Prediction of Groundwater Level and its Correlation with Land Subsidence and Groundwater Quality in Cangzhou, North China Plain, Using Time-Series Long Short-Term Memory Neural Network and Hybrid Models

Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term mem...

Full description

Saved in:
Bibliographic Details
Published inNatural resources research (New York, N.Y.) Vol. 34; no. 3; pp. 1645 - 1666
Main Authors Nafouanti, Mouigni Baraka, Li, Junxia, Chakira, Hamada, Nyakilla, Edwin E., Fabiani, Denice Cleophace, Gondwe, Jane Ferah, Sallah, Ismaila
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R2 of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R2 of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R2 of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R2 of 0.97 compared to HRFLM and GBR–SVR, with R2 of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges.
AbstractList Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R² of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R² of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R² of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R² of 0.97 compared to HRFLM and GBR–SVR, with R² of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges.
Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R2 of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R2 of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R2 of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R2 of 0.97 compared to HRFLM and GBR–SVR, with R2 of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges.
Author Gondwe, Jane Ferah
Chakira, Hamada
Nyakilla, Edwin E.
Sallah, Ismaila
Li, Junxia
Nafouanti, Mouigni Baraka
Fabiani, Denice Cleophace
Author_xml – sequence: 1
  givenname: Mouigni Baraka
  surname: Nafouanti
  fullname: Nafouanti, Mouigni Baraka
– sequence: 2
  givenname: Junxia
  surname: Li
  fullname: Li, Junxia
– sequence: 3
  givenname: Hamada
  surname: Chakira
  fullname: Chakira, Hamada
– sequence: 4
  givenname: Edwin E.
  surname: Nyakilla
  fullname: Nyakilla, Edwin E.
– sequence: 5
  givenname: Denice Cleophace
  surname: Fabiani
  fullname: Fabiani, Denice Cleophace
– sequence: 6
  givenname: Jane Ferah
  surname: Gondwe
  fullname: Gondwe, Jane Ferah
– sequence: 7
  givenname: Ismaila
  surname: Sallah
  fullname: Sallah, Ismaila
BookMark eNpdkctu2zAQRYUiAZpHf6ArAt10EaakSJrishCapIDyKOysCYoaxUwlMiWlGu4n9qtC210UWc1g7rkzA9zT4sgHD0XxkZJLSoj8kiglgmFSCkwJlxzTd8UJFZLhSlX0aNeXBEvO1PviNKVnkk2sEifF34cInbOTCx6FHl3HMPtuYyaIqIHfMCDjO-SmhOoQIwxmD27ctEbNTlnObXIdeAt78H_7j9kMbtoi51Ft_NOfdZgv0F2I2VqvnTfoYTDOX6DH5PwTWrkR8BKig4SakAfLdUbxCuKIbmEMcYvuYI5myGXahPhzf-9m20bXodvQwZDOi-PeDAk-_KtnxePVt1V9g5v76-_11wbbUqgJG6Fsp6CzbcWo4SVvJQgmFe-YMgxo2dtKtVlcAMh-sZA9kL7l1nDDWmYrdlZ8Pux9ieHXDGnSo0sWhsF4CHPSrOQlETJnkdFPb9DnMEefv8sUZaWSQu2o8kDZGFKK0OuX6EYTt5oSvYtXH-LVeaXex6spewVdKZ1d
Cites_doi 10.1007/s10040-018-1768-4
10.1007/s00254-007-1123-x
10.1007/s12665-015-4131-2
10.1126/science.1067123
10.1016/j.scitotenv.2017.04.158
10.3390/rs11050539
10.1007/s10040-024-02771-5
10.1016/j.jhydrol.2011.06.013
10.3390/rs12213579
10.1016/j.cageo.2023.105386
10.3390/w14040610
10.1016/j.jhydrol.2022.128094
10.1016/j.eswa.2012.08.028
10.1007/s10040-021-02439-4
10.1016/j.jenvman.2013.04.010
10.1007/s11053-020-09634-2
10.1016/j.apgeochem.2022.105485
10.1007/978-3-030-01572-5
10.1007/s11356-020-09784-z
10.4028/www.scientific.net/AMR.864-867.2213
10.1016/j.gexplo.2006.07.001
10.1016/j.jconhyd.2017.11.002
10.1016/j.ijheatmasstransfer.2016.02.085
10.5194/hess-25-1671-2021
10.1162/neco.1997.9.8.1735
10.1007/s11356-023-25886-w
10.3390/s18082464
10.1016/j.jenvman.2019.02.020
10.1016/j.scitotenv.2021.147415
10.1007/s12665-016-6311-0
10.3390/su8060573
10.1109/BigData47090.2019.9005997
10.1007/s11053-019-09490-9
10.1016/j.apgeochem.2021.105054
10.1016/j.jhydrol.2021.126800
10.1007/s11356-021-17064-7
10.1016/j.scitotenv.2020.138877
10.1016/j.jobe.2021.103590
10.3390/app11219797
10.1007/s11631-023-00610-0
10.1080/19475705.2021.1880977
10.1007/s10661-011-1980-3
10.1016/j.watres.2019.04.054
10.1016/j.jhydrol.2021.126678
10.1016/j.scitotenv.2020.139111
10.1016/j.jhydrol.2022.128334
10.2166/wpt.2021.120
10.1371/journal.pone.0237878
10.3390/su141811598
10.1016/j.advwatres.2010.09.017
10.1016/j.jhydrol.2021.127368
10.1016/j.asej.2020.11.011
10.1016/j.compgeo.2015.04.015
10.1016/j.jconhyd.2021.103849
10.1016/j.enggeo.2018.09.023
10.1016/j.ecolind.2020.107218
10.1007/s10064-018-1403-6
10.3390/w11051098
10.1016/j.apgeochem.2024.106060
10.1007/s00477-016-1338-z
10.1007/s12517-017-2867-6
10.1016/j.jhazmat.2024.136022
10.1061/(ASCE)0733-9372(2003)129:1(79)
10.1007/s10040-015-1356-9
10.1007/978-981-99-1388-6_17
10.1007/s11053-024-10402-9
10.1007/s00477-021-02138-2
10.1007/s12517-016-2641-1
10.1016/j.apgeochem.2024.106078
10.1109/ACCESS.2019.2923707
10.1007/s12665-023-11137-1
10.1016/j.chemer.2023.125985
10.3390/land12122114
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jun 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jun 2025
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1007/s11053-025-10474-1
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1573-8981
EndPage 1666
ExternalDocumentID 10_1007_s11053_025_10474_1
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KB.
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
PATMY
PCBAR
PDBOC
PF0
PHGZM
PHGZT
PT4
PT5
PYCSY
QOK
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~A9
~KM
ABRTQ
7S9
L.6
ID FETCH-LOGICAL-c259t-a59cd9edcb831a424b7e53794d39a3e12fc89bb836ee7f667fe0fb4ca4a3b3c83
ISSN 1520-7439
IngestDate Fri Aug 22 20:25:18 EDT 2025
Thu Jul 24 04:21:30 EDT 2025
Sun Jul 06 05:09:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-a59cd9edcb831a424b7e53794d39a3e12fc89bb836ee7f667fe0fb4ca4a3b3c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3213297595
PQPubID 2043663
PageCount 22
ParticipantIDs proquest_miscellaneous_3242057025
proquest_journals_3213297595
crossref_primary_10_1007_s11053_025_10474_1
PublicationCentury 2000
PublicationDate 2025-06-00
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Natural resources research (New York, N.Y.)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 10474_CR4
A Arabameri (10474_CR5) 2021; 12
X Bai (10474_CR7) 2022; 612
R Solgi (10474_CR60) 2021; 601
A Mishra (10474_CR42) 2023; 42
YS Li (10474_CR39) 2013; 27
AIA Osman (10474_CR52) 2021; 12
O Rahmati (10474_CR55) 2019; 236
M Zamanirad (10474_CR75) 2020; 29
S Mohan (10474_CR43) 2019; 7
L Bai (10474_CR6) 2022; 605
Q Guo (10474_CR27) 2007; 93
G Yasaswini (10474_CR73) 2024; 16
MG Uddin (10474_CR64) 2021; 122
AI Calderhead (10474_CR12) 2011; 34
PS Moudgil (10474_CR44) 2023; 82
D Tien Bui (10474_CR63) 2018; 18
H Raheja (10474_CR54) 2022; 17
Z Gaffoor (10474_CR24) 2022; 30
MKR Mudiam (10474_CR45) 2012; 184
J Zuo (10474_CR78) 2019; 11
H Gong (10474_CR25) 2018; 26
YS Xu (10474_CR71) 2016; 8
BD Bowes (10474_CR11) 2019; 11
S Lee (10474_CR34) 2013; 127
MB Nafouanti (10474_CR47) 2021; 132
J Wu (10474_CR67) 2008; 55
D Richard (10474_CR56) 2024; 170
10474_CR77
J Adamowski (10474_CR2) 2011; 407
J Li (10474_CR35) 2022; 613
MB Nafouanti (10474_CR48) 2023; 30
G Su (10474_CR61) 2021; 600
H Guo (10474_CR26) 2015; 74
J Wu (10474_CR68) 2022; 14
D Sun (10474_CR62) 2022; 147
C Hao (10474_CR28) 2023; 83
M Cui (10474_CR19) 2016; 97
R Barzegar (10474_CR9) 2017; 31
S Kumar (10474_CR33) 2022; 36
P Chindaprasirt (10474_CR17) 2022; 45
A Elbeltagi (10474_CR21) 2022; 29
DL Aleku (10474_CR3) 2024; 170
S Figueroa-Miranda (10474_CR23) 2018; 246
X Xu (10474_CR70) 2023; 12
F Feng (10474_CR22) 2020; 27
Z Chen (10474_CR16) 2003; 129
DB Panaskar (10474_CR53) 2016; 9
S Abdollahi (10474_CR1) 2019; 78
SA Hussain (10474_CR30) 2021; 11
J Li (10474_CR36) 2020; 730
J Nahar (10474_CR49) 2013; 40
R Liu (10474_CR40) 2024; 480
FB Banadkooki (10474_CR8) 2020; 29
VV Vesselinov (10474_CR65) 2018; 212
A Wei (10474_CR66) 2023; 177
S Ye (10474_CR74) 2016; 24
B Chen (10474_CR15) 2020; 735
J Li (10474_CR37) 2017; 598
X Liu (10474_CR41) 2017; 76
K Khosravi (10474_CR32) 2021; 242
J Zhou (10474_CR76) 2020; 15
H Chu (10474_CR18) 2022; 14
A Dinar (10474_CR20) 2021; 786
10474_CR58
10474_CR13
W Li (10474_CR38) 2015; 7
B Yan (10474_CR72) 2021; 21
S Bindal (10474_CR10) 2019; 159
MB Nafouanti (10474_CR46) 2024; 32
10474_CR50
EE Nyakilla (10474_CR51) 2024; 34
A Wunsch (10474_CR69) 2021; 25
G Charulatha (10474_CR14) 2017; 10
M Shi (10474_CR57) 2020; 12
S Hochreiter (10474_CR29) 1997; 9
N Sivasithamparam (10474_CR59) 2015; 69
References_xml – volume: 26
  start-page: 1417
  issue: 5
  year: 2018
  ident: 10474_CR25
  publication-title: Hydrogeology Journal
  doi: 10.1007/s10040-018-1768-4
– volume: 55
  start-page: 1725
  issue: 8
  year: 2008
  ident: 10474_CR67
  publication-title: Environmental Geology
  doi: 10.1007/s00254-007-1123-x
– volume: 74
  start-page: 1415
  issue: 2
  year: 2015
  ident: 10474_CR26
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-015-4131-2
– ident: 10474_CR4
  doi: 10.1126/science.1067123
– volume: 598
  start-page: 239
  year: 2017
  ident: 10474_CR37
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2017.04.158
– volume: 11
  start-page: 539
  issue: 5
  year: 2019
  ident: 10474_CR78
  publication-title: Remote Sensing
  doi: 10.3390/rs11050539
– volume: 32
  start-page: 951
  year: 2024
  ident: 10474_CR46
  publication-title: Hydrogeology Journal
  doi: 10.1007/s10040-024-02771-5
– volume: 407
  start-page: 28
  issue: 1–4
  year: 2011
  ident: 10474_CR2
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2011.06.013
– volume: 12
  start-page: 3579
  issue: 21
  year: 2020
  ident: 10474_CR57
  publication-title: Remote Sensing
  doi: 10.3390/rs12213579
– volume: 177
  issue: 11
  year: 2023
  ident: 10474_CR66
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2023.105386
– volume: 14
  start-page: 610
  issue: 4
  year: 2022
  ident: 10474_CR68
  publication-title: Water
  doi: 10.3390/w14040610
– volume: 612
  year: 2022
  ident: 10474_CR7
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128094
– volume: 40
  start-page: 1086
  issue: 4
  year: 2013
  ident: 10474_CR49
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.028
– volume: 30
  start-page: 575
  issue: 2
  year: 2022
  ident: 10474_CR24
  publication-title: Hydrogeology Journal
  doi: 10.1007/s10040-021-02439-4
– volume: 127
  start-page: 166
  year: 2013
  ident: 10474_CR34
  publication-title: Journal of environmental management
  doi: 10.1016/j.jenvman.2013.04.010
– volume: 29
  start-page: 3233
  issue: 5
  year: 2020
  ident: 10474_CR8
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-020-09634-2
– volume: 147
  year: 2022
  ident: 10474_CR62
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2022.105485
– volume: 21
  start-page: 797
  issue: 2
  year: 2021
  ident: 10474_CR72
  publication-title: Water Science and Technology: Water Supply
– ident: 10474_CR13
  doi: 10.1007/978-3-030-01572-5
– volume: 27
  start-page: 34840
  issue: 28
  year: 2020
  ident: 10474_CR22
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-020-09784-z
– ident: 10474_CR77
  doi: 10.4028/www.scientific.net/AMR.864-867.2213
– volume: 93
  start-page: 1
  issue: 1
  year: 2007
  ident: 10474_CR27
  publication-title: Journal of Geochemical Exploration
  doi: 10.1016/j.gexplo.2006.07.001
– volume: 212
  start-page: 134
  year: 2018
  ident: 10474_CR65
  publication-title: Journal of Contaminant Hydrology
  doi: 10.1016/j.jconhyd.2017.11.002
– volume: 97
  start-page: 908
  year: 2016
  ident: 10474_CR19
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.02.085
– volume: 25
  start-page: 1671
  issue: 3
  year: 2021
  ident: 10474_CR69
  publication-title: Hydrology and Earth System Sciences
  doi: 10.5194/hess-25-1671-2021
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10474_CR29
  publication-title: Neural computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 30
  start-page: 50661
  issue: 17
  year: 2023
  ident: 10474_CR48
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-023-25886-w
– volume: 18
  start-page: 2464
  issue: 8
  year: 2018
  ident: 10474_CR63
  publication-title: Sensors
  doi: 10.3390/s18082464
– volume: 236
  start-page: 466
  year: 2019
  ident: 10474_CR55
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2019.02.020
– volume: 786
  year: 2021
  ident: 10474_CR20
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2021.147415
– volume: 76
  start-page: 6
  year: 2017
  ident: 10474_CR41
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-6311-0
– volume: 16
  start-page: 577
  issue: 4
  year: 2024
  ident: 10474_CR73
  publication-title: Dan. Water (Switzerland)
– volume: 8
  start-page: 573
  issue: 6
  year: 2016
  ident: 10474_CR71
  publication-title: Sustainability (Switzerland)
  doi: 10.3390/su8060573
– ident: 10474_CR58
  doi: 10.1109/BigData47090.2019.9005997
– volume: 29
  start-page: 1127
  issue: 2
  year: 2020
  ident: 10474_CR75
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-019-09490-9
– volume: 132
  year: 2021
  ident: 10474_CR47
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2021.105054
– volume: 601
  year: 2021
  ident: 10474_CR60
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.126800
– volume: 29
  start-page: 17591
  issue: 12
  year: 2022
  ident: 10474_CR21
  publication-title: India. Environmental Science and Pollution Research
  doi: 10.1007/s11356-021-17064-7
– volume: 730
  year: 2020
  ident: 10474_CR36
  publication-title: The Science of the total environment
  doi: 10.1016/j.scitotenv.2020.138877
– volume: 45
  year: 2022
  ident: 10474_CR17
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2021.103590
– volume: 11
  start-page: 9797
  issue: 21
  year: 2021
  ident: 10474_CR30
  publication-title: Applied Sciences (Switzerland)
  doi: 10.3390/app11219797
– volume: 42
  start-page: 648
  issue: 4
  year: 2023
  ident: 10474_CR42
  publication-title: Acta Geochimica
  doi: 10.1007/s11631-023-00610-0
– volume: 12
  start-page: 469
  issue: 1
  year: 2021
  ident: 10474_CR5
  publication-title: Geomatics, Natural Hazards and Risk
  doi: 10.1080/19475705.2021.1880977
– volume: 184
  start-page: 461
  year: 2012
  ident: 10474_CR45
  publication-title: Environmental Monitoring and Assessment
  doi: 10.1007/s10661-011-1980-3
– volume: 159
  start-page: 65
  year: 2019
  ident: 10474_CR10
  publication-title: Water Research
  doi: 10.1016/j.watres.2019.04.054
– volume: 600
  year: 2021
  ident: 10474_CR61
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.126678
– volume: 735
  year: 2020
  ident: 10474_CR15
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2020.139111
– volume: 613
  year: 2022
  ident: 10474_CR35
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2022.128334
– volume: 17
  start-page: 336
  issue: 1
  year: 2022
  ident: 10474_CR54
  publication-title: Water Practice & Technology
  doi: 10.2166/wpt.2021.120
– volume: 15
  issue: 8
  year: 2020
  ident: 10474_CR76
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0237878
– volume: 14
  start-page: 11598
  issue: 18
  year: 2022
  ident: 10474_CR18
  publication-title: Sustainability (Switzerland)
  doi: 10.3390/su141811598
– volume: 34
  start-page: 83
  issue: 1
  year: 2011
  ident: 10474_CR12
  publication-title: Advances in Water Resources
  doi: 10.1016/j.advwatres.2010.09.017
– volume: 605
  year: 2022
  ident: 10474_CR6
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2021.127368
– volume: 12
  start-page: 1545
  issue: 2
  year: 2021
  ident: 10474_CR52
  publication-title: Ain Shams Engineering Journal
  doi: 10.1016/j.asej.2020.11.011
– volume: 69
  start-page: 46
  year: 2015
  ident: 10474_CR59
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2015.04.015
– volume: 242
  year: 2021
  ident: 10474_CR32
  publication-title: Journal of Contaminant Hydrology
  doi: 10.1016/j.jconhyd.2021.103849
– volume: 7
  start-page: 1109
  issue: 3
  year: 2015
  ident: 10474_CR38
  publication-title: Water (Switzerland)
– volume: 246
  start-page: 91
  year: 2018
  ident: 10474_CR23
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2018.09.023
– volume: 122
  year: 2021
  ident: 10474_CR64
  publication-title: Ecological Indicators
  doi: 10.1016/j.ecolind.2020.107218
– volume: 78
  start-page: 4017
  issue: 6
  year: 2019
  ident: 10474_CR1
  publication-title: Bulletin of Engineering Geology and the Environment
  doi: 10.1007/s10064-018-1403-6
– volume: 11
  start-page: 1098
  issue: 5
  year: 2019
  ident: 10474_CR11
  publication-title: Water
  doi: 10.3390/w11051098
– volume: 170
  year: 2024
  ident: 10474_CR3
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2024.106060
– volume: 31
  start-page: 2705
  issue: 10
  year: 2017
  ident: 10474_CR9
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-016-1338-z
– volume: 10
  start-page: 128
  issue: 6
  year: 2017
  ident: 10474_CR14
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-017-2867-6
– volume: 480
  year: 2024
  ident: 10474_CR40
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2024.136022
– volume: 129
  start-page: 79
  issue: 1
  year: 2003
  ident: 10474_CR16
  publication-title: Journal of Environmental Engineering
  doi: 10.1061/(ASCE)0733-9372(2003)129:1(79)
– volume: 24
  start-page: 685
  issue: 3
  year: 2016
  ident: 10474_CR74
  publication-title: Hydrogeology Journal
  doi: 10.1007/s10040-015-1356-9
– ident: 10474_CR50
  doi: 10.1007/978-981-99-1388-6_17
– volume: 34
  start-page: 383
  issue: 1
  year: 2024
  ident: 10474_CR51
  publication-title: Natural Resources Research
  doi: 10.1007/s11053-024-10402-9
– volume: 36
  start-page: 373
  issue: 2
  year: 2022
  ident: 10474_CR33
  publication-title: Stochastic Environmental Research and Risk Assessment
  doi: 10.1007/s00477-021-02138-2
– volume: 9
  start-page: 615
  year: 2016
  ident: 10474_CR53
  publication-title: Arabian Journal of Geosciences
  doi: 10.1007/s12517-016-2641-1
– volume: 170
  start-page: 106078
  year: 2024
  ident: 10474_CR56
  publication-title: Applied Geochemistry
  doi: 10.1016/j.apgeochem.2024.106078
– volume: 7
  start-page: 81542
  year: 2019
  ident: 10474_CR43
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2923707
– volume: 82
  start-page: 441
  issue: 19
  year: 2023
  ident: 10474_CR44
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-023-11137-1
– volume: 27
  start-page: 181
  issue: 1
  year: 2013
  ident: 10474_CR39
  publication-title: Journal of Arid Land Resources and Environment
– volume: 83
  issue: 3
  year: 2023
  ident: 10474_CR28
  publication-title: Geochemistry
  doi: 10.1016/j.chemer.2023.125985
– volume: 12
  start-page: 2114
  issue: 12
  year: 2023
  ident: 10474_CR70
  publication-title: Land
  doi: 10.3390/land12122114
SSID ssj0007385
Score 2.3774683
Snippet Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1645
SubjectTerms China
Contamination
Correlation
Deep learning
Drinking water
Fluorides
Forecasting
Groundwater
Groundwater levels
Groundwater quality
Land subsidence
linear models
Long short-term memory
Mathematical models
Neural networks
Numerical models
prediction
Regression analysis
Subsidence
Support vector machines
Time series
time series analysis
Water quality
water table
Title Prediction of Groundwater Level and its Correlation with Land Subsidence and Groundwater Quality in Cangzhou, North China Plain, Using Time-Series Long Short-Term Memory Neural Network and Hybrid Models
URI https://www.proquest.com/docview/3213297595
https://www.proquest.com/docview/3242057025
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGEBI8IBggCgMdEk90mRYnaZLHaRpUqK2QaKW9RU7irBGQoLbR6D4in4o720m8qUiMl6iKHbvt_eL7f8fYe5cL4RbuyInS_MTxgzB3kAnnTlrIoKDy6lyZBqaz0Xjhf74ILvbufbCilppNepxd78wr-R-q4j2kK2XJ3oGy3aJ4Az8jffGKFMbrP9H4y4rcLK3MR2akKr8SVPZwQrFAnWPgjFpw6KA3bXidqIBNPDN0S1E10X5cV9bQKYGiurxe1k3v5FEtt6nbkS4_oIMOKJXEIVObXA8n1L_o6xInO3M8-IdTiubdDqkOCAJipgPP1Z7jLSWMqYZs39e2nDwTuh7IyngXyLlhDDQ72gdZ5oyZKOoG0aKCFKZ1U15WJTlVxLeO_0xKnY5S_Sr7MKUlStKq5dJwLH6I3kwx2-IAviqKZ-RX-IecH9uWEh70EV3t4Y6qMilgmveZe6HnRLFuG9NyBGNeLW2DgTreUbcMLFGBXK472dCJSctG4ZW85FTr1Q99x-2ZbhtocIsXdxGSfTVpWiPBNRK1RoKa_n2OKhF161jw007qoKpEqjaw-Y0mQUynid7-HjeFsJsyiBKs5k_YY6MRwamG91O2J6sD9siqk3nAHnxS_ae3z9jvHvJQF2BhFhTkAVEFCHmwIA8EeSDIQw95NdF-3EAeygpayB-BAjwowIMC_BEouIMFdyC4Qw930HAHDXcwcFf7abiDhvtztvh4Pj8bO6YdiZPxIN44IoizPJZ5lkaeK3zup6EMPORnuRcLT7q8yKI4xcGRlGExGoWFPClSPxO-8FIvi7wXbL-qK_mSQcxFJPMwLwpy-_Mw9dNASJ7FqA55krsDNmzpk_zUVWeSvyNiwA5bEibmdFonHnc9ypqPgwF71w0j7yCHoKhk3dAcn6O-hku9utOGr9nD_v06ZPubVSPfoGy-Sd8qUP4BYHjk0w
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Groundwater+Level+and+its+Correlation+with+Land+Subsidence+and+Groundwater+Quality+in+Cangzhou%2C+North+China+Plain%2C+Using+Time-Series+Long+Short-Term+Memory+Neural+Network+and+Hybrid+Models&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nafouanti%2C+Mouigni+Baraka&rft.au=Li%2C+Junxia&rft.au=Chakira%2C+Hamada&rft.au=Nyakilla%2C+Edwin+E.&rft.date=2025-06-01&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=3&rft.spage=1645&rft.epage=1666&rft_id=info:doi/10.1007%2Fs11053-025-10474-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11053_025_10474_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon