Prediction of Groundwater Level and its Correlation with Land Subsidence and Groundwater Quality in Cangzhou, North China Plain, Using Time-Series Long Short-Term Memory Neural Network and Hybrid Models
Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term mem...
Saved in:
Published in | Natural resources research (New York, N.Y.) Vol. 34; no. 3; pp. 1645 - 1666 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.06.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R2 of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R2 of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R2 of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R2 of 0.97 compared to HRFLM and GBR–SVR, with R2 of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges. |
---|---|
AbstractList | Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R² of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R² of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R² of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R² of 0.97 compared to HRFLM and GBR–SVR, with R² of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges. Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and numerical models for assessing groundwater and land subsidence are time-consuming and expensive. Thus, this study used the long short-term memory (LSTM) neural network to predict groundwater level and employed linear regression analysis and the hybrid random forest linear regression to find the correlation between groundwater and land subsidence. The impact of groundwater level on groundwater quality was investigated by forecasting the fluoride in groundwater using the hybrid models of random forest and k-nearest neighbor (RF–KNN), random forest linear model (HRFLM), and gradient boosting support vector regression (GBR–SVR) for the prediction of groundwater fluoride. The LSTM model yielded an R2 of 0.96 in forecasting groundwater level, and the time series results from 2018 to 2022 showed a variation in groundwater level, with a decline in 2022. The LSTM model suggested that from 2024 to 2040, the groundwater level would recover progressively. The regression analysis showed an R2 of 0.99 and a p value of 0.01 for the correlation between groundwater level and land subsidence, and the HRFLM model yielded an R2 of 0.94. For predicting groundwater fluoride contamination, the hybrid RF–KNN had the highest R2 of 0.97 compared to HRFLM and GBR–SVR, with R2 of 0.95 and 0.93, respectively. This research demonstrated that hybrid models and deep learning are advanced techniques that can be applied in Cangzhou to evaluate groundwater level and land subsidence and they can be applied in areas facing similar challenges. |
Author | Gondwe, Jane Ferah Chakira, Hamada Nyakilla, Edwin E. Sallah, Ismaila Li, Junxia Nafouanti, Mouigni Baraka Fabiani, Denice Cleophace |
Author_xml | – sequence: 1 givenname: Mouigni Baraka surname: Nafouanti fullname: Nafouanti, Mouigni Baraka – sequence: 2 givenname: Junxia surname: Li fullname: Li, Junxia – sequence: 3 givenname: Hamada surname: Chakira fullname: Chakira, Hamada – sequence: 4 givenname: Edwin E. surname: Nyakilla fullname: Nyakilla, Edwin E. – sequence: 5 givenname: Denice Cleophace surname: Fabiani fullname: Fabiani, Denice Cleophace – sequence: 6 givenname: Jane Ferah surname: Gondwe fullname: Gondwe, Jane Ferah – sequence: 7 givenname: Ismaila surname: Sallah fullname: Sallah, Ismaila |
BookMark | eNpdkctu2zAQRYUiAZpHf6ArAt10EaakSJrishCapIDyKOysCYoaxUwlMiWlGu4n9qtC210UWc1g7rkzA9zT4sgHD0XxkZJLSoj8kiglgmFSCkwJlxzTd8UJFZLhSlX0aNeXBEvO1PviNKVnkk2sEifF34cInbOTCx6FHl3HMPtuYyaIqIHfMCDjO-SmhOoQIwxmD27ctEbNTlnObXIdeAt78H_7j9kMbtoi51Ft_NOfdZgv0F2I2VqvnTfoYTDOX6DH5PwTWrkR8BKig4SakAfLdUbxCuKIbmEMcYvuYI5myGXahPhzf-9m20bXodvQwZDOi-PeDAk-_KtnxePVt1V9g5v76-_11wbbUqgJG6Fsp6CzbcWo4SVvJQgmFe-YMgxo2dtKtVlcAMh-sZA9kL7l1nDDWmYrdlZ8Pux9ieHXDGnSo0sWhsF4CHPSrOQlETJnkdFPb9DnMEefv8sUZaWSQu2o8kDZGFKK0OuX6EYTt5oSvYtXH-LVeaXex6spewVdKZ1d |
Cites_doi | 10.1007/s10040-018-1768-4 10.1007/s00254-007-1123-x 10.1007/s12665-015-4131-2 10.1126/science.1067123 10.1016/j.scitotenv.2017.04.158 10.3390/rs11050539 10.1007/s10040-024-02771-5 10.1016/j.jhydrol.2011.06.013 10.3390/rs12213579 10.1016/j.cageo.2023.105386 10.3390/w14040610 10.1016/j.jhydrol.2022.128094 10.1016/j.eswa.2012.08.028 10.1007/s10040-021-02439-4 10.1016/j.jenvman.2013.04.010 10.1007/s11053-020-09634-2 10.1016/j.apgeochem.2022.105485 10.1007/978-3-030-01572-5 10.1007/s11356-020-09784-z 10.4028/www.scientific.net/AMR.864-867.2213 10.1016/j.gexplo.2006.07.001 10.1016/j.jconhyd.2017.11.002 10.1016/j.ijheatmasstransfer.2016.02.085 10.5194/hess-25-1671-2021 10.1162/neco.1997.9.8.1735 10.1007/s11356-023-25886-w 10.3390/s18082464 10.1016/j.jenvman.2019.02.020 10.1016/j.scitotenv.2021.147415 10.1007/s12665-016-6311-0 10.3390/su8060573 10.1109/BigData47090.2019.9005997 10.1007/s11053-019-09490-9 10.1016/j.apgeochem.2021.105054 10.1016/j.jhydrol.2021.126800 10.1007/s11356-021-17064-7 10.1016/j.scitotenv.2020.138877 10.1016/j.jobe.2021.103590 10.3390/app11219797 10.1007/s11631-023-00610-0 10.1080/19475705.2021.1880977 10.1007/s10661-011-1980-3 10.1016/j.watres.2019.04.054 10.1016/j.jhydrol.2021.126678 10.1016/j.scitotenv.2020.139111 10.1016/j.jhydrol.2022.128334 10.2166/wpt.2021.120 10.1371/journal.pone.0237878 10.3390/su141811598 10.1016/j.advwatres.2010.09.017 10.1016/j.jhydrol.2021.127368 10.1016/j.asej.2020.11.011 10.1016/j.compgeo.2015.04.015 10.1016/j.jconhyd.2021.103849 10.1016/j.enggeo.2018.09.023 10.1016/j.ecolind.2020.107218 10.1007/s10064-018-1403-6 10.3390/w11051098 10.1016/j.apgeochem.2024.106060 10.1007/s00477-016-1338-z 10.1007/s12517-017-2867-6 10.1016/j.jhazmat.2024.136022 10.1061/(ASCE)0733-9372(2003)129:1(79) 10.1007/s10040-015-1356-9 10.1007/978-981-99-1388-6_17 10.1007/s11053-024-10402-9 10.1007/s00477-021-02138-2 10.1007/s12517-016-2641-1 10.1016/j.apgeochem.2024.106078 10.1109/ACCESS.2019.2923707 10.1007/s12665-023-11137-1 10.1016/j.chemer.2023.125985 10.3390/land12122114 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Jun 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Jun 2025 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1007/s11053-025-10474-1 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering |
EISSN | 1573-8981 |
EndPage | 1666 |
ExternalDocumentID | 10_1007_s11053_025_10474_1 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHIR ADHKG ADIMF ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV LAK LLZTM M4Y MA- N9A NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 PATMY PCBAR PDBOC PF0 PHGZM PHGZT PT4 PT5 PYCSY QOK QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z8Z ZMTXR ~02 ~A9 ~KM ABRTQ 7S9 L.6 |
ID | FETCH-LOGICAL-c259t-a59cd9edcb831a424b7e53794d39a3e12fc89bb836ee7f667fe0fb4ca4a3b3c83 |
ISSN | 1520-7439 |
IngestDate | Fri Aug 22 20:25:18 EDT 2025 Thu Jul 24 04:21:30 EDT 2025 Sun Jul 06 05:09:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-a59cd9edcb831a424b7e53794d39a3e12fc89bb836ee7f667fe0fb4ca4a3b3c83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 3213297595 |
PQPubID | 2043663 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_3242057025 proquest_journals_3213297595 crossref_primary_10_1007_s11053_025_10474_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-06-00 20250601 |
PublicationDateYYYYMMDD | 2025-06-01 |
PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-00 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Natural resources research (New York, N.Y.) |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 10474_CR4 A Arabameri (10474_CR5) 2021; 12 X Bai (10474_CR7) 2022; 612 R Solgi (10474_CR60) 2021; 601 A Mishra (10474_CR42) 2023; 42 YS Li (10474_CR39) 2013; 27 AIA Osman (10474_CR52) 2021; 12 O Rahmati (10474_CR55) 2019; 236 M Zamanirad (10474_CR75) 2020; 29 S Mohan (10474_CR43) 2019; 7 L Bai (10474_CR6) 2022; 605 Q Guo (10474_CR27) 2007; 93 G Yasaswini (10474_CR73) 2024; 16 MG Uddin (10474_CR64) 2021; 122 AI Calderhead (10474_CR12) 2011; 34 PS Moudgil (10474_CR44) 2023; 82 D Tien Bui (10474_CR63) 2018; 18 H Raheja (10474_CR54) 2022; 17 Z Gaffoor (10474_CR24) 2022; 30 MKR Mudiam (10474_CR45) 2012; 184 J Zuo (10474_CR78) 2019; 11 H Gong (10474_CR25) 2018; 26 YS Xu (10474_CR71) 2016; 8 BD Bowes (10474_CR11) 2019; 11 S Lee (10474_CR34) 2013; 127 MB Nafouanti (10474_CR47) 2021; 132 J Wu (10474_CR67) 2008; 55 D Richard (10474_CR56) 2024; 170 10474_CR77 J Adamowski (10474_CR2) 2011; 407 J Li (10474_CR35) 2022; 613 MB Nafouanti (10474_CR48) 2023; 30 G Su (10474_CR61) 2021; 600 H Guo (10474_CR26) 2015; 74 J Wu (10474_CR68) 2022; 14 D Sun (10474_CR62) 2022; 147 C Hao (10474_CR28) 2023; 83 M Cui (10474_CR19) 2016; 97 R Barzegar (10474_CR9) 2017; 31 S Kumar (10474_CR33) 2022; 36 P Chindaprasirt (10474_CR17) 2022; 45 A Elbeltagi (10474_CR21) 2022; 29 DL Aleku (10474_CR3) 2024; 170 S Figueroa-Miranda (10474_CR23) 2018; 246 X Xu (10474_CR70) 2023; 12 F Feng (10474_CR22) 2020; 27 Z Chen (10474_CR16) 2003; 129 DB Panaskar (10474_CR53) 2016; 9 S Abdollahi (10474_CR1) 2019; 78 SA Hussain (10474_CR30) 2021; 11 J Li (10474_CR36) 2020; 730 J Nahar (10474_CR49) 2013; 40 R Liu (10474_CR40) 2024; 480 FB Banadkooki (10474_CR8) 2020; 29 VV Vesselinov (10474_CR65) 2018; 212 A Wei (10474_CR66) 2023; 177 S Ye (10474_CR74) 2016; 24 B Chen (10474_CR15) 2020; 735 J Li (10474_CR37) 2017; 598 X Liu (10474_CR41) 2017; 76 K Khosravi (10474_CR32) 2021; 242 J Zhou (10474_CR76) 2020; 15 H Chu (10474_CR18) 2022; 14 A Dinar (10474_CR20) 2021; 786 10474_CR58 10474_CR13 W Li (10474_CR38) 2015; 7 B Yan (10474_CR72) 2021; 21 S Bindal (10474_CR10) 2019; 159 MB Nafouanti (10474_CR46) 2024; 32 10474_CR50 EE Nyakilla (10474_CR51) 2024; 34 A Wunsch (10474_CR69) 2021; 25 G Charulatha (10474_CR14) 2017; 10 M Shi (10474_CR57) 2020; 12 S Hochreiter (10474_CR29) 1997; 9 N Sivasithamparam (10474_CR59) 2015; 69 |
References_xml | – volume: 26 start-page: 1417 issue: 5 year: 2018 ident: 10474_CR25 publication-title: Hydrogeology Journal doi: 10.1007/s10040-018-1768-4 – volume: 55 start-page: 1725 issue: 8 year: 2008 ident: 10474_CR67 publication-title: Environmental Geology doi: 10.1007/s00254-007-1123-x – volume: 74 start-page: 1415 issue: 2 year: 2015 ident: 10474_CR26 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-015-4131-2 – ident: 10474_CR4 doi: 10.1126/science.1067123 – volume: 598 start-page: 239 year: 2017 ident: 10474_CR37 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2017.04.158 – volume: 11 start-page: 539 issue: 5 year: 2019 ident: 10474_CR78 publication-title: Remote Sensing doi: 10.3390/rs11050539 – volume: 32 start-page: 951 year: 2024 ident: 10474_CR46 publication-title: Hydrogeology Journal doi: 10.1007/s10040-024-02771-5 – volume: 407 start-page: 28 issue: 1–4 year: 2011 ident: 10474_CR2 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2011.06.013 – volume: 12 start-page: 3579 issue: 21 year: 2020 ident: 10474_CR57 publication-title: Remote Sensing doi: 10.3390/rs12213579 – volume: 177 issue: 11 year: 2023 ident: 10474_CR66 publication-title: Computers and Geosciences doi: 10.1016/j.cageo.2023.105386 – volume: 14 start-page: 610 issue: 4 year: 2022 ident: 10474_CR68 publication-title: Water doi: 10.3390/w14040610 – volume: 612 year: 2022 ident: 10474_CR7 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128094 – volume: 40 start-page: 1086 issue: 4 year: 2013 ident: 10474_CR49 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.08.028 – volume: 30 start-page: 575 issue: 2 year: 2022 ident: 10474_CR24 publication-title: Hydrogeology Journal doi: 10.1007/s10040-021-02439-4 – volume: 127 start-page: 166 year: 2013 ident: 10474_CR34 publication-title: Journal of environmental management doi: 10.1016/j.jenvman.2013.04.010 – volume: 29 start-page: 3233 issue: 5 year: 2020 ident: 10474_CR8 publication-title: Natural Resources Research doi: 10.1007/s11053-020-09634-2 – volume: 147 year: 2022 ident: 10474_CR62 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2022.105485 – volume: 21 start-page: 797 issue: 2 year: 2021 ident: 10474_CR72 publication-title: Water Science and Technology: Water Supply – ident: 10474_CR13 doi: 10.1007/978-3-030-01572-5 – volume: 27 start-page: 34840 issue: 28 year: 2020 ident: 10474_CR22 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-020-09784-z – ident: 10474_CR77 doi: 10.4028/www.scientific.net/AMR.864-867.2213 – volume: 93 start-page: 1 issue: 1 year: 2007 ident: 10474_CR27 publication-title: Journal of Geochemical Exploration doi: 10.1016/j.gexplo.2006.07.001 – volume: 212 start-page: 134 year: 2018 ident: 10474_CR65 publication-title: Journal of Contaminant Hydrology doi: 10.1016/j.jconhyd.2017.11.002 – volume: 97 start-page: 908 year: 2016 ident: 10474_CR19 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.02.085 – volume: 25 start-page: 1671 issue: 3 year: 2021 ident: 10474_CR69 publication-title: Hydrology and Earth System Sciences doi: 10.5194/hess-25-1671-2021 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10474_CR29 publication-title: Neural computation doi: 10.1162/neco.1997.9.8.1735 – volume: 30 start-page: 50661 issue: 17 year: 2023 ident: 10474_CR48 publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-023-25886-w – volume: 18 start-page: 2464 issue: 8 year: 2018 ident: 10474_CR63 publication-title: Sensors doi: 10.3390/s18082464 – volume: 236 start-page: 466 year: 2019 ident: 10474_CR55 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2019.02.020 – volume: 786 year: 2021 ident: 10474_CR20 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2021.147415 – volume: 76 start-page: 6 year: 2017 ident: 10474_CR41 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-6311-0 – volume: 16 start-page: 577 issue: 4 year: 2024 ident: 10474_CR73 publication-title: Dan. Water (Switzerland) – volume: 8 start-page: 573 issue: 6 year: 2016 ident: 10474_CR71 publication-title: Sustainability (Switzerland) doi: 10.3390/su8060573 – ident: 10474_CR58 doi: 10.1109/BigData47090.2019.9005997 – volume: 29 start-page: 1127 issue: 2 year: 2020 ident: 10474_CR75 publication-title: Natural Resources Research doi: 10.1007/s11053-019-09490-9 – volume: 132 year: 2021 ident: 10474_CR47 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2021.105054 – volume: 601 year: 2021 ident: 10474_CR60 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126800 – volume: 29 start-page: 17591 issue: 12 year: 2022 ident: 10474_CR21 publication-title: India. Environmental Science and Pollution Research doi: 10.1007/s11356-021-17064-7 – volume: 730 year: 2020 ident: 10474_CR36 publication-title: The Science of the total environment doi: 10.1016/j.scitotenv.2020.138877 – volume: 45 year: 2022 ident: 10474_CR17 publication-title: Journal of Building Engineering doi: 10.1016/j.jobe.2021.103590 – volume: 11 start-page: 9797 issue: 21 year: 2021 ident: 10474_CR30 publication-title: Applied Sciences (Switzerland) doi: 10.3390/app11219797 – volume: 42 start-page: 648 issue: 4 year: 2023 ident: 10474_CR42 publication-title: Acta Geochimica doi: 10.1007/s11631-023-00610-0 – volume: 12 start-page: 469 issue: 1 year: 2021 ident: 10474_CR5 publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2021.1880977 – volume: 184 start-page: 461 year: 2012 ident: 10474_CR45 publication-title: Environmental Monitoring and Assessment doi: 10.1007/s10661-011-1980-3 – volume: 159 start-page: 65 year: 2019 ident: 10474_CR10 publication-title: Water Research doi: 10.1016/j.watres.2019.04.054 – volume: 600 year: 2021 ident: 10474_CR61 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.126678 – volume: 735 year: 2020 ident: 10474_CR15 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2020.139111 – volume: 613 year: 2022 ident: 10474_CR35 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2022.128334 – volume: 17 start-page: 336 issue: 1 year: 2022 ident: 10474_CR54 publication-title: Water Practice & Technology doi: 10.2166/wpt.2021.120 – volume: 15 issue: 8 year: 2020 ident: 10474_CR76 publication-title: PLoS ONE doi: 10.1371/journal.pone.0237878 – volume: 14 start-page: 11598 issue: 18 year: 2022 ident: 10474_CR18 publication-title: Sustainability (Switzerland) doi: 10.3390/su141811598 – volume: 34 start-page: 83 issue: 1 year: 2011 ident: 10474_CR12 publication-title: Advances in Water Resources doi: 10.1016/j.advwatres.2010.09.017 – volume: 605 year: 2022 ident: 10474_CR6 publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2021.127368 – volume: 12 start-page: 1545 issue: 2 year: 2021 ident: 10474_CR52 publication-title: Ain Shams Engineering Journal doi: 10.1016/j.asej.2020.11.011 – volume: 69 start-page: 46 year: 2015 ident: 10474_CR59 publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2015.04.015 – volume: 242 year: 2021 ident: 10474_CR32 publication-title: Journal of Contaminant Hydrology doi: 10.1016/j.jconhyd.2021.103849 – volume: 7 start-page: 1109 issue: 3 year: 2015 ident: 10474_CR38 publication-title: Water (Switzerland) – volume: 246 start-page: 91 year: 2018 ident: 10474_CR23 publication-title: Engineering Geology doi: 10.1016/j.enggeo.2018.09.023 – volume: 122 year: 2021 ident: 10474_CR64 publication-title: Ecological Indicators doi: 10.1016/j.ecolind.2020.107218 – volume: 78 start-page: 4017 issue: 6 year: 2019 ident: 10474_CR1 publication-title: Bulletin of Engineering Geology and the Environment doi: 10.1007/s10064-018-1403-6 – volume: 11 start-page: 1098 issue: 5 year: 2019 ident: 10474_CR11 publication-title: Water doi: 10.3390/w11051098 – volume: 170 year: 2024 ident: 10474_CR3 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2024.106060 – volume: 31 start-page: 2705 issue: 10 year: 2017 ident: 10474_CR9 publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-016-1338-z – volume: 10 start-page: 128 issue: 6 year: 2017 ident: 10474_CR14 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-017-2867-6 – volume: 480 year: 2024 ident: 10474_CR40 publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2024.136022 – volume: 129 start-page: 79 issue: 1 year: 2003 ident: 10474_CR16 publication-title: Journal of Environmental Engineering doi: 10.1061/(ASCE)0733-9372(2003)129:1(79) – volume: 24 start-page: 685 issue: 3 year: 2016 ident: 10474_CR74 publication-title: Hydrogeology Journal doi: 10.1007/s10040-015-1356-9 – ident: 10474_CR50 doi: 10.1007/978-981-99-1388-6_17 – volume: 34 start-page: 383 issue: 1 year: 2024 ident: 10474_CR51 publication-title: Natural Resources Research doi: 10.1007/s11053-024-10402-9 – volume: 36 start-page: 373 issue: 2 year: 2022 ident: 10474_CR33 publication-title: Stochastic Environmental Research and Risk Assessment doi: 10.1007/s00477-021-02138-2 – volume: 9 start-page: 615 year: 2016 ident: 10474_CR53 publication-title: Arabian Journal of Geosciences doi: 10.1007/s12517-016-2641-1 – volume: 170 start-page: 106078 year: 2024 ident: 10474_CR56 publication-title: Applied Geochemistry doi: 10.1016/j.apgeochem.2024.106078 – volume: 7 start-page: 81542 year: 2019 ident: 10474_CR43 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2923707 – volume: 82 start-page: 441 issue: 19 year: 2023 ident: 10474_CR44 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-023-11137-1 – volume: 27 start-page: 181 issue: 1 year: 2013 ident: 10474_CR39 publication-title: Journal of Arid Land Resources and Environment – volume: 83 issue: 3 year: 2023 ident: 10474_CR28 publication-title: Geochemistry doi: 10.1016/j.chemer.2023.125985 – volume: 12 start-page: 2114 issue: 12 year: 2023 ident: 10474_CR70 publication-title: Land doi: 10.3390/land12122114 |
SSID | ssj0007385 |
Score | 2.3774683 |
Snippet | Groundwater is the primary source of drinking water in the world, but its contamination and reduction cause environmental problems. Traditional hydraulic and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1645 |
SubjectTerms | China Contamination Correlation Deep learning Drinking water Fluorides Forecasting Groundwater Groundwater levels Groundwater quality Land subsidence linear models Long short-term memory Mathematical models Neural networks Numerical models prediction Regression analysis Subsidence Support vector machines Time series time series analysis Water quality water table |
Title | Prediction of Groundwater Level and its Correlation with Land Subsidence and Groundwater Quality in Cangzhou, North China Plain, Using Time-Series Long Short-Term Memory Neural Network and Hybrid Models |
URI | https://www.proquest.com/docview/3213297595 https://www.proquest.com/docview/3242057025 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfGEBI8IBggCgMdEk90mRYnaZLHaRpUqK2QaKW9RU7irBGQoLbR6D4in4o720m8qUiMl6iKHbvt_eL7f8fYe5cL4RbuyInS_MTxgzB3kAnnTlrIoKDy6lyZBqaz0Xjhf74ILvbufbCilppNepxd78wr-R-q4j2kK2XJ3oGy3aJ4Az8jffGKFMbrP9H4y4rcLK3MR2akKr8SVPZwQrFAnWPgjFpw6KA3bXidqIBNPDN0S1E10X5cV9bQKYGiurxe1k3v5FEtt6nbkS4_oIMOKJXEIVObXA8n1L_o6xInO3M8-IdTiubdDqkOCAJipgPP1Z7jLSWMqYZs39e2nDwTuh7IyngXyLlhDDQ72gdZ5oyZKOoG0aKCFKZ1U15WJTlVxLeO_0xKnY5S_Sr7MKUlStKq5dJwLH6I3kwx2-IAviqKZ-RX-IecH9uWEh70EV3t4Y6qMilgmveZe6HnRLFuG9NyBGNeLW2DgTreUbcMLFGBXK472dCJSctG4ZW85FTr1Q99x-2ZbhtocIsXdxGSfTVpWiPBNRK1RoKa_n2OKhF161jw007qoKpEqjaw-Y0mQUynid7-HjeFsJsyiBKs5k_YY6MRwamG91O2J6sD9siqk3nAHnxS_ae3z9jvHvJQF2BhFhTkAVEFCHmwIA8EeSDIQw95NdF-3EAeygpayB-BAjwowIMC_BEouIMFdyC4Qw930HAHDXcwcFf7abiDhvtztvh4Pj8bO6YdiZPxIN44IoizPJZ5lkaeK3zup6EMPORnuRcLT7q8yKI4xcGRlGExGoWFPClSPxO-8FIvi7wXbL-qK_mSQcxFJPMwLwpy-_Mw9dNASJ7FqA55krsDNmzpk_zUVWeSvyNiwA5bEibmdFonHnc9ypqPgwF71w0j7yCHoKhk3dAcn6O-hku9utOGr9nD_v06ZPubVSPfoGy-Sd8qUP4BYHjk0w |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Groundwater+Level+and+its+Correlation+with+Land+Subsidence+and+Groundwater+Quality+in+Cangzhou%2C+North+China+Plain%2C+Using+Time-Series+Long+Short-Term+Memory+Neural+Network+and+Hybrid+Models&rft.jtitle=Natural+resources+research+%28New+York%2C+N.Y.%29&rft.au=Nafouanti%2C+Mouigni+Baraka&rft.au=Li%2C+Junxia&rft.au=Chakira%2C+Hamada&rft.au=Nyakilla%2C+Edwin+E.&rft.date=2025-06-01&rft.issn=1520-7439&rft.eissn=1573-8981&rft.volume=34&rft.issue=3&rft.spage=1645&rft.epage=1666&rft_id=info:doi/10.1007%2Fs11053-025-10474-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11053_025_10474_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1520-7439&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1520-7439&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1520-7439&client=summon |