A fuel cell performance simulation method based on pore-scale gas diffusion layer models obtained from X-ray computed tomography under different assembly pressures

The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In thi...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 623; p. 235418
Main Authors Li, Huarui, Qiao, Tingqiang, Ding, Xiaoyu
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2024
Subjects
Online AccessGet full text
ISSN0378-7753
DOI10.1016/j.jpowsour.2024.235418

Cover

Loading…
Abstract The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In this study, an innovative simulation method is proposed for high-temperature proton exchange membrane fuel cells (HT-PEMFCs), which can directly couple pore-scale GDLs with fuel cells when examining fuel cell performance. We used X-ray CT to reconstruct a carbon fiber paper sample (TGP-H-060) under different pressures. These reconstructions were then directly coupled with volume-averaged components to form multiscale models of HT-PEMFCs. Governing equations of mass, momentum, species and charge were directly solved in the microstructure and fluid channels to obtain the polarization curve of the HT-PEMFC. The proposed model combines studies of fuel cell performance with evaluation of the properties of pore-scale GDLs. The results show that using the proposed method, not only can the influence of assembly pressure on the overall performance (i.e. polarization curves) of fuel cells be obtained, but also the influence of assembly pressure on the gas distribution in pore-scale channels of GDLs can be clearly revealed, which can guide the optimization of GDL structure. •X-ray CT is used to construct the pore-scale GDL models with a resolution of 3 μm.•The pore-scale GDL model is integrated in a multiscale model for HT-PEMFC.•The effect of assembly pressure on fuel cell performance is studied.•The species distribution in the pore-scale channels of GDLs is revealed.
AbstractList The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on volume-averaged formulae tended to smooth out the inherent non-uniformity of the gas diffusion layer (GDL) and this needs to be improved. In this study, an innovative simulation method is proposed for high-temperature proton exchange membrane fuel cells (HT-PEMFCs), which can directly couple pore-scale GDLs with fuel cells when examining fuel cell performance. We used X-ray CT to reconstruct a carbon fiber paper sample (TGP-H-060) under different pressures. These reconstructions were then directly coupled with volume-averaged components to form multiscale models of HT-PEMFCs. Governing equations of mass, momentum, species and charge were directly solved in the microstructure and fluid channels to obtain the polarization curve of the HT-PEMFC. The proposed model combines studies of fuel cell performance with evaluation of the properties of pore-scale GDLs. The results show that using the proposed method, not only can the influence of assembly pressure on the overall performance (i.e. polarization curves) of fuel cells be obtained, but also the influence of assembly pressure on the gas distribution in pore-scale channels of GDLs can be clearly revealed, which can guide the optimization of GDL structure. •X-ray CT is used to construct the pore-scale GDL models with a resolution of 3 μm.•The pore-scale GDL model is integrated in a multiscale model for HT-PEMFC.•The effect of assembly pressure on fuel cell performance is studied.•The species distribution in the pore-scale channels of GDLs is revealed.
ArticleNumber 235418
Author Qiao, Tingqiang
Ding, Xiaoyu
Li, Huarui
Author_xml – sequence: 1
  givenname: Huarui
  surname: Li
  fullname: Li, Huarui
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
– sequence: 2
  givenname: Tingqiang
  surname: Qiao
  fullname: Qiao, Tingqiang
  organization: AECC Shenyang Engine Research Institute, Shenyang, 110015, China
– sequence: 3
  givenname: Xiaoyu
  orcidid: 0000-0002-2998-8900
  surname: Ding
  fullname: Ding, Xiaoyu
  email: xiaoyu.ding@bit.edu.cn
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China
BookMark eNqFkM9O3DAQh30AiQX6CsgvkK0d5w-5gRAtSEi9FKk3a2KPwSs7jjxJqzxPXxSvtj1zmdGM5vtJ812ysylNyNiNFHspZPf1sD_M6Q-lNe9rUTf7WrWNvD1jO6H626rvW3XBLokOQggpe7Fjf--5WzFwgyHwGbNLOcJkkJOPa4DFp4lHXN6T5SMQWl7mOWWsyEBA_gbErXdupeNhgA0zj8liIJ7GBfxUCJdT5L-qDBs3Kc7rUnZLiuktw_y-8XWyBTqGYMZp4UCEcQwbnzMSraVcs3MHgfDLv37FXr89_nx4ql5-fH9-uH-pTN0OSwWqG3tn2t7KQY191w7QDiV1qBsnVdeBcWZQAA0OBlTTjEPb9VaZWjbWOdWpK9adck1ORBmdnrOPkDcthT7q1Qf9X68-6tUnvQW8O4Hlb_ztMWsyHotF6zOaRdvkP4v4AJ16kR0
Cites_doi 10.1016/j.jpowsour.2016.10.039
10.1149/1945-7111/aba4e3
10.1016/j.jpowsour.2016.04.110
10.1016/j.jpowsour.2009.02.090
10.1016/j.energy.2022.125580
10.1149/1.2472547
10.1016/j.ijhydene.2019.08.108
10.1016/j.ijhydene.2017.12.033
10.1016/j.ijhydene.2021.03.166
10.1016/j.jpowsour.2010.06.039
10.1016/j.ijhydene.2014.04.011
10.1016/j.ssi.2012.02.031
10.1016/j.ijheatmasstransfer.2018.07.030
10.1016/j.jpowsour.2017.05.078
10.1016/j.commatsci.2021.110286
10.1149/1.3635584
10.1016/j.apenergy.2021.118377
10.1016/j.jpowsour.2009.11.125
10.1016/j.energy.2017.10.020
10.1016/j.jpowsour.2019.226933
10.1016/j.jpowsour.2007.09.029
10.1149/2.0201814jes
10.1149/2.0191507jes
10.1002/fuce.201000037
10.1016/j.enconman.2021.114791
10.1016/j.jpowsour.2007.01.015
10.1016/S0378-7753(99)00298-0
10.1016/j.jpowsour.2022.231515
10.1016/j.cap.2009.11.042
10.1002/fld.2378
10.1016/j.apenergy.2011.08.037
10.1016/j.electacta.2018.09.089
10.1016/j.ijhydene.2007.05.012
10.1016/j.jpowsour.2007.03.073
10.1016/j.jpowsour.2006.09.068
10.1016/j.apenergy.2023.121962
10.1002/er.3687
10.1016/j.jpowsour.2005.11.069
10.1016/j.ijhydene.2011.05.152
10.1016/j.jpowsour.2008.09.086
10.1021/ie50677a007
10.1149/2.0181907jes
10.1016/j.jpowsour.2021.229822
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jpowsour.2024.235418
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_jpowsour_2024_235418
S0378775324013703
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXKI
AAXUO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
XPP
ZMT
~G-
29L
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLY
HVGLF
HZ~
NDZJH
R2-
RIG
SAC
SCB
SCE
SSH
T9H
VH1
VOH
WUQ
ID FETCH-LOGICAL-c259t-a36b7fc57d193b7659a59ffe924f1366acfc93aa4e9ca344b9567d3c214dff363
IEDL.DBID AIKHN
ISSN 0378-7753
IngestDate Tue Jul 01 05:24:11 EDT 2025
Sat Mar 22 15:52:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords X-ray CT
Gas diffusion layer
Pore-scale model
Assembly pressure
Fuel cell performance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-a36b7fc57d193b7659a59ffe924f1366acfc93aa4e9ca344b9567d3c214dff363
ORCID 0000-0002-2998-8900
ParticipantIDs crossref_primary_10_1016_j_jpowsour_2024_235418
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2024_235418
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of power sources
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Wang, Yuan, Sundén (bib13) 2017; 41
Fazeli, Hinebaugh, Bazylak (bib27) 2015; 162
Fazeli, Hinebaugh, Fishman (bib28) 2016; 335
Fuller, Schettler, Giddings (bib32) 1966; 58
Zhu, Wang, Sui (bib9) 2021; 46
Sadeghi, Djilali, Bahrami (bib5) 2011; 196
Ferng, Su (bib39) 2007; 32
Schulz, Becker, Wiegmann (bib19) 2007; 154
Koido, Furusawa, Moriyama (bib25) 2008; 175
Vikram, Chowdhury, Phillips (bib43) 2016; 320
Zhou, Niu, Li (bib24) 2019; 44
Ge, Higier, Liu (bib3) 2006; 159
Zhou, Niu, Bao (bib23) 2019; 437
Satjaritanun, Hirano, Shum (bib29) 2018; 165
Movahedi, Ramiar, Ranjber (bib12) 2018; 142
Didari, Harris, Huang (bib22) 2011; 41
Zhu, Zhang, Xiao (bib14) 2021; 496
Goshtasbi, García-Salaberri, Chen (bib38) 2019; 166
Wei, Chang, Fan (bib37) 2023; 352
García-Salaberri, Zenyuk, Shum (bib16) 2018; 127
Xiao, Luo, Zhu (bib30) 2020; 167
Rama, Liu, Chen (bib26) 2011; 67
Zhou, Wu, Ma (bib11) 2007; 163
Hao, Cheng (bib20) 2010; 195
Jiang, Yang, Li (bib42) 2021; 190
Rama, Liu, Chen (bib8) 2011; 11
Rebai, Prat (bib17) 2009; 192
Dafalla, Jiang (bib7) 2018; 43
García-Salaberri, Vera, Zaera (bib1) 2011; 36
Zhou, Wu (bib10) 2007; 170
Chippar, Ju (bib33) 2012; 225
García-Salaberri, Zenyuk, Hwang (bib18) 2019; 295
Yim, Kim, Sohn (bib6) 2010; 10
Lee, Ho, Van Zee (bib2) 1999; 84
Hao, Cheng (bib41) 2009; 186
Zamel, Li, Shen (bib21) 2012; 93
Xu, Fan, Chang (bib36) 2021; 248
Didari, Asadi, Wang (bib40) 2014; 39
Molaeimanesh, Nazemian (bib15) 2017; 359
Xiao, Zhu, Clökler (bib31) 2022; 536
Fan, Chang, Xu (bib34) 2023; 262
Chang, Hwang, Weng (bib4) 2007; 166
Wang, Tang, Li (bib35) 2022; 308
Jiang (10.1016/j.jpowsour.2024.235418_bib42) 2021; 190
Rebai (10.1016/j.jpowsour.2024.235418_bib17) 2009; 192
Hao (10.1016/j.jpowsour.2024.235418_bib41) 2009; 186
Zhu (10.1016/j.jpowsour.2024.235418_bib14) 2021; 496
Chippar (10.1016/j.jpowsour.2024.235418_bib33) 2012; 225
Fan (10.1016/j.jpowsour.2024.235418_bib34) 2023; 262
Zhu (10.1016/j.jpowsour.2024.235418_bib9) 2021; 46
Zhou (10.1016/j.jpowsour.2024.235418_bib24) 2019; 44
Rama (10.1016/j.jpowsour.2024.235418_bib26) 2011; 67
Yim (10.1016/j.jpowsour.2024.235418_bib6) 2010; 10
García-Salaberri (10.1016/j.jpowsour.2024.235418_bib16) 2018; 127
Chang (10.1016/j.jpowsour.2024.235418_bib4) 2007; 166
Rama (10.1016/j.jpowsour.2024.235418_bib8) 2011; 11
Wang (10.1016/j.jpowsour.2024.235418_bib35) 2022; 308
Koido (10.1016/j.jpowsour.2024.235418_bib25) 2008; 175
Satjaritanun (10.1016/j.jpowsour.2024.235418_bib29) 2018; 165
Lee (10.1016/j.jpowsour.2024.235418_bib2) 1999; 84
Dafalla (10.1016/j.jpowsour.2024.235418_bib7) 2018; 43
Zamel (10.1016/j.jpowsour.2024.235418_bib21) 2012; 93
Ferng (10.1016/j.jpowsour.2024.235418_bib39) 2007; 32
Ge (10.1016/j.jpowsour.2024.235418_bib3) 2006; 159
Wei (10.1016/j.jpowsour.2024.235418_bib37) 2023; 352
Zhou (10.1016/j.jpowsour.2024.235418_bib11) 2007; 163
Wang (10.1016/j.jpowsour.2024.235418_bib13) 2017; 41
Xiao (10.1016/j.jpowsour.2024.235418_bib31) 2022; 536
García-Salaberri (10.1016/j.jpowsour.2024.235418_bib18) 2019; 295
Zhou (10.1016/j.jpowsour.2024.235418_bib23) 2019; 437
Fazeli (10.1016/j.jpowsour.2024.235418_bib28) 2016; 335
Zhou (10.1016/j.jpowsour.2024.235418_bib10) 2007; 170
Fazeli (10.1016/j.jpowsour.2024.235418_bib27) 2015; 162
Goshtasbi (10.1016/j.jpowsour.2024.235418_bib38) 2019; 166
Didari (10.1016/j.jpowsour.2024.235418_bib40) 2014; 39
Movahedi (10.1016/j.jpowsour.2024.235418_bib12) 2018; 142
Schulz (10.1016/j.jpowsour.2024.235418_bib19) 2007; 154
Xu (10.1016/j.jpowsour.2024.235418_bib36) 2021; 248
Fuller (10.1016/j.jpowsour.2024.235418_bib32) 1966; 58
García-Salaberri (10.1016/j.jpowsour.2024.235418_bib1) 2011; 36
Molaeimanesh (10.1016/j.jpowsour.2024.235418_bib15) 2017; 359
Sadeghi (10.1016/j.jpowsour.2024.235418_bib5) 2011; 196
Xiao (10.1016/j.jpowsour.2024.235418_bib30) 2020; 167
Didari (10.1016/j.jpowsour.2024.235418_bib22) 2011; 41
Hao (10.1016/j.jpowsour.2024.235418_bib20) 2010; 195
Vikram (10.1016/j.jpowsour.2024.235418_bib43) 2016; 320
References_xml – volume: 437
  year: 2019
  ident: bib23
  article-title: Two-Phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling
  publication-title: J. Power Sources
– volume: 166
  start-page: 149
  year: 2007
  end-page: 154
  ident: bib4
  article-title: Effect of clamping pressure on the performance of a PEM fuel cell
  publication-title: J. Power Sources
– volume: 359
  start-page: 494
  year: 2017
  end-page: 506
  ident: bib15
  article-title: Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by Lattice Boltzmann method
  publication-title: J. Power Sources
– volume: 192
  start-page: 534
  year: 2009
  end-page: 543
  ident: bib17
  article-title: Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells
  publication-title: J. Power Sources
– volume: 165
  start-page: F1115
  year: 2018
  end-page: F1126
  ident: bib29
  article-title: Fundamental understanding of water movement in gas diffusion layer under different arrangements using combination of direct modeling and experimental visualization
  publication-title: J. Electrochem. Soc.
– volume: 186
  start-page: 104
  year: 2009
  end-page: 114
  ident: bib41
  article-title: Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers
  publication-title: J. Power Sources
– volume: 352
  year: 2023
  ident: bib37
  article-title: Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design
  publication-title: Appl. Energy
– volume: 190
  year: 2021
  ident: bib42
  article-title: Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method
  publication-title: Comput. Mater. Sci.
– volume: 39
  start-page: 9375
  year: 2014
  end-page: 9386
  ident: bib40
  article-title: Modeling of composite fibrous porous diffusion media
  publication-title: Int. J. Hydrogen Energy
– volume: 67
  start-page: 518
  year: 2011
  end-page: 530
  ident: bib26
  article-title: Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase Lattice Boltzmann simulation
  publication-title: Int. J. Numer. Methods Fluid.
– volume: 127
  start-page: 687
  year: 2018
  end-page: 703
  ident: bib16
  article-title: Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
– volume: 196
  start-page: 246
  year: 2011
  end-page: 254
  ident: bib5
  article-title: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. part 1: effect of compressive load
  publication-title: J. Power Sources
– volume: 154
  start-page: B419
  year: 2007
  end-page: B426
  ident: bib19
  article-title: Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach
  publication-title: J. Electrochem. Soc.
– volume: 170
  start-page: 93
  year: 2007
  end-page: 100
  ident: bib10
  article-title: Numerical study on the compression effect of gas diffusion layer on PEMFC performance
  publication-title: J. Power Sources
– volume: 496
  year: 2021
  ident: bib14
  article-title: Pore-scale modeling of gas diffusion layers: effects of compression on transport properties
  publication-title: J. Power Sources
– volume: 175
  start-page: 127
  year: 2008
  end-page: 136
  ident: bib25
  article-title: An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell
  publication-title: J. Power Sources
– volume: 262
  year: 2023
  ident: bib34
  article-title: Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC
  publication-title: Energy
– volume: 225
  start-page: 30
  year: 2012
  end-page: 39
  ident: bib33
  article-title: Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell
  publication-title: Solid State Ionics
– volume: 248
  year: 2021
  ident: bib36
  article-title: Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model
  publication-title: Energy Convers. Manag.
– volume: 536
  year: 2022
  ident: bib31
  article-title: Experimental validation of pore-scale models for gas diffusion layers
  publication-title: J. Power Sources
– volume: 84
  start-page: 45
  year: 1999
  end-page: 51
  ident: bib2
  article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell
  publication-title: J. Power Sources
– volume: 142
  start-page: 617
  year: 2018
  end-page: 632
  ident: bib12
  article-title: 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field
  publication-title: Energy
– volume: 166
  start-page: F3154
  year: 2019
  end-page: F3179
  ident: bib38
  article-title: Through-the-membrane transient phenomena in PEM fuel cells: a modeling study
  publication-title: J. Electrochem. Soc.
– volume: 43
  start-page: 2327
  year: 2018
  end-page: 2348
  ident: bib7
  article-title: Stresses and their impacts on proton exchange membrane fuel cells: a review
  publication-title: Int. J. Hydrogen Energy
– volume: 159
  start-page: 922
  year: 2006
  end-page: 927
  ident: bib3
  article-title: Effect of gas diffusion layer compression on PEM fuel cell performance
  publication-title: J. Power Sources
– volume: 32
  start-page: 4466
  year: 2007
  end-page: 4476
  ident: bib39
  article-title: A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 26498
  year: 2019
  end-page: 26516
  ident: bib24
  article-title: Investigation of two-phase flow in the compressed gas diffusion layer microstructures
  publication-title: Int. J. Hydrogen Energy
– volume: 58
  start-page: 19
  year: 1966
  end-page: 27
  ident: bib32
  article-title: A new method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
– volume: 41
  start-page: 985
  year: 2017
  end-page: 1003
  ident: bib13
  article-title: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells
  publication-title: Int. J. Energy Res.
– volume: 46
  start-page: 20702
  year: 2021
  end-page: 20714
  ident: bib9
  article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications
  publication-title: Int. J. Hydrogen Energy
– volume: 195
  start-page: 3870
  year: 2010
  end-page: 3881
  ident: bib20
  article-title: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell
  publication-title: J. Power Sources
– volume: 162
  start-page: F661
  year: 2015
  end-page: F668
  ident: bib27
  article-title: Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling
  publication-title: J. Electrochem. Soc.
– volume: 36
  start-page: 11856
  year: 2011
  end-page: 11870
  ident: bib1
  article-title: Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers
  publication-title: Int. J. Hydrogen Energy
– volume: 163
  start-page: 874
  year: 2007
  end-page: 881
  ident: bib11
  article-title: Influence of clamping force on the performance of PEMFCs
  publication-title: J. Power Sources
– volume: 295
  start-page: 861
  year: 2019
  end-page: 874
  ident: bib18
  article-title: Implications of inherent inhomogeneities in thin carbon fiber-based gas diffusion layers: a comparative modeling study
  publication-title: Electrochim. Acta
– volume: 335
  start-page: 162
  year: 2016
  end-page: 171
  ident: bib28
  article-title: Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers
  publication-title: J. Power Sources
– volume: 320
  start-page: 274
  year: 2016
  end-page: 285
  ident: bib43
  article-title: Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression – Part I: electrical conductivity
  publication-title: J. Power Sources
– volume: 93
  start-page: 39
  year: 2012
  end-page: 44
  ident: bib21
  article-title: Numerical estimation of the effective electrical conductivity in carbon paper diffusion media
  publication-title: Appl. Energy
– volume: 10
  start-page: S59
  year: 2010
  end-page: S61
  ident: bib6
  article-title: The influence of stack clamping pressure on the performance of PEM fuel cell stack
  publication-title: Curr. Appl. Phys.
– volume: 41
  start-page: 499
  year: 2011
  end-page: 512
  ident: bib22
  article-title: Transport phenomena in carbon paper gas diffusion layers
  publication-title: ECS Trans.
– volume: 308
  year: 2022
  ident: bib35
  article-title: Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure
  publication-title: Appl. Energy
– volume: 11
  start-page: 274
  year: 2011
  end-page: 285
  ident: bib8
  article-title: A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers
  publication-title: Fuel Cell.
– volume: 167
  year: 2020
  ident: bib30
  article-title: Pore-scale characterization and simulation of porous electrode material for vanadium redox flow battery: effects of compression on transport properties
  publication-title: J. Electrochem. Soc.
– volume: 335
  start-page: 162
  year: 2016
  ident: 10.1016/j.jpowsour.2024.235418_bib28
  article-title: Pore network modeling to explore the effects of compression on multiphase transport in polymer electrolyte membrane fuel cell gas diffusion layers
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.10.039
– volume: 167
  year: 2020
  ident: 10.1016/j.jpowsour.2024.235418_bib30
  article-title: Pore-scale characterization and simulation of porous electrode material for vanadium redox flow battery: effects of compression on transport properties
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/aba4e3
– volume: 320
  start-page: 274
  year: 2016
  ident: 10.1016/j.jpowsour.2024.235418_bib43
  article-title: Measurement of effective bulk and contact resistance of gas diffusion layer under inhomogeneous compression – Part I: electrical conductivity
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.110
– volume: 192
  start-page: 534
  year: 2009
  ident: 10.1016/j.jpowsour.2024.235418_bib17
  article-title: Scale effect and two-phase flow in a thin hydrophobic porous layer. Application to water transport in gas diffusion layers of proton exchange membrane fuel cells
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.02.090
– volume: 262
  year: 2023
  ident: 10.1016/j.jpowsour.2024.235418_bib34
  article-title: Multi-objective optimization of graded catalyst layer to improve performance and current density uniformity of a PEMFC
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125580
– volume: 154
  start-page: B419
  year: 2007
  ident: 10.1016/j.jpowsour.2024.235418_bib19
  article-title: Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2472547
– volume: 44
  start-page: 26498
  year: 2019
  ident: 10.1016/j.jpowsour.2024.235418_bib24
  article-title: Investigation of two-phase flow in the compressed gas diffusion layer microstructures
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.08.108
– volume: 43
  start-page: 2327
  year: 2018
  ident: 10.1016/j.jpowsour.2024.235418_bib7
  article-title: Stresses and their impacts on proton exchange membrane fuel cells: a review
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.033
– volume: 46
  start-page: 20702
  year: 2021
  ident: 10.1016/j.jpowsour.2024.235418_bib9
  article-title: Multiscale modeling of an angled gas diffusion layer for polymer electrolyte membrane fuel cells: performance enhancing for aviation applications
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2021.03.166
– volume: 196
  start-page: 246
  year: 2011
  ident: 10.1016/j.jpowsour.2024.235418_bib5
  article-title: Effective thermal conductivity and thermal contact resistance of gas diffusion layers in proton exchange membrane fuel cells. part 1: effect of compressive load
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.06.039
– volume: 39
  start-page: 9375
  year: 2014
  ident: 10.1016/j.jpowsour.2024.235418_bib40
  article-title: Modeling of composite fibrous porous diffusion media
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2014.04.011
– volume: 225
  start-page: 30
  year: 2012
  ident: 10.1016/j.jpowsour.2024.235418_bib33
  article-title: Three-dimensional non-isothermal modeling of a phosphoric acid-doped polybenzimidazole (PBI) membrane fuel cell
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2012.02.031
– volume: 127
  start-page: 687
  year: 2018
  ident: 10.1016/j.jpowsour.2024.235418_bib16
  article-title: Analysis of representative elementary volume and through-plane regional characteristics of carbon-fiber papers: diffusivity, permeability and electrical/thermal conductivity
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2018.07.030
– volume: 359
  start-page: 494
  year: 2017
  ident: 10.1016/j.jpowsour.2024.235418_bib15
  article-title: Investigation of GDL compression effects on the performance of a PEM fuel cell cathode by Lattice Boltzmann method
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.05.078
– volume: 190
  year: 2021
  ident: 10.1016/j.jpowsour.2024.235418_bib42
  article-title: Study of the anisotropic permeability of proton exchange membrane fuel cell gas diffusion layer by lattice Boltzmann method
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2021.110286
– volume: 41
  start-page: 499
  year: 2011
  ident: 10.1016/j.jpowsour.2024.235418_bib22
  article-title: Transport phenomena in carbon paper gas diffusion layers
  publication-title: ECS Trans.
  doi: 10.1149/1.3635584
– volume: 308
  year: 2022
  ident: 10.1016/j.jpowsour.2024.235418_bib35
  article-title: Investigation of the thermal responses under gas channel and land inside proton exchange membrane fuel cell with assembly pressure
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2021.118377
– volume: 195
  start-page: 3870
  year: 2010
  ident: 10.1016/j.jpowsour.2024.235418_bib20
  article-title: Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2009.11.125
– volume: 142
  start-page: 617
  year: 2018
  ident: 10.1016/j.jpowsour.2024.235418_bib12
  article-title: 3D numerical investigation of clamping pressure effect on the performance of proton exchange membrane fuel cell with interdigitated flow field
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.020
– volume: 437
  year: 2019
  ident: 10.1016/j.jpowsour.2024.235418_bib23
  article-title: Two-Phase flow in compressed gas diffusion layer: finite element and volume of fluid modeling
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2019.226933
– volume: 175
  start-page: 127
  year: 2008
  ident: 10.1016/j.jpowsour.2024.235418_bib25
  article-title: An approach to modeling two-phase transport in the gas diffusion layer of a proton exchange membrane fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.09.029
– volume: 165
  start-page: F1115
  year: 2018
  ident: 10.1016/j.jpowsour.2024.235418_bib29
  article-title: Fundamental understanding of water movement in gas diffusion layer under different arrangements using combination of direct modeling and experimental visualization
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0201814jes
– volume: 162
  start-page: F661
  year: 2015
  ident: 10.1016/j.jpowsour.2024.235418_bib27
  article-title: Investigating inlet condition effects on PEMFC GDL liquid water transport through pore network modeling
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0191507jes
– volume: 11
  start-page: 274
  year: 2011
  ident: 10.1016/j.jpowsour.2024.235418_bib8
  article-title: A numerical study of structural change and anisotropic permeability in compressed carbon cloth polymer electrolyte fuel cell gas diffusion layers
  publication-title: Fuel Cell.
  doi: 10.1002/fuce.201000037
– volume: 248
  year: 2021
  ident: 10.1016/j.jpowsour.2024.235418_bib36
  article-title: Investigating temperature-driven water transport in cathode gas diffusion media of PEMFC with a non-isothermal, two-phase model
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114791
– volume: 166
  start-page: 149
  year: 2007
  ident: 10.1016/j.jpowsour.2024.235418_bib4
  article-title: Effect of clamping pressure on the performance of a PEM fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.01.015
– volume: 84
  start-page: 45
  year: 1999
  ident: 10.1016/j.jpowsour.2024.235418_bib2
  article-title: The effects of compression and gas diffusion layers on the performance of a PEM fuel cell
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00298-0
– volume: 536
  year: 2022
  ident: 10.1016/j.jpowsour.2024.235418_bib31
  article-title: Experimental validation of pore-scale models for gas diffusion layers
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2022.231515
– volume: 10
  start-page: S59
  year: 2010
  ident: 10.1016/j.jpowsour.2024.235418_bib6
  article-title: The influence of stack clamping pressure on the performance of PEM fuel cell stack
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2009.11.042
– volume: 67
  start-page: 518
  year: 2011
  ident: 10.1016/j.jpowsour.2024.235418_bib26
  article-title: Determination of the anisotropic permeability of a carbon cloth gas diffusion layer through X-ray computer micro-tomography and single-phase Lattice Boltzmann simulation
  publication-title: Int. J. Numer. Methods Fluid.
  doi: 10.1002/fld.2378
– volume: 93
  start-page: 39
  year: 2012
  ident: 10.1016/j.jpowsour.2024.235418_bib21
  article-title: Numerical estimation of the effective electrical conductivity in carbon paper diffusion media
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.08.037
– volume: 295
  start-page: 861
  year: 2019
  ident: 10.1016/j.jpowsour.2024.235418_bib18
  article-title: Implications of inherent inhomogeneities in thin carbon fiber-based gas diffusion layers: a comparative modeling study
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.09.089
– volume: 32
  start-page: 4466
  year: 2007
  ident: 10.1016/j.jpowsour.2024.235418_bib39
  article-title: A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2007.05.012
– volume: 170
  start-page: 93
  year: 2007
  ident: 10.1016/j.jpowsour.2024.235418_bib10
  article-title: Numerical study on the compression effect of gas diffusion layer on PEMFC performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.03.073
– volume: 163
  start-page: 874
  year: 2007
  ident: 10.1016/j.jpowsour.2024.235418_bib11
  article-title: Influence of clamping force on the performance of PEMFCs
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2006.09.068
– volume: 352
  year: 2023
  ident: 10.1016/j.jpowsour.2024.235418_bib37
  article-title: Investigation of output performance and temperature distribution uniformity of PEMFC based on Pt loading gradient design
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121962
– volume: 41
  start-page: 985
  year: 2017
  ident: 10.1016/j.jpowsour.2024.235418_bib13
  article-title: Modeling of inhomogeneous compression effects of porous GDL on transport phenomena and performance in PEM fuel cells
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3687
– volume: 159
  start-page: 922
  year: 2006
  ident: 10.1016/j.jpowsour.2024.235418_bib3
  article-title: Effect of gas diffusion layer compression on PEM fuel cell performance
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2005.11.069
– volume: 36
  start-page: 11856
  year: 2011
  ident: 10.1016/j.jpowsour.2024.235418_bib1
  article-title: Nonlinear orthotropic model of the inhomogeneous assembly compression of PEM fuel cell gas diffusion layers
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.05.152
– volume: 186
  start-page: 104
  year: 2009
  ident: 10.1016/j.jpowsour.2024.235418_bib41
  article-title: Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2008.09.086
– volume: 58
  start-page: 19
  issue: 5
  year: 1966
  ident: 10.1016/j.jpowsour.2024.235418_bib32
  article-title: A new method for prediction of binary gas-phase diffusion coefficients
  publication-title: Ind. Eng. Chem.
  doi: 10.1021/ie50677a007
– volume: 166
  start-page: F3154
  year: 2019
  ident: 10.1016/j.jpowsour.2024.235418_bib38
  article-title: Through-the-membrane transient phenomena in PEM fuel cells: a modeling study
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0181907jes
– volume: 496
  year: 2021
  ident: 10.1016/j.jpowsour.2024.235418_bib14
  article-title: Pore-scale modeling of gas diffusion layers: effects of compression on transport properties
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2021.229822
SSID ssj0001170
Score 2.4759486
Snippet The assembly pressure significantly influences the performance of proton exchange membrane fuel cells. In earlier studies, performance simulations based on...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 235418
SubjectTerms Assembly pressure
Fuel cell performance
Gas diffusion layer
Pore-scale model
X-ray CT
Title A fuel cell performance simulation method based on pore-scale gas diffusion layer models obtained from X-ray computed tomography under different assembly pressures
URI https://dx.doi.org/10.1016/j.jpowsour.2024.235418
Volume 623
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9tADB622Ut7KNsX3XYbdOh1ktjzsOcYQkPa0lzaQG5mXi4JeZE4lFz6Z_aPrhTbbQqFHnoxjEGDGQ3SJ1nSx9j7XAZ0JDHlWgXJpS8jt3YgedTSZSq1icipG_nLVE9m8tNcza_YqO2FobLKxvbXNv1srZs3_eY0-7vFov91IPCyIdpOKUTIaOLndSqMVh12Pfz4eTL9ZZCJXOX8MwEDJhK4aBRe9pa77Q_Kk2OomMpeKpQk_o-_-agLvzO-YU8bwAjD-puesau4ec6eXIwRfMHuh1Ae4wooCQ-7350AcFisG3YuqJmigZxWAFwj7I78gAqK8N0egHhSjpQ4g5VFEA5ngpwDbB1lDlCCulBgzvf2BL7mgQhQbdfNvGugTrQ9tGQrFSAij2u3OsG5zPaIj5dsNv7wbTThDfkC9xgRVdwK7bLSqywgxHOZVsYqg7tgvFYmQmvrS2-EtTIab4WUDgOtLAifJjKUpdDiFetstpv4msEgd9YMXEhyG2WQpU0z5Z3PMxetMUrdsn573MWunrFRtMVny6JVUEEKKmoF3TLTaqX447YU6Aj-IfvmP2Tfsse0onKWRN2xTrU_xncISirXZY96P5Nuc_UeACUC5_8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEF5Ccmh7KEkfNO859Lq2pd3VSkdjEpznpQn4JvalYuMXtkzJJX8mfzQzehAHCj30ItBjhdgZZr4ZzczH2M9UenQkIeaJ8pJLVwRuTE_ykEirVWwikVI38t19MnyU1yM12mGDtheGyiob21_b9MpaN1e6zW52l-Nx91dPoLIh2o4pRNA08XNPKqGprq_z_FbnQdQq1a8EDJfo8a024Ulnslz8oSw5Boqx7MRCSWL_-JuH2vI6l_vscwMXoV9_0QHbCfMv7NPWEMGv7KUPxSZMgVLwsHzrA4D1eNZwc0HNEw3ksjzgOYLuwNcongC_zRqIJWVDaTOYGoTgUNHjrGFhKW-AK6gHBUZ8ZZ7A1SwQHsrFrJl2DdSHtoKWaqUExONhZqdPUBXZbvDwjT1eXjwMhryhXuAO46GSG5FYXTilPQI8qxOVGZXhWzBaKyKRJMYVLhPGyJA5I6S0GGZpL1wcSV8UIhHf2e58MQ8_GPRSa7Ke9VFqgvSyMLFWzrpU22CyTKlD1m23O1_WEzbytvRskrcCyklAeS2gQ5a1Usnf6UqObuAfa4_-Y-05-zB8uLvNb6_ub47ZR7pDhS2ROmG75WoTThGelPasUr9XJY7oyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+fuel+cell+performance+simulation+method+based+on+pore-scale+gas+diffusion+layer+models+obtained+from+X-ray+computed+tomography+under+different+assembly+pressures&rft.jtitle=Journal+of+power+sources&rft.au=Li%2C+Huarui&rft.au=Qiao%2C+Tingqiang&rft.au=Ding%2C+Xiaoyu&rft.date=2024-12-15&rft.pub=Elsevier+B.V&rft.issn=0378-7753&rft.volume=623&rft_id=info:doi/10.1016%2Fj.jpowsour.2024.235418&rft.externalDocID=S0378775324013703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon