meta-analysis
  publication-title: Critical Care and Resuscitat.
– volume: 26
  start-page: 616
  year: 1969
  end-page: 622
  ident: bib0061
  article-title: Comparison of weighting formulas for calculating mean skin temperature
  publication-title: J. Appl. Physiol.
– volume: 81
  start-page: 285
  year: 2019
  end-page: 308
  ident: bib0089
  article-title: Central mechanisms for thermoregulation
  publication-title: Annu. Rev. Physiol.
– volume: 162
  year: 2019
  ident: bib0003
  article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation
  publication-title: Build. Environ.
– volume: 25
  start-page: 141
  year: 2015
  end-page: 151
  ident: bib0070
  article-title: Understanding bland altman analysis
  publication-title: Biochem Med (Zagreb)
– volume: 25
  start-page: 147
  year: 2000
  end-page: 150
  ident: bib0018
  article-title: Relative contribution of core and skin temperatures to thermal comfort in humans
  publication-title: J. Therm. Biol.
– volume: 243
  year: 2023
  ident: bib0054
  article-title: Overall and local intrinsic clothing insulation using thermal manikin: iimpact of methods employed and postures
  publication-title: Build. Environ.
– volume: 41
  start-page: 68
  year: 1997
  end-page: 75
  ident: bib0062
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
– volume: 61
  start-page: 1545
  year: 2017
  end-page: 1554
  ident: bib0073
  article-title: Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal
  publication-title: Int. J. Biometeorol.
– volume: 228
  year: 2023
  ident: bib0063
  article-title: Personal thermal comfort models based on physiological measurements – A design of experiments based review
  publication-title: Build. Environ.
– start-page: 49
  year: 2020
  end-page: 66
  ident: bib0012
  article-title: Chapter 5: Thermoregulation of the Human Body, Understanding Fever and Body Temperature
– year: 1998
  ident: bib0050
  article-title: Ergonomics of the Thermal Environment - Instruments for Measuring and Monitoring Physical Quantities
– volume: 92
  start-page: 699
  year: 2000
  end-page: 707
  ident: bib0083
  article-title: Effect of ambient temperature on Human pain and temperature perception
  publication-title: Anesthesiology
– volume: 228
  year: 2023
  ident: bib0005
  article-title: Biophysical modelling predicts unreliable core temperature responses on healthy older adults using electric fans at residential homes during heatwaves
  publication-title: Build. Environ.
– volume: 85
  year: 2019
  ident: bib0019
  article-title: Auditory canal temperature measurement using a wearable device during sleep: ccomparisons with rectal temperatures at 6, 10, and 14 cm depths
  publication-title: J. Therm. Biol.
– volume: 187
  year: 2021
  ident: bib0053
  article-title: Experimental investigation of the effect of clothing insulation on thermal comfort indices
  publication-title: Build. Environ.
– start-page: 105
  year: 2013
  end-page: 135
  ident: bib0013
  article-title: Chapter 6: Temperature regulation, Human Body Temperature: Its Measurement and Regulation
– start-page: 9.12
  year: 2017
  end-page: 9.13
  ident: bib0056
  article-title: Chapter 9: Thermal comfort, ASHRAE Handbook Fundamentals
– volume: 228
  year: 2023
  ident: bib0076
  article-title: Study on physiological response considering blood flow volume in transient and non-uniform bathing thermal environment using thermo-cardiovascular regulation model
  publication-title: Build. Environ.
– volume: 31
  start-page: 53
  year: 2006
  end-page: 59
  ident: bib0092
  article-title: Partial- and whole-body thermal sensation and comfort— Part I: uuniform environmental conditions
  publication-title: J. Therm. Biol.
– year: 2004
  ident: bib0015
  article-title: Ergonomics - Evaluation of Thermal Strain By Physiological Measurements
– volume: 123
  year: 2024
  ident: bib0035
  article-title: Validity and reproducibility of the CALERA Research Sensor to estimate core temperature at different intensities of a cycling exercise in the heat
  publication-title: J. Therm. Biol.
– volume: 366
  start-page: 112
  year: 2006
  end-page: 129
  ident: bib0068
  article-title: Testing experimental data for univariate normality
  publication-title: Clin. Chim. Acta
– volume: 3
  start-page: 52
  year: 1990
  end-page: 55
  ident: bib0060
  article-title: The relationship between axillary and core body temperature measurements
  publication-title: Appl. Nurs. Res.
– volume: 24
  start-page: 42
  year: 2010
  ident: bib0027
  article-title: Best practice in the measurement of body temperature
  publication-title: Nurs. Stand.
– volume: 19
  year: 2020
  ident: bib0001
  article-title: Experimental and numerical studies on indoor thermal comfort in fluid flow: a case study on primary school classrooms
  publication-title: Case Studies in Thermal Eng.
– reference: . (accessed March 8, 2024).
– year: 2024
  ident: bib0042
  article-title: Exploring the role of skin temperature in thermal sensation and thermal comfort: a comprehensive review
  publication-title: Energy and Built Environ.
– volume: 93
  start-page: 657
  year: 2021
  end-page: 683
  ident: bib0069
  article-title: Atomic orbital search: a novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
– volume: 108
  year: 2022
  ident: bib0023
  article-title: Agreement of telemetric temperature capsules ingested 48 h apart
  publication-title: J. Therm. Biol.
– volume: 251
  year: 2024
  ident: bib0046
  article-title: Evaluating thermal response when elderly people using local cooling devices: ccorrelation among overall and local thermal sensation with skin temperature
  publication-title: Build. Environ.
– volume: 349
  start-page: 39
  year: 2024
  end-page: 47
  ident: bib0058
  article-title: Sex difference in the association between BMI and cognitive impairment in Chinese older adults
  publication-title: J. Affect. Disord.
– volume: 154
  start-page: 200
  year: 2019
  end-page: 210
  ident: bib0052
  article-title: Optimal clothing insulation in naturally ventilated buildings
  publication-title: Build. Environ.
– volume: 17
  start-page: 185
  year: 2024
  end-page: 188
  ident: bib0002
  article-title: Revisiting thermal comfort and thermal sensation
  publication-title: Build. Simul.
– volume: 56
  start-page: 1025
  year: 2012
  end-page: 1031
  ident: bib0031
  article-title: Urine temperature as an index for the core temperature of industrial workers in hot or cold environments
  publication-title: Int. J. Biometeorol.
– volume: 46
  start-page: 478
  year: 2011
  end-page: 488
  ident: bib0009
  article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
  publication-title: Build. Environ.
– reference: D.D. Pascoe, G.J.T.i. Fisher, Comparison of measuring sites for the assessment of body temperature, 19(1) (2009) 35–42.
– volume: 66
  start-page: e277
  year: 2024
  end-page: e283
  ident: bib0029
  article-title: Body core temperature assessment in Emergency care departments
  publication-title: J. Emerg. Med.
– volume: 37
  start-page: 669
  year: 2007
  end-page: 682
  ident: bib0010
  article-title: Thermoregulation during exercise in the heat
  publication-title: Sports Medicine
– volume: 327
  start-page: 37
  year: 2002
  end-page: 40
  ident: bib0075
  article-title: Effects of increased ambient temperature on skin sympathetic nerve activity and core temperature in humans
  publication-title: Neurosci. Lett.
– volume: 28
  start-page: 13
  year: 2002
  end-page: 18
  ident: bib0064
  article-title: Study on skin sensitive difference of human body sections under clothing—Multiple analysis of skin surface temperature changes
  publication-title: J. Donghua Univ.
– start-page: 34
  year: 1984
  end-page: 38
  ident: bib0087
  article-title: How many sites are necessary to estimate a mean skin temperature
  publication-title: Thermal Physiol.
– volume: 39
  start-page: 95
  year: 2003
  end-page: 99
  ident: bib0065
  article-title: Research of the effect of air velocity on thermal comfort
  publication-title: J. Lanzhou Univ. (Natural Sciences)
– year: 2017
  ident: bib0016
  article-title: Ergonomics of the Thermal Environment - Assessment of Heat Stress Using the WBGT (wet bulb Globe temperature) Index
– volume: 36
  start-page: 18
  year: 2017
  ident: bib0033
  article-title: Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment
  publication-title: J. Physiol. Anthropol.
– volume: 229
  year: 2020
  ident: bib0043
  article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions
  publication-title: Energy Build.
– volume: 18
  start-page: 139
  year: 2018
  end-page: 141
  ident: bib0082
  article-title: Bland-Altman analysis: a paradigm to understand correlation and agreement
  publication-title: Turkish J. Emergency Med.
– volume: 100
  year: 2021
  ident: bib0091
  article-title: Calculation method of mean skin temperature weighted by temperature sensitivity of various parts of human body
  publication-title: J. Therm. Biol.
– volume: 26
  start-page: 283
  year: 1997
  end-page: 291
  ident: bib0051
  article-title: Clothing as a thermal comfort moderator and the effect on energy consumption
  publication-title: Energy Build.
– volume: 24
  year: 2022
  ident: bib0079
  article-title: Body temperature measurement uncertainty arising from ear canal geometry and temperature gradients
  publication-title: Measurem.: Sensors
– start-page: 477
  year: 2020
  end-page: 498
  ident: bib0020
  article-title: Monitoring of Core Body Temperature in Humans, Stress Challenges and Immunity in Space: From Mechanisms to Monitoring and Preventive Strategies
– reference: . (accessed July 6, 2024).
– start-page: 2013
  year: 2013
  ident: bib0055
  article-title: Typical clothing ensemble insulation levels for sixteen body parts
  publication-title: CLIMA Conference
– volume: 230
  year: 2023
  ident: bib0004
  article-title: Skin temperature for thermal sensation evaluation - is it valid everywhere?
  publication-title: Build. Environ.
– volume: 242
  year: 2023
  ident: bib0041
  article-title: Skin temperature indexes to evaluate thermal sensation and cognitive performance in hot environments
  publication-title: Build. Environ.
– volume: 45
  start-page: 380
  year: 2010
  end-page: 388
  ident: bib0047
  article-title: Thermal sensation and comfort models for non-uniform and transient environments: ppart I: llocal sensation of individual body parts
  publication-title: Build. Environ.
– volume: 18
  start-page: 10606
  year: 2021
  ident: bib0021
  article-title: Core temperature measurement—Principles of correct measurement
  publication-title: Problems, and Complicat.
– reference: CORE, The technology behind CORE- miniaturized thermal energy transfer sensors, 2023.
– volume: 102
  start-page: 1907
  year: 2022
  end-page: 1989
  ident: bib0017
  article-title: Human temperature regulation under heat stress in health, disease, and injury
  publication-title: Physiol. Rev.
– volume: 7
  start-page: 321
  year: 2020
  end-page: 362
  ident: bib0066
  article-title: Circadian rhythmicity of body temperature and metabolism
  publication-title: Temperature (Austin)
– volume: 38
  start-page: 440
  year: 2013
  end-page: 448
  ident: bib0039
  article-title: A study of human skin and surface temperatures in stable and unstable thermal environments
  publication-title: J. Therm. Biol.
– volume: 112
  year: 2023
  ident: bib0059
  article-title: An assessment of the validity and reliability of the P022–P version of e-celsius core temperature capsules
  publication-title: J. Therm. Biol.
– start-page: 249
  year: 2018
  end-page: 260
  ident: bib0088
  article-title: Chapter 15 - Thermal comfort, Handbook of Clinical Neurology
– year: 2023
  ident: bib0049
  article-title: Thermal Environmental Conditions For Human Occupancy
– volume: 37
  start-page: 347
  year: 2008
  ident: bib0081
  article-title: Human thermoregulation and measurement of body temperature in exercise and clinical settings
  publication-title: Annals Acad. Med. Singapore
– volume: 16
  start-page: 1187
  year: 2023
  end-page: 1201
  ident: bib0006
  article-title: A human comfort prediction method for indoor personnel based on time-series analysis
  publication-title: Build. Simul.
– start-page: 69
  year: 1977
  end-page: 92
  ident: bib0085
  article-title: Heat exchange between Human skin surface and thermal environment
  publication-title: Compr. Physiol.
– volume: 19
  start-page: 15883
  year: 2022
  ident: bib0071
  article-title: A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions
  publication-title: Int. J. Environ. Res. Public Health
– volume: 237
  year: 2023
  ident: bib0077
  article-title: Dynamic thermal responses and showering thermal comfort under different conditions
  publication-title: Build. Environ.
– volume: 67
  start-page: 217
  year: 2013
  end-page: 223
  ident: bib0086
  article-title: Human skin temperature and thermal responses in asymmetrical cold radiation environments
  publication-title: Build. Environ.
– volume: 247
  year: 2024
  ident: bib0022
  article-title: Which physiological measurements can characterize core and surface body temperature? A case study in stable thermal environment
  publication-title: Build. Environ.
– volume: 73
  start-page: 232
  year: 2014
  end-page: 238
  ident: bib0045
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
– volume: 190
  year: 2021
  ident: bib0048
  article-title: Extended standard effective temperature index for water-misting environment
  publication-title: Build. Environ.
– volume: 17
  start-page: 139
  year: 2009
  end-page: 142
  ident: bib0067
  article-title: The correlation coefficient: iits values range between +1/−1, or do they?
  publication-title: J. Target., Measurem. Analysis for Market.
– reference: .
– volume: 114
  year: 2023
  ident: bib0094
  article-title: Four kinds of body temperatures and their relationships with thermal perception
  publication-title: J. Therm. Biol.
– start-page: 81
  year: 2013
  end-page: 88
  ident: bib0008
  article-title: Chapter 5: Temperature distribution, Human Body Temperature: Its Measurement and Regulation
– volume: 9
  start-page: 9
  year: 2016
  end-page: 17
  ident: bib0093
  article-title: Changes in body temperature, circulatory function, and thermal comfort during and after bathing: eeffect of room temperature (in Japanese)
  publication-title: Yamaguchi Prefectural Univ. Acad. Inf.
– volume: 115
  year: 2023
  ident: bib0036
  article-title: CORE™ wearable sensor: ccomparison against gastrointestinal temperature during cold water ingestion and a 5 km running time-trial
  publication-title: J. Therm. Biol.
– volume: 197
  year: 2021
  ident: bib0084
  article-title: Responses of human perception and skin temperature to directed thermal radiation in hot environments
  publication-title: Build. Environ.
– volume: 59
  start-page: 325
  year: 2021
  end-page: 333
  ident: bib0028
  article-title: Surgical masks do not increase the risk of heat stroke during mild exercise in hot and humid environment
  publication-title: Ind. Health
– volume: 32
  start-page: 879
  year: 2002
  end-page: 885
  ident: bib0032
  article-title: Core temperature measurement
  publication-title: Sports Med.
– volume: 111
  year: 2023
  ident: bib0044
  article-title: Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments
  publication-title: J. Therm. Biol.
– volume: 45
  start-page: 380
  issue: 2
  year: 2010
  ident: 10.1016/j.buildenv.2025.112605_bib0047
  article-title: Thermal sensation and comfort models for non-uniform and transient environments: ppart I: llocal sensation of individual body parts
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.06.018
– volume: 17
  start-page: 185
  issue: 2
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0002
  article-title: Revisiting thermal comfort and thermal sensation
  publication-title: Build. Simul.
  doi: 10.1007/s12273-024-1107-8
– volume: 18
  start-page: 10606
  issue: 20
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0021
  article-title: Core temperature measurement—Principles of correct measurement
  publication-title: Problems, and Complicat.
– start-page: 2013
  year: 2013
  ident: 10.1016/j.buildenv.2025.112605_bib0055
  article-title: Typical clothing ensemble insulation levels for sixteen body parts
– volume: 46
  start-page: 478
  issue: 2
  year: 2011
  ident: 10.1016/j.buildenv.2025.112605_bib0009
  article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2010.08.011
– volume: 58
  start-page: 258
  year: 2012
  ident: 10.1016/j.buildenv.2025.112605_bib0040
  article-title: Investigation of human body skin temperatures as a bio-signal to indicate overall thermal sensations
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2012.07.003
– volume: 243
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0054
  article-title: Overall and local intrinsic clothing insulation using thermal manikin: iimpact of methods employed and postures
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110639
– volume: 41
  start-page: 68
  issue: 2
  year: 1997
  ident: 10.1016/j.buildenv.2025.112605_bib0062
  article-title: Evaluation of mean skin temperature formulas by infrared thermography
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s004840050056
– year: 2004
  ident: 10.1016/j.buildenv.2025.112605_bib0015
– ident: 10.1016/j.buildenv.2025.112605_bib0014
– volume: 56
  start-page: 1025
  issue: 6
  year: 2012
  ident: 10.1016/j.buildenv.2025.112605_bib0031
  article-title: Urine temperature as an index for the core temperature of industrial workers in hot or cold environments
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-011-0516-4
– volume: 303
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0024
  article-title: Feasibility analysis of applying non-invasive core body temperature measurement in sleep research
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.113827
– volume: 92
  start-page: 699
  issue: 3
  year: 2000
  ident: 10.1016/j.buildenv.2025.112605_bib0083
  article-title: Effect of ambient temperature on Human pain and temperature perception
  publication-title: Anesthesiology
  doi: 10.1097/00000542-200003000-00014
– volume: 18
  start-page: 139
  issue: 4
  year: 2018
  ident: 10.1016/j.buildenv.2025.112605_bib0082
  article-title: Bland-Altman analysis: a paradigm to understand correlation and agreement
  publication-title: Turkish J. Emergency Med.
  doi: 10.1016/j.tjem.2018.09.001
– volume: 21
  start-page: 5932
  issue: 17
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0034
  article-title: Reliability and validity of the CORE sensor to assess core body temperature during cycling exercise
  publication-title: Sensors
  doi: 10.3390/s21175932
– volume: 190
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0048
  article-title: Extended standard effective temperature index for water-misting environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107573
– volume: 108
  year: 2022
  ident: 10.1016/j.buildenv.2025.112605_bib0023
  article-title: Agreement of telemetric temperature capsules ingested 48 h apart
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2022.103271
– volume: 37
  start-page: 347
  issue: 4
  year: 2008
  ident: 10.1016/j.buildenv.2025.112605_bib0081
  article-title: Human thermoregulation and measurement of body temperature in exercise and clinical settings
  publication-title: Annals Acad. Med. Singapore
  doi: 10.47102/annals-acadmedsg.V37N4p347
– volume: 45
  start-page: 1202
  issue: 5
  year: 2010
  ident: 10.1016/j.buildenv.2025.112605_bib0057
  article-title: Application of statistical power analysis – How to determine the right sample size in human health, comfort and productivity research
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2009.11.002
– start-page: 319
  year: 2014
  ident: 10.1016/j.buildenv.2025.112605_bib0011
– ident: 10.1016/j.buildenv.2025.112605_bib0074
– volume: 102
  start-page: 1907
  issue: 4
  year: 2022
  ident: 10.1016/j.buildenv.2025.112605_bib0017
  article-title: Human temperature regulation under heat stress in health, disease, and injury
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00047.2021
– volume: 93
  start-page: 657
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0069
  article-title: Atomic orbital search: a novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.12.021
– start-page: 34
  year: 1984
  ident: 10.1016/j.buildenv.2025.112605_bib0087
  article-title: How many sites are necessary to estimate a mean skin temperature
  publication-title: Thermal Physiol.
– volume: 81
  start-page: 285
  year: 2019
  ident: 10.1016/j.buildenv.2025.112605_bib0089
  article-title: Central mechanisms for thermoregulation
  publication-title: Annu. Rev. Physiol.
  doi: 10.1146/annurev-physiol-020518-114546
– volume: 111
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0044
  article-title: Optimal local skin temperatures for mean skin temperature estimation and thermal comfort prediction of seated person in thermally stratified environments
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2022.103389
– volume: 229
  year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0043
  article-title: Evaluation and modification of the weighting formulas for mean skin temperature of human body in winter conditions
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110390
– volume: 3
  start-page: 52
  issue: 2
  year: 1990
  ident: 10.1016/j.buildenv.2025.112605_bib0060
  article-title: The relationship between axillary and core body temperature measurements
  publication-title: Appl. Nurs. Res.
  doi: 10.1016/S0897-1897(05)80158-2
– year: 2017
  ident: 10.1016/j.buildenv.2025.112605_bib0016
– ident: 10.1016/j.buildenv.2025.112605_bib0080
– volume: 17
  start-page: 139
  issue: 2
  year: 2009
  ident: 10.1016/j.buildenv.2025.112605_bib0067
  article-title: The correlation coefficient: iits values range between +1/−1, or do they?
  publication-title: J. Target., Measurem. Analysis for Market.
  doi: 10.1057/jt.2009.5
– start-page: 9.12
  year: 2017
  ident: 10.1016/j.buildenv.2025.112605_bib0056
– volume: 19
  start-page: 15883
  issue: 23
  year: 2022
  ident: 10.1016/j.buildenv.2025.112605_bib0071
  article-title: A comparative study of forehead temperature and core body temperature under varying ambient temperature conditions
  publication-title: Int. J. Environ. Res. Public Health
  doi: 10.3390/ijerph192315883
– volume: 38
  start-page: 440
  issue: 7
  year: 2013
  ident: 10.1016/j.buildenv.2025.112605_bib0039
  article-title: A study of human skin and surface temperatures in stable and unstable thermal environments
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2013.06.006
– year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0025
  article-title: Feasibility of continuous monitoring of core body temperature using chest-worn patch sensor
– volume: 23
  start-page: 1509
  issue: 8
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0037
  article-title: Concurrent validity of the CORE wearable sensor with BodyCap temperature pill to assess core body temperature during an elite women's field hockey heat training camp
  publication-title: Eur. J. Sport Sci.
  doi: 10.1080/17461391.2023.2193953
– volume: 114
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0094
  article-title: Four kinds of body temperatures and their relationships with thermal perception
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2023.103600
– volume: 30
  start-page: 242
  issue: 4
  year: 2006
  ident: 10.1016/j.buildenv.2025.112605_bib0030
  article-title: The vagaries of ear temperature assessment
  publication-title: J. Med. Eng. Technol.
  doi: 10.1080/03091900600711415
– volume: 73
  start-page: 232
  year: 2014
  ident: 10.1016/j.buildenv.2025.112605_bib0045
  article-title: The response of human thermal perception and skin temperature to step-change transient thermal environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.12.007
– volume: 197
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0084
  article-title: Responses of human perception and skin temperature to directed thermal radiation in hot environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2021.107857
– volume: 25
  start-page: 141
  issue: 2
  year: 2015
  ident: 10.1016/j.buildenv.2025.112605_bib0070
  article-title: Understanding bland altman analysis
  publication-title: Biochem Med (Zagreb)
  doi: 10.11613/BM.2015.015
– volume: 9
  start-page: 9
  year: 2016
  ident: 10.1016/j.buildenv.2025.112605_bib0093
  article-title: Changes in body temperature, circulatory function, and thermal comfort during and after bathing: eeffect of room temperature (in Japanese)
  publication-title: Yamaguchi Prefectural Univ. Acad. Inf.
– volume: 85
  year: 2019
  ident: 10.1016/j.buildenv.2025.112605_bib0019
  article-title: Auditory canal temperature measurement using a wearable device during sleep: ccomparisons with rectal temperatures at 6, 10, and 14 cm depths
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2019.102410
– start-page: 249
  year: 2018
  ident: 10.1016/j.buildenv.2025.112605_bib0088
– volume: 24
  start-page: 807
  issue: 3
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0038
  article-title: Validity of the CALERA research sensor to assess body core temperature during maximum exercise in patients with heart failure
  publication-title: Sensors
  doi: 10.3390/s24030807
– start-page: 105
  year: 2013
  ident: 10.1016/j.buildenv.2025.112605_bib0013
– start-page: 477
  year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0020
– volume: 112
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0059
  article-title: An assessment of the validity and reliability of the P022–P version of e-celsius core temperature capsules
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2023.103486
– volume: 237
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0077
  article-title: Dynamic thermal responses and showering thermal comfort under different conditions
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110322
– year: 1998
  ident: 10.1016/j.buildenv.2025.112605_bib0050
– volume: 26
  start-page: 616
  issue: 5
  year: 1969
  ident: 10.1016/j.buildenv.2025.112605_bib0061
  article-title: Comparison of weighting formulas for calculating mean skin temperature
  publication-title: J. Appl. Physiol.
  doi: 10.1152/jappl.1969.26.5.616
– volume: 23
  start-page: 6
  issue: 1
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0078
  article-title: Accuracy of non-invasive body temperature measurement methods in adult patients admitted to the intensive care unit: a systematic review and meta-analysis
  publication-title: Critical Care and Resuscitat.
  doi: 10.51893/2021.1.SR1
– year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0049
– volume: 228
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0076
  article-title: Study on physiological response considering blood flow volume in transient and non-uniform bathing thermal environment using thermo-cardiovascular regulation model
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109820
– volume: 36
  start-page: 18
  issue: 1
  year: 2017
  ident: 10.1016/j.buildenv.2025.112605_bib0033
  article-title: Assessment of axillary temperature for the evaluation of normal body temperature of healthy young adults at rest in a thermoneutral environment
  publication-title: J. Physiol. Anthropol.
  doi: 10.1186/s40101-017-0133-y
– volume: 19
  year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0001
  article-title: Experimental and numerical studies on indoor thermal comfort in fluid flow: a case study on primary school classrooms
  publication-title: Case Studies in Thermal Eng.
  doi: 10.1016/j.csite.2020.100619
– volume: 242
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0041
  article-title: Skin temperature indexes to evaluate thermal sensation and cognitive performance in hot environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110540
– volume: 24
  year: 2022
  ident: 10.1016/j.buildenv.2025.112605_bib0079
  article-title: Body temperature measurement uncertainty arising from ear canal geometry and temperature gradients
  publication-title: Measurem.: Sensors
– volume: 31
  start-page: 53
  issue: 1
  year: 2006
  ident: 10.1016/j.buildenv.2025.112605_bib0092
  article-title: Partial- and whole-body thermal sensation and comfort— Part I: uuniform environmental conditions
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2005.11.028
– volume: 100
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0091
  article-title: Calculation method of mean skin temperature weighted by temperature sensitivity of various parts of human body
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2021.102995
– volume: 154
  start-page: 200
  year: 2019
  ident: 10.1016/j.buildenv.2025.112605_bib0052
  article-title: Optimal clothing insulation in naturally ventilated buildings
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.03.029
– start-page: 81
  year: 2013
  ident: 10.1016/j.buildenv.2025.112605_bib0008
– volume: 61
  start-page: 1545
  issue: 9
  year: 2017
  ident: 10.1016/j.buildenv.2025.112605_bib0073
  article-title: Development of a method for estimating oesophageal temperature by multi-locational temperature measurement inside the external auditory canal
  publication-title: Int. J. Biometeorol.
  doi: 10.1007/s00484-017-1333-1
– volume: 9
  issue: 8
  year: 2014
  ident: 10.1016/j.buildenv.2025.112605_bib0090
  article-title: The response of Human thermal sensation and its prediction to temperature step-change (Cool-Neutral-Cool)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0104320
– volume: 26
  start-page: 283
  issue: 3
  year: 1997
  ident: 10.1016/j.buildenv.2025.112605_bib0051
  article-title: Clothing as a thermal comfort moderator and the effect on energy consumption
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00009-1
– volume: 77
  start-page: e616
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0026
  article-title: Comparison of two non-invasive body temperature measurement methods for the detection of febrile neutropenia in children with cancer
  publication-title: J. Pediatr. Nurs.
  doi: 10.1016/j.pedn.2024.05.032
– start-page: 49
  year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0012
– volume: 39
  start-page: 95
  issue: 2
  year: 2003
  ident: 10.1016/j.buildenv.2025.112605_bib0065
  article-title: Research of the effect of air velocity on thermal comfort
  publication-title: J. Lanzhou Univ. (Natural Sciences)
– volume: 230
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0004
  article-title: Skin temperature for thermal sensation evaluation - is it valid everywhere?
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.110008
– volume: 5
  start-page: 829
  issue: 6
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0007
  article-title: Optimizing bedroom thermal environment: a review of human body temperature, sleeping thermal comfort and sleep quality
  publication-title: Energy and Built Environ.
  doi: 10.1016/j.enbenv.2023.06.010
– volume: 59
  start-page: 325
  issue: 5
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0028
  article-title: Surgical masks do not increase the risk of heat stroke during mild exercise in hot and humid environment
  publication-title: Ind. Health
  doi: 10.2486/indhealth.2021-0072
– ident: 10.1016/j.buildenv.2025.112605_bib0072
– volume: 66
  start-page: e277
  issue: 3
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0029
  article-title: Body core temperature assessment in Emergency care departments
  publication-title: J. Emerg. Med.
  doi: 10.1016/j.jemermed.2023.10.027
– volume: 251
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0046
  article-title: Evaluating thermal response when elderly people using local cooling devices: ccorrelation among overall and local thermal sensation with skin temperature
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2024.111217
– volume: 7
  start-page: 321
  issue: 4
  year: 2020
  ident: 10.1016/j.buildenv.2025.112605_bib0066
  article-title: Circadian rhythmicity of body temperature and metabolism
  publication-title: Temperature (Austin)
  doi: 10.1080/23328940.2020.1743605
– volume: 327
  start-page: 37
  issue: 1
  year: 2002
  ident: 10.1016/j.buildenv.2025.112605_bib0075
  article-title: Effects of increased ambient temperature on skin sympathetic nerve activity and core temperature in humans
  publication-title: Neurosci. Lett.
  doi: 10.1016/S0304-3940(02)00374-9
– volume: 24
  start-page: 42
  issue: 42
  year: 2010
  ident: 10.1016/j.buildenv.2025.112605_bib0027
  article-title: Best practice in the measurement of body temperature
  publication-title: Nurs. Stand.
  doi: 10.7748/ns.24.42.42.s49
– volume: 115
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0036
  article-title: CORE™ wearable sensor: ccomparison against gastrointestinal temperature during cold water ingestion and a 5 km running time-trial
  publication-title: J. Therm. Biol.
– volume: 228
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0063
  article-title: Personal thermal comfort models based on physiological measurements – A design of experiments based review
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109919
– volume: 349
  start-page: 39
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0058
  article-title: Sex difference in the association between BMI and cognitive impairment in Chinese older adults
  publication-title: J. Affect. Disord.
  doi: 10.1016/j.jad.2024.01.021
– volume: 162
  year: 2019
  ident: 10.1016/j.buildenv.2025.112605_bib0003
  article-title: Mean skin temperature estimated from 3 measuring points can predict sleeping thermal sensation
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.106292
– volume: 16
  start-page: 1187
  issue: 7
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0006
  article-title: A human comfort prediction method for indoor personnel based on time-series analysis
  publication-title: Build. Simul.
  doi: 10.1007/s12273-023-1010-8
– volume: 67
  start-page: 217
  year: 2013
  ident: 10.1016/j.buildenv.2025.112605_bib0086
  article-title: Human skin temperature and thermal responses in asymmetrical cold radiation environments
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2013.05.020
– volume: 366
  start-page: 112
  issue: 1
  year: 2006
  ident: 10.1016/j.buildenv.2025.112605_bib0068
  article-title: Testing experimental data for univariate normality
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2005.11.007
– volume: 32
  start-page: 879
  issue: 14
  year: 2002
  ident: 10.1016/j.buildenv.2025.112605_bib0032
  article-title: Core temperature measurement
  publication-title: Sports Med.
  doi: 10.2165/00007256-200232140-00001
– start-page: 69
  year: 1977
  ident: 10.1016/j.buildenv.2025.112605_bib0085
  article-title: Heat exchange between Human skin surface and thermal environment
  publication-title: Compr. Physiol.
– volume: 28
  start-page: 13
  year: 2002
  ident: 10.1016/j.buildenv.2025.112605_bib0064
  article-title: Study on skin sensitive difference of human body sections under clothing—Multiple analysis of skin surface temperature changes
  publication-title: J. Donghua Univ.
– volume: 187
  year: 2021
  ident: 10.1016/j.buildenv.2025.112605_bib0053
  article-title: Experimental investigation of the effect of clothing insulation on thermal comfort indices
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2020.107393
– volume: 228
  year: 2023
  ident: 10.1016/j.buildenv.2025.112605_bib0005
  article-title: Biophysical modelling predicts unreliable core temperature responses on healthy older adults using electric fans at residential homes during heatwaves
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.109888
– volume: 247
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0022
  article-title: Which physiological measurements can characterize core and surface body temperature? A case study in stable thermal environment
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2023.111019
– year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0042
  article-title: Exploring the role of skin temperature in thermal sensation and thermal comfort: a comprehensive review
  publication-title: Energy and Built Environ.
– volume: 37
  start-page: 669
  issue: 8
  year: 2007
  ident: 10.1016/j.buildenv.2025.112605_bib0010
  article-title: Thermoregulation during exercise in the heat
  publication-title: Sports Medicine
  doi: 10.2165/00007256-200737080-00002
– volume: 25
  start-page: 147
  issue: 1
  year: 2000
  ident: 10.1016/j.buildenv.2025.112605_bib0018
  article-title: Relative contribution of core and skin temperatures to thermal comfort in humans
  publication-title: J. Therm. Biol.
  doi: 10.1016/S0306-4565(99)00039-X
– volume: 123
  year: 2024
  ident: 10.1016/j.buildenv.2025.112605_bib0035
  article-title: Validity and reproducibility of the CALERA Research Sensor to estimate core temperature at different intensities of a cycling exercise in the heat
  publication-title: J. Therm. Biol.
  doi: 10.1016/j.jtherbio.2024.103907
SSID ssj0016934
Score 2.4397805
Snippet •Comparison of methods for determining core and mean skin temperatures.•CORE sensor: the most accurate of non-invasive core temperature measurement...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112605
SubjectTerms Core temperature
Mean skin temperature
Thermal comfort
Thermal sensation
Title Determination of core and mean skin temperatures for the evaluation of thermal comfort: A comparative study
URI https://dx.doi.org/10.1016/j.buildenv.2025.112605
Volume 271
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywpkmdp9mqQlVAdIFK3SI7tqW2alrRwMhvx9c4tEhIDIyJckr02bn7Tr77DuCGUapR1cWRimFLjqYON07RYdTjOpNRoDUmis-jaDgOHifhpAb9qhcGyyqt7y99-sZb2zuuRdNdTafui_G9eFDgU9T0T2K_Dk3qsyhsQLP38DQcfR8mRMy3KlKegwY7jcKzjsDp0yr_MKkiDTcNNTjJ7rcYtRN3BodwYAkj6ZXfdAQ1lR_D_o6M4AnM76qaFkSZLDVBbUrCc0kWiudkPZ_mBDWorIDymhimSgzzI1utb7RCLrgw7zJYmAeKW9Ij2VYcnGyUaE9hPLh_7Q8dO0TByUxmUziZ52vzG1PFhI4DSRUq7MVc6SDWGjtNfcniUCTdUPAkC82SebGWkaSejDIM9mfQyJe5OgfCDZY8EDxORBTIwE-06ApFFTeUS_ue1wK3gi1dlVoZaVVENksroFMEOi2BbgGr0E1_rHpqHPofthf_sL2EPbwqa8muoFG8vatrQy4K0YZ657PbtlvoC8ig0Gg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMetUgZgQDxFeXpgTRMcJ07YqkJVoO1CK3Wz7NiW2qppRQMjnx1fHrRISAysiU-J_nbuzsrdzwjdxoQYoLo4SsfQkmOII6xTdGLiCZOokBoDG8X-IOyO6PM4GNdQu-qFgbLK0vcXPj331uUVt1TTXU4m7qv1vfCjwCfA9I-Yv4W2aeAzqOtrfn7XeQBspGRIeQ4M32gTnjYlnD2t0w-7USRB3k4D59j9FqE2ok7nAO2X6SJuFW90iGo6PUJ7GxDBYzR7qCpaQGO8MBjIlFikCs-1SPFqNkkxEKhKfPIK2zwV27wPr0nfYAWZ4Nw-yyphB2T3uIWTNRoc5xzaEzTqPA7bXac8QsFJ7L4mcxLPN_YjJjqWhlFFNPD1mNCGMmOgz9RXMQtkdBdIESWBnTCPGRUq4qkwgVB_iurpItVnCAurpaBSsEiGVFE_MvJOaqKFTbiM73kN5Fay8WVByuBVCdmUV0JzEJoXQjdQXKnLf8w5t-78D9vzf9jeoJ3usN_jvafBywXahTtFVdklqmdv7_rKphmZvM6X0ReLKNEz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Determination+of+core+and+mean+skin+temperatures+for+the+evaluation+of+thermal+comfort%3A+A+comparative+study&rft.jtitle=Building+and+environment&rft.au=Hou%2C+Siqi&rft.au=Gao%2C+Shan&rft.au=Jin%2C+Yumeng&rft.au=Feng%2C+Chi&rft.date=2025-03-01&rft.issn=0360-1323&rft.volume=271&rft.spage=112605&rft_id=info:doi/10.1016%2Fj.buildenv.2025.112605&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2025_112605
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon