A fuel cell performance simulation method based on pore-scale gas diffusion layer models obtained from X-ray computed tomography under different assembly pressures
The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In thi...
Saved in:
Published in | Journal of power sources Vol. 623; p. 235418 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-7753 |
DOI | 10.1016/j.jpowsour.2024.235418 |
Cover
Loading…
Abstract | The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In this study, an innovative simulation method is proposed for high-temperature proton exchange membrane fuel cells (HT-PEMFCs), which can directly couple pore-scale GDLs with fuel cells when examining fuel cell performance. We used X-ray CT to reconstruct a carbon fiber paper sample (TGP-H-060) under different pressures. These reconstructions were then directly coupled with volume-averaged components to form multiscale models of HT-PEMFCs. Governing equations of mass, momentum, species and charge were directly solved in the microstructure and fluid channels to obtain the polarization curve of the HT-PEMFC. The proposed model combines studies of fuel cell performance with evaluation of the properties of pore-scale GDLs. The results show that using the proposed method, not only can the influence of assembly pressure on the overall performance (i.e. polarization curves) of fuel cells be obtained, but also the influence of assembly pressure on the gas distribution in pore-scale channels of GDLs can be clearly revealed, which can guide the optimization of GDL structure.
•X-ray CT is used to construct the pore-scale GDL models with a resolution of 3 μm.•The pore-scale GDL model is integrated in a multiscale model for HT-PEMFC.•The effect of assembly pressure on fuel cell performance is studied.•The species distribution in the pore-scale channels of GDLs is revealed. |
---|---|
AbstractList | The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In this study, an innovative simulation method is proposed for high-temperature proton exchange membrane fuel cells (HT-PEMFCs), which can directly couple pore-scale GDLs with fuel cells when examining fuel cell performance. We used X-ray CT to reconstruct a carbon fiber paper sample (TGP-H-060) under different pressures. These reconstructions were then directly coupled with volume-averaged components to form multiscale models of HT-PEMFCs. Governing equations of mass, momentum, species and charge were directly solved in the microstructure and fluid channels to obtain the polarization curve of the HT-PEMFC. The proposed model combines studies of fuel cell performance with evaluation of the properties of pore-scale GDLs. The results show that using the proposed method, not only can the influence of assembly pressure on the overall performance (i.e. polarization curves) of fuel cells be obtained, but also the influence of assembly pressure on the gas distribution in pore-scale channels of GDLs can be clearly revealed, which can guide the optimization of GDL structure.
•X-ray CT is used to construct the pore-scale GDL models with a resolution of 3 μm.•The pore-scale GDL model is integrated in a multiscale model for HT-PEMFC.•The effect of assembly pressure on fuel cell performance is studied.•The species distribution in the pore-scale channels of GDLs is revealed. |
ArticleNumber | 235418 |
Author | Qiao, Tingqiang Ding, Xiaoyu Li, Huarui |
Author_xml | – sequence: 1 givenname: Huarui surname: Li fullname: Li, Huarui organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China – sequence: 2 givenname: Tingqiang surname: Qiao fullname: Qiao, Tingqiang organization: AECC Shenyang Engine Research Institute, Shenyang, 110015, China – sequence: 3 givenname: Xiaoyu orcidid: 0000-0002-2998-8900 surname: Ding fullname: Ding, Xiaoyu email: xiaoyu.ding@bit.edu.cn organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China |
BookMark | eNqFkM9O3DAQh30AiQX6CsgvkK0d5w-5gRAtSEi9FKk3a2KPwSs7jjxJqzxPXxSvtj1zmdGM5vtJ812ysylNyNiNFHspZPf1sD_M6Q-lNe9rUTf7WrWNvD1jO6H626rvW3XBLokOQggpe7Fjf--5WzFwgyHwGbNLOcJkkJOPa4DFp4lHXN6T5SMQWl7mOWWsyEBA_gbErXdupeNhgA0zj8liIJ7GBfxUCJdT5L-qDBs3Kc7rUnZLiuktw_y-8XWyBTqGYMZp4UCEcQwbnzMSraVcs3MHgfDLv37FXr89_nx4ql5-fH9-uH-pTN0OSwWqG3tn2t7KQY191w7QDiV1qBsnVdeBcWZQAA0OBlTTjEPb9VaZWjbWOdWpK9adck1ORBmdnrOPkDcthT7q1Qf9X68-6tUnvQW8O4Hlb_ztMWsyHotF6zOaRdvkP4v4AJ16kR0 |
Cites_doi | 10.1016/j.jpowsour.2016.10.039 10.1149/1945-7111/aba4e3 10.1016/j.jpowsour.2016.04.110 10.1016/j.jpowsour.2009.02.090 10.1016/j.energy.2022.125580 10.1149/1.2472547 10.1016/j.ijhydene.2019.08.108 10.1016/j.ijhydene.2017.12.033 10.1016/j.ijhydene.2021.03.166 10.1016/j.jpowsour.2010.06.039 10.1016/j.ijhydene.2014.04.011 10.1016/j.ssi.2012.02.031 10.1016/j.ijheatmasstransfer.2018.07.030 10.1016/j.jpowsour.2017.05.078 10.1016/j.commatsci.2021.110286 10.1149/1.3635584 10.1016/j.apenergy.2021.118377 10.1016/j.jpowsour.2009.11.125 10.1016/j.energy.2017.10.020 10.1016/j.jpowsour.2019.226933 10.1016/j.jpowsour.2007.09.029 10.1149/2.0201814jes 10.1149/2.0191507jes 10.1002/fuce.201000037 10.1016/j.enconman.2021.114791 10.1016/j.jpowsour.2007.01.015 10.1016/S0378-7753(99)00298-0 10.1016/j.jpowsour.2022.231515 10.1016/j.cap.2009.11.042 10.1002/fld.2378 10.1016/j.apenergy.2011.08.037 10.1016/j.electacta.2018.09.089 10.1016/j.ijhydene.2007.05.012 10.1016/j.jpowsour.2007.03.073 10.1016/j.jpowsour.2006.09.068 10.1016/j.apenergy.2023.121962 10.1002/er.3687 10.1016/j.jpowsour.2005.11.069 10.1016/j.ijhydene.2011.05.152 10.1016/j.jpowsour.2008.09.086 10.1021/ie50677a007 10.1149/2.0181907jes 10.1016/j.jpowsour.2021.229822 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jpowsour.2024.235418 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_jpowsour_2024_235418 S0378775324013703 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AAXKI AAXUO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AEZYN AFJKZ AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K XPP ZMT ~G- 29L AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BBWZM BNPGV CITATION EJD FEDTE FGOYB G-2 HLY HVGLF HZ~ NDZJH R2- RIG SAC SCB SCE SSH T9H VH1 VOH WUQ |
ID | FETCH-LOGICAL-c259t-a36b7fc57d193b7659a59ffe924f1366acfc93aa4e9ca344b9567d3c214dff363 |
IEDL.DBID | AIKHN |
ISSN | 0378-7753 |
IngestDate | Tue Jul 01 05:24:11 EDT 2025 Sat Mar 22 15:52:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | X-ray CT Gas diffusion layer Pore-scale model Assembly pressure Fuel cell performance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-a36b7fc57d193b7659a59ffe924f1366acfc93aa4e9ca344b9567d3c214dff363 |
ORCID | 0000-0002-2998-8900 |
ParticipantIDs | crossref_primary_10_1016_j_jpowsour_2024_235418 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2024_235418 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-15 |
PublicationDateYYYYMMDD | 2024-12-15 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of power sources |
PublicationYear | 2024 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Wang, Yuan, Sundén (bib13) 2017; 41 Fazeli, Hinebaugh, Bazylak (bib27) 2015; 162 Fazeli, Hinebaugh, Fishman (bib28) 2016; 335 Fuller, Schettler, Giddings (bib32) 1966; 58 Zhu, Wang, Sui (bib9) 2021; 46 Sadeghi, Djilali, Bahrami (bib5) 2011; 196 Ferng, Su (bib39) 2007; 32 Schulz, Becker, Wiegmann (bib19) 2007; 154 Koido, Furusawa, Moriyama (bib25) 2008; 175 Vikram, Chowdhury, Phillips (bib43) 2016; 320 Zhou, Niu, Li (bib24) 2019; 44 Ge, Higier, Liu (bib3) 2006; 159 Zhou, Niu, Bao (bib23) 2019; 437 Satjaritanun, Hirano, Shum (bib29) 2018; 165 Movahedi, Ramiar, Ranjber (bib12) 2018; 142 Didari, Harris, Huang (bib22) 2011; 41 Zhu, Zhang, Xiao (bib14) 2021; 496 Goshtasbi, García-Salaberri, Chen (bib38) 2019; 166 Wei, Chang, Fan (bib37) 2023; 352 García-Salaberri, Zenyuk, Shum (bib16) 2018; 127 Xiao, Luo, Zhu (bib30) 2020; 167 Rama, Liu, Chen (bib26) 2011; 67 Zhou, Wu, Ma (bib11) 2007; 163 Hao, Cheng (bib20) 2010; 195 Jiang, Yang, Li (bib42) 2021; 190 Rama, Liu, Chen (bib8) 2011; 11 Rebai, Prat (bib17) 2009; 192 Dafalla, Jiang (bib7) 2018; 43 García-Salaberri, Vera, Zaera (bib1) 2011; 36 Zhou, Wu (bib10) 2007; 170 Chippar, Ju (bib33) 2012; 225 García-Salaberri, Zenyuk, Hwang (bib18) 2019; 295 Yim, Kim, Sohn (bib6) 2010; 10 Lee, Ho, Van Zee (bib2) 1999; 84 Hao, Cheng (bib41) 2009; 186 Zamel, Li, Shen (bib21) 2012; 93 Xu, Fan, Chang (bib36) 2021; 248 Didari, Asadi, Wang (bib40) 2014; 39 Molaeimanesh, Nazemian (bib15) 2017; 359 Xiao, Zhu, Clökler (bib31) 2022; 536 Fan, Chang, Xu (bib34) 2023; 262 Chang, Hwang, Weng (bib4) 2007; 166 Wang, Tang, Li (bib35) 2022; 308 Jiang (10.1016/j.jpowsour.2024.235418_bib42) 2021; 190 Rebai (10.1016/j.jpowsour.2024.235418_bib17) 2009; 192 Hao (10.1016/j.jpowsour.2024.235418_bib41) 2009; 186 Zhu (10.1016/j.jpowsour.2024.235418_bib14) 2021; 496 Chippar (10.1016/j.jpowsour.2024.235418_bib33) 2012; 225 Fan (10.1016/j.jpowsour.2024.235418_bib34) 2023; 262 Zhu (10.1016/j.jpowsour.2024.235418_bib9) 2021; 46 Zhou (10.1016/j.jpowsour.2024.235418_bib24) 2019; 44 Rama (10.1016/j.jpowsour.2024.235418_bib26) 2011; 67 Yim (10.1016/j.jpowsour.2024.235418_bib6) 2010; 10 García-Salaberri (10.1016/j.jpowsour.2024.235418_bib16) 2018; 127 Chang (10.1016/j.jpowsour.2024.235418_bib4) 2007; 166 Rama (10.1016/j.jpowsour.2024.235418_bib8) 2011; 11 Wang (10.1016/j.jpowsour.2024.235418_bib35) 2022; 308 Koido (10.1016/j.jpowsour.2024.235418_bib25) 2008; 175 Satjaritanun (10.1016/j.jpowsour.2024.235418_bib29) 2018; 165 Lee (10.1016/j.jpowsour.2024.235418_bib2) 1999; 84 Dafalla (10.1016/j.jpowsour.2024.235418_bib7) 2018; 43 Zamel (10.1016/j.jpowsour.2024.235418_bib21) 2012; 93 Ferng (10.1016/j.jpowsour.2024.235418_bib39) 2007; 32 Ge (10.1016/j.jpowsour.2024.235418_bib3) 2006; 159 Wei (10.1016/j.jpowsour.2024.235418_bib37) 2023; 352 Zhou (10.1016/j.jpowsour.2024.235418_bib11) 2007; 163 Wang (10.1016/j.jpowsour.2024.235418_bib13) 2017; 41 Xiao (10.1016/j.jpowsour.2024.235418_bib31) 2022; 536 García-Salaberri (10.1016/j.jpowsour.2024.235418_bib18) 2019; 295 Zhou (10.1016/j.jpowsour.2024.235418_bib23) 2019; 437 Fazeli (10.1016/j.jpowsour.2024.235418_bib28) 2016; 335 Zhou (10.1016/j.jpowsour.2024.235418_bib10) 2007; 170 Fazeli (10.1016/j.jpowsour.2024.235418_bib27) 2015; 162 Goshtasbi (10.1016/j.jpowsour.2024.235418_bib38) 2019; 166 Didari (10.1016/j.jpowsour.2024.235418_bib40) 2014; 39 Movahedi (10.1016/j.jpowsour.2024.235418_bib12) 2018; 142 Schulz (10.1016/j.jpowsour.2024.235418_bib19) 2007; 154 Xu (10.1016/j.jpowsour.2024.235418_bib36) 2021; 248 Fuller (10.1016/j.jpowsour.2024.235418_bib32) 1966; 58 García-Salaberri (10.1016/j.jpowsour.2024.235418_bib1) 2011; 36 Molaeimanesh (10.1016/j.jpowsour.2024.235418_bib15) 2017; 359 Sadeghi (10.1016/j.jpowsour.2024.235418_bib5) 2011; 196 Xiao (10.1016/j.jpowsour.2024.235418_bib30) 2020; 167 Didari (10.1016/j.jpowsour.2024.235418_bib22) 2011; 41 Hao (10.1016/j.jpowsour.2024.235418_bib20) 2010; 195 Vikram (10.1016/j.jpowsour.2024.235418_bib43) 2016; 320 |
References_xml | – volume: 437 year: 2019 ident: bib23 article-title: Two-Phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling publication-title: J. Power Sources – volume: 166 start-page: 149 year: 2007 end-page: 154 ident: bib4 article-title: Effect of clamping pressure on the performance of a PEM fuel cell publication-title: J. Power Sources – volume: 359 start-page: 494 year: 2017 end-page: 506 ident: bib15 article-title: Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by Lattice Boltzmann method publication-title: J. Power Sources – volume: 192 start-page: 534 year: 2009 end-page: 543 ident: bib17 article-title: Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells publication-title: J. Power Sources – volume: 165 start-page: F1115 year: 2018 end-page: F1126 ident: bib29 article-title: Fundamental understanding of water movement in gas diffusion layer under different arrangements using combination of direct modeling and experimental visualization publication-title: J. Electrochem. Soc. – volume: 186 start-page: 104 year: 2009 end-page: 114 ident: bib41 article-title: Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers publication-title: J. Power Sources – volume: 352 year: 2023 ident: bib37 article-title: Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design publication-title: Appl. Energy – volume: 190 year: 2021 ident: bib42 article-title: Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method publication-title: Comput. Mater. Sci. – volume: 39 start-page: 9375 year: 2014 end-page: 9386 ident: bib40 article-title: Modeling of composite fibrous porous diffusion media publication-title: Int. J. Hydrogen Energy – volume: 67 start-page: 518 year: 2011 end-page: 530 ident: bib26 article-title: Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase Lattice Boltzmann simulation publication-title: Int. J. Numer. Methods Fluid. – volume: 127 start-page: 687 year: 2018 end-page: 703 ident: bib16 article-title: Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity publication-title: Int. J. Heat Mass Tran. – volume: 196 start-page: 246 year: 2011 end-page: 254 ident: bib5 article-title: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. part 1: effect of compressive load publication-title: J. Power Sources – volume: 154 start-page: B419 year: 2007 end-page: B426 ident: bib19 article-title: Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach publication-title: J. Electrochem. Soc. – volume: 170 start-page: 93 year: 2007 end-page: 100 ident: bib10 article-title: Numerical study on the compression effect of gas diffusion layer on PEMFC performance publication-title: J. Power Sources – volume: 496 year: 2021 ident: bib14 article-title: Pore-scale modeling of gas diffusion layers: effects of compression on transport properties publication-title: J. Power Sources – volume: 175 start-page: 127 year: 2008 end-page: 136 ident: bib25 article-title: An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell publication-title: J. Power Sources – volume: 262 year: 2023 ident: bib34 article-title: Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC publication-title: Energy – volume: 225 start-page: 30 year: 2012 end-page: 39 ident: bib33 article-title: Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell publication-title: Solid State Ionics – volume: 248 year: 2021 ident: bib36 article-title: Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model publication-title: Energy Convers. Manag. – volume: 536 year: 2022 ident: bib31 article-title: Experimental validation of pore-scale models for gas diffusion layers publication-title: J. Power Sources – volume: 84 start-page: 45 year: 1999 end-page: 51 ident: bib2 article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell publication-title: J. Power Sources – volume: 142 start-page: 617 year: 2018 end-page: 632 ident: bib12 article-title: 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field publication-title: Energy – volume: 166 start-page: F3154 year: 2019 end-page: F3179 ident: bib38 article-title: Through-the-membrane transient phenomena in PEM fuel cells: a modeling study publication-title: J. Electrochem. Soc. – volume: 43 start-page: 2327 year: 2018 end-page: 2348 ident: bib7 article-title: Stresses and their impacts on proton exchange membrane fuel cells: a review publication-title: Int. J. Hydrogen Energy – volume: 159 start-page: 922 year: 2006 end-page: 927 ident: bib3 article-title: Effect of gas diffusion layer compression on PEM fuel cell performance publication-title: J. Power Sources – volume: 32 start-page: 4466 year: 2007 end-page: 4476 ident: bib39 article-title: A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 26498 year: 2019 end-page: 26516 ident: bib24 article-title: Investigation of two-phase flow in the compressed gas diffusion layer microstructures publication-title: Int. J. Hydrogen Energy – volume: 58 start-page: 19 year: 1966 end-page: 27 ident: bib32 article-title: A new method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. – volume: 41 start-page: 985 year: 2017 end-page: 1003 ident: bib13 article-title: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells publication-title: Int. J. Energy Res. – volume: 46 start-page: 20702 year: 2021 end-page: 20714 ident: bib9 article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications publication-title: Int. J. Hydrogen Energy – volume: 195 start-page: 3870 year: 2010 end-page: 3881 ident: bib20 article-title: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell publication-title: J. Power Sources – volume: 162 start-page: F661 year: 2015 end-page: F668 ident: bib27 article-title: Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling publication-title: J. Electrochem. Soc. – volume: 36 start-page: 11856 year: 2011 end-page: 11870 ident: bib1 article-title: Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers publication-title: Int. J. Hydrogen Energy – volume: 163 start-page: 874 year: 2007 end-page: 881 ident: bib11 article-title: Influence of clamping force on the performance of PEMFCs publication-title: J. Power Sources – volume: 295 start-page: 861 year: 2019 end-page: 874 ident: bib18 article-title: Implications of inherent inhomogeneities in thin carbon fiber-based gas diffusion layers: a comparative modeling study publication-title: Electrochim. Acta – volume: 335 start-page: 162 year: 2016 end-page: 171 ident: bib28 article-title: Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers publication-title: J. Power Sources – volume: 320 start-page: 274 year: 2016 end-page: 285 ident: bib43 article-title: Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression – Part I: electrical conductivity publication-title: J. Power Sources – volume: 93 start-page: 39 year: 2012 end-page: 44 ident: bib21 article-title: Numerical estimation of the effective electrical conductivity in carbon paper diffusion media publication-title: Appl. Energy – volume: 10 start-page: S59 year: 2010 end-page: S61 ident: bib6 article-title: The influence of stack clamping pressure on the performance of PEM fuel cell stack publication-title: Curr. Appl. Phys. – volume: 41 start-page: 499 year: 2011 end-page: 512 ident: bib22 article-title: Transport phenomena in carbon paper gas diffusion layers publication-title: ECS Trans. – volume: 308 year: 2022 ident: bib35 article-title: Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure publication-title: Appl. Energy – volume: 11 start-page: 274 year: 2011 end-page: 285 ident: bib8 article-title: A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers publication-title: Fuel Cell. – volume: 167 year: 2020 ident: bib30 article-title: Pore-scale characterization and simulation of porous electrode material for vanadium redox flow battery: effects of compression on transport properties publication-title: J. Electrochem. Soc. – volume: 335 start-page: 162 year: 2016 ident: 10.1016/j.jpowsour.2024.235418_bib28 article-title: Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.10.039 – volume: 167 year: 2020 ident: 10.1016/j.jpowsour.2024.235418_bib30 article-title: Pore-scale characterization and simulation of porous electrode material for vanadium redox flow battery: effects of compression on transport properties publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/aba4e3 – volume: 320 start-page: 274 year: 2016 ident: 10.1016/j.jpowsour.2024.235418_bib43 article-title: Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression – Part I: electrical conductivity publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.110 – volume: 192 start-page: 534 year: 2009 ident: 10.1016/j.jpowsour.2024.235418_bib17 article-title: Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.02.090 – volume: 262 year: 2023 ident: 10.1016/j.jpowsour.2024.235418_bib34 article-title: Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC publication-title: Energy doi: 10.1016/j.energy.2022.125580 – volume: 154 start-page: B419 year: 2007 ident: 10.1016/j.jpowsour.2024.235418_bib19 article-title: Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach publication-title: J. Electrochem. Soc. doi: 10.1149/1.2472547 – volume: 44 start-page: 26498 year: 2019 ident: 10.1016/j.jpowsour.2024.235418_bib24 article-title: Investigation of two-phase flow in the compressed gas diffusion layer microstructures publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.08.108 – volume: 43 start-page: 2327 year: 2018 ident: 10.1016/j.jpowsour.2024.235418_bib7 article-title: Stresses and their impacts on proton exchange membrane fuel cells: a review publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.033 – volume: 46 start-page: 20702 year: 2021 ident: 10.1016/j.jpowsour.2024.235418_bib9 article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2021.03.166 – volume: 196 start-page: 246 year: 2011 ident: 10.1016/j.jpowsour.2024.235418_bib5 article-title: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. part 1: effect of compressive load publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.06.039 – volume: 39 start-page: 9375 year: 2014 ident: 10.1016/j.jpowsour.2024.235418_bib40 article-title: Modeling of composite fibrous porous diffusion media publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2014.04.011 – volume: 225 start-page: 30 year: 2012 ident: 10.1016/j.jpowsour.2024.235418_bib33 article-title: Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell publication-title: Solid State Ionics doi: 10.1016/j.ssi.2012.02.031 – volume: 127 start-page: 687 year: 2018 ident: 10.1016/j.jpowsour.2024.235418_bib16 article-title: Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2018.07.030 – volume: 359 start-page: 494 year: 2017 ident: 10.1016/j.jpowsour.2024.235418_bib15 article-title: Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by Lattice Boltzmann method publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.05.078 – volume: 190 year: 2021 ident: 10.1016/j.jpowsour.2024.235418_bib42 article-title: Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2021.110286 – volume: 41 start-page: 499 year: 2011 ident: 10.1016/j.jpowsour.2024.235418_bib22 article-title: Transport phenomena in carbon paper gas diffusion layers publication-title: ECS Trans. doi: 10.1149/1.3635584 – volume: 308 year: 2022 ident: 10.1016/j.jpowsour.2024.235418_bib35 article-title: Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure publication-title: Appl. Energy doi: 10.1016/j.apenergy.2021.118377 – volume: 195 start-page: 3870 year: 2010 ident: 10.1016/j.jpowsour.2024.235418_bib20 article-title: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2009.11.125 – volume: 142 start-page: 617 year: 2018 ident: 10.1016/j.jpowsour.2024.235418_bib12 article-title: 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field publication-title: Energy doi: 10.1016/j.energy.2017.10.020 – volume: 437 year: 2019 ident: 10.1016/j.jpowsour.2024.235418_bib23 article-title: Two-Phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2019.226933 – volume: 175 start-page: 127 year: 2008 ident: 10.1016/j.jpowsour.2024.235418_bib25 article-title: An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.09.029 – volume: 165 start-page: F1115 year: 2018 ident: 10.1016/j.jpowsour.2024.235418_bib29 article-title: Fundamental understanding of water movement in gas diffusion layer under different arrangements using combination of direct modeling and experimental visualization publication-title: J. Electrochem. Soc. doi: 10.1149/2.0201814jes – volume: 162 start-page: F661 year: 2015 ident: 10.1016/j.jpowsour.2024.235418_bib27 article-title: Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling publication-title: J. Electrochem. Soc. doi: 10.1149/2.0191507jes – volume: 11 start-page: 274 year: 2011 ident: 10.1016/j.jpowsour.2024.235418_bib8 article-title: A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers publication-title: Fuel Cell. doi: 10.1002/fuce.201000037 – volume: 248 year: 2021 ident: 10.1016/j.jpowsour.2024.235418_bib36 article-title: Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114791 – volume: 166 start-page: 149 year: 2007 ident: 10.1016/j.jpowsour.2024.235418_bib4 article-title: Effect of clamping pressure on the performance of a PEM fuel cell publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.01.015 – volume: 84 start-page: 45 year: 1999 ident: 10.1016/j.jpowsour.2024.235418_bib2 article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00298-0 – volume: 536 year: 2022 ident: 10.1016/j.jpowsour.2024.235418_bib31 article-title: Experimental validation of pore-scale models for gas diffusion layers publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2022.231515 – volume: 10 start-page: S59 year: 2010 ident: 10.1016/j.jpowsour.2024.235418_bib6 article-title: The influence of stack clamping pressure on the performance of PEM fuel cell stack publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2009.11.042 – volume: 67 start-page: 518 year: 2011 ident: 10.1016/j.jpowsour.2024.235418_bib26 article-title: Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase Lattice Boltzmann simulation publication-title: Int. J. Numer. Methods Fluid. doi: 10.1002/fld.2378 – volume: 93 start-page: 39 year: 2012 ident: 10.1016/j.jpowsour.2024.235418_bib21 article-title: Numerical estimation of the effective electrical conductivity in carbon paper diffusion media publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.08.037 – volume: 295 start-page: 861 year: 2019 ident: 10.1016/j.jpowsour.2024.235418_bib18 article-title: Implications of inherent inhomogeneities in thin carbon fiber-based gas diffusion layers: a comparative modeling study publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.09.089 – volume: 32 start-page: 4466 year: 2007 ident: 10.1016/j.jpowsour.2024.235418_bib39 article-title: A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2007.05.012 – volume: 170 start-page: 93 year: 2007 ident: 10.1016/j.jpowsour.2024.235418_bib10 article-title: Numerical study on the compression effect of gas diffusion layer on PEMFC performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.03.073 – volume: 163 start-page: 874 year: 2007 ident: 10.1016/j.jpowsour.2024.235418_bib11 article-title: Influence of clamping force on the performance of PEMFCs publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2006.09.068 – volume: 352 year: 2023 ident: 10.1016/j.jpowsour.2024.235418_bib37 article-title: Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121962 – volume: 41 start-page: 985 year: 2017 ident: 10.1016/j.jpowsour.2024.235418_bib13 article-title: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells publication-title: Int. J. Energy Res. doi: 10.1002/er.3687 – volume: 159 start-page: 922 year: 2006 ident: 10.1016/j.jpowsour.2024.235418_bib3 article-title: Effect of gas diffusion layer compression on PEM fuel cell performance publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2005.11.069 – volume: 36 start-page: 11856 year: 2011 ident: 10.1016/j.jpowsour.2024.235418_bib1 article-title: Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.05.152 – volume: 186 start-page: 104 year: 2009 ident: 10.1016/j.jpowsour.2024.235418_bib41 article-title: Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.09.086 – volume: 58 start-page: 19 issue: 5 year: 1966 ident: 10.1016/j.jpowsour.2024.235418_bib32 article-title: A new method for prediction of binary gas-phase diffusion coefficients publication-title: Ind. Eng. Chem. doi: 10.1021/ie50677a007 – volume: 166 start-page: F3154 year: 2019 ident: 10.1016/j.jpowsour.2024.235418_bib38 article-title: Through-the-membrane transient phenomena in PEM fuel cells: a modeling study publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181907jes – volume: 496 year: 2021 ident: 10.1016/j.jpowsour.2024.235418_bib14 article-title: Pore-scale modeling of gas diffusion layers: effects of compression on transport properties publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2021.229822 |
SSID | ssj0001170 |
Score | 2.4759486 |
Snippet | The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 235418 |
SubjectTerms | Assembly pressure Fuel cell performance Gas diffusion layer Pore-scale model X-ray CT |
Title | A fuel cell performance simulation method based on pore-scale gas diffusion layer models obtained from X-ray computed tomography under different assembly pressures |
URI | https://dx.doi.org/10.1016/j.jpowsour.2024.235418 |
Volume | 623 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9tADB622Ut7KNsX3XYbdOh1ktjzsOcYQkPa0lzaQG5mXi4JeZE4lFz6Z_aPrhTbbQqFHnoxjEGDGQ3SJ1nSx9j7XAZ0JDHlWgXJpS8jt3YgedTSZSq1icipG_nLVE9m8tNcza_YqO2FobLKxvbXNv1srZs3_eY0-7vFov91IPCyIdpOKUTIaOLndSqMVh12Pfz4eTL9ZZCJXOX8MwEDJhK4aBRe9pa77Q_Kk2OomMpeKpQk_o-_-agLvzO-YU8bwAjD-puesau4ec6eXIwRfMHuh1Ae4wooCQ-7350AcFisG3YuqJmigZxWAFwj7I78gAqK8N0egHhSjpQ4g5VFEA5ngpwDbB1lDlCCulBgzvf2BL7mgQhQbdfNvGugTrQ9tGQrFSAij2u3OsG5zPaIj5dsNv7wbTThDfkC9xgRVdwK7bLSqywgxHOZVsYqg7tgvFYmQmvrS2-EtTIab4WUDgOtLAifJjKUpdDiFetstpv4msEgd9YMXEhyG2WQpU0z5Z3PMxetMUrdsn573MWunrFRtMVny6JVUEEKKmoF3TLTaqX447YU6Aj-IfvmP2Tfsse0onKWRN2xTrU_xncISirXZY96P5Nuc_UeACUC5_8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5Ccmh7KEkfNO859Lq2pd3VSkdjEpznpQn4JvalYuMXtkzJJX8mfzQzehAHCj30ItBjhdgZZr4ZzczH2M9UenQkIeaJ8pJLVwRuTE_ykEirVWwikVI38t19MnyU1yM12mGDtheGyiob21_b9MpaN1e6zW52l-Nx91dPoLIh2o4pRNA08XNPKqGprq_z_FbnQdQq1a8EDJfo8a024Ulnslz8oSw5Boqx7MRCSWL_-JuH2vI6l_vscwMXoV9_0QHbCfMv7NPWEMGv7KUPxSZMgVLwsHzrA4D1eNZwc0HNEw3ksjzgOYLuwNcongC_zRqIJWVDaTOYGoTgUNHjrGFhKW-AK6gHBUZ8ZZ7A1SwQHsrFrJl2DdSHtoKWaqUExONhZqdPUBXZbvDwjT1eXjwMhryhXuAO46GSG5FYXTilPQI8qxOVGZXhWzBaKyKRJMYVLhPGyJA5I6S0GGZpL1wcSV8UIhHf2e58MQ8_GPRSa7Ke9VFqgvSyMLFWzrpU22CyTKlD1m23O1_WEzbytvRskrcCyklAeS2gQ5a1Usnf6UqObuAfa4_-Y-05-zB8uLvNb6_ub47ZR7pDhS2ROmG75WoTThGelPasUr9XJY7oyg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuel+cell+performance+simulation+method+based+on+pore-scale+gas+diffusion+layer+models+obtained+from+X-ray+computed+tomography+under+different+assembly+pressures&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Huarui&rft.au=Qiao%2C+Tingqiang&rft.au=Ding%2C+Xiaoyu&rft.date=2024-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=623&rft_id=info:doi/10.1016%2Fj.jpowsour.2024.235418&rft.externalDocID=S0378775324013703 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |