Helical carbon nanofibers-supported MnSiO3 for high-performance lithium-ion battery anode materials
[Display omitted] Metal silicates are regarded as promising candidates for lithium-ion batteries due to their high capacity, ease of synthesis, and environmental friendliness. Unfortunately, the challenge of enhancing the electrical conductivity of metal silicates represents a significant obstacle i...
Saved in:
Published in | Journal of electroanalytical chemistry (Lausanne, Switzerland) Vol. 977; p. 118849 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
Metal silicates are regarded as promising candidates for lithium-ion batteries due to their high capacity, ease of synthesis, and environmental friendliness. Unfortunately, the challenge of enhancing the electrical conductivity of metal silicates represents a significant obstacle in this field. In this study, a simple and controllable two-step method was used to design and prepare the novel helical carbon nanofibers@manganese silicate (HCNFs@MnSiO3) anode composite, in which the size of MnSiO3 nanoparticles are about 20 nm. After 200 cycles at 200 mA g−1, the HCNFs@MnSiO3 anode exhibits an excellent reversible specific capacity of 878.1 mA h/g, which is 158 % higher than that of the MnSiO3 anode. The synergistic interaction of HCNFs and MnSiO3 is primarily responsible for the enhanced electrochemical performance of HCNFs@MnSiO3. A robust supportive network space is offered by the three-dimensional helical structure of HCNFs to allow for the volume expansion of MnSiO3 during charging and discharging. Furthermore, MnSiO3′s low electrical conductivity is enhanced by HCNFs’ high electrical conductivity. The development of high-performance lithium-ion batteries using metal silicate-based anode materials is aided by the useful reference provided by this study. |
---|---|
AbstractList | [Display omitted]
Metal silicates are regarded as promising candidates for lithium-ion batteries due to their high capacity, ease of synthesis, and environmental friendliness. Unfortunately, the challenge of enhancing the electrical conductivity of metal silicates represents a significant obstacle in this field. In this study, a simple and controllable two-step method was used to design and prepare the novel helical carbon nanofibers@manganese silicate (HCNFs@MnSiO3) anode composite, in which the size of MnSiO3 nanoparticles are about 20 nm. After 200 cycles at 200 mA g−1, the HCNFs@MnSiO3 anode exhibits an excellent reversible specific capacity of 878.1 mA h/g, which is 158 % higher than that of the MnSiO3 anode. The synergistic interaction of HCNFs and MnSiO3 is primarily responsible for the enhanced electrochemical performance of HCNFs@MnSiO3. A robust supportive network space is offered by the three-dimensional helical structure of HCNFs to allow for the volume expansion of MnSiO3 during charging and discharging. Furthermore, MnSiO3′s low electrical conductivity is enhanced by HCNFs’ high electrical conductivity. The development of high-performance lithium-ion batteries using metal silicate-based anode materials is aided by the useful reference provided by this study. |
ArticleNumber | 118849 |
Author | Liu, Yonghong Jin, Yongzhong Li, Xu Chen, Ge Jiang, Dongwei Zhang, Wenjun |
Author_xml | – sequence: 1 givenname: Dongwei surname: Jiang fullname: Jiang, Dongwei organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 2 givenname: Yongzhong orcidid: 0000-0002-6130-4513 surname: Jin fullname: Jin, Yongzhong email: jyzcd@163.com organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 3 givenname: Wenjun surname: Zhang fullname: Zhang, Wenjun organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 4 givenname: Xu surname: Li fullname: Li, Xu organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 5 givenname: Ge surname: Chen fullname: Chen, Ge organization: Sichuan Ruian New Material Technology Co, Ltd, Yaan 625000, China – sequence: 6 givenname: Yonghong surname: Liu fullname: Liu, Yonghong organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China |
BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIME_jZ3cQBVQpKIegLPl2GviKH-yU6S-Pa4KZ047K-2Mdr4VWgzjAAjdUZJTQsV9m7fQgWmgzxlhm5zSstxUC7SkhWSZEIW8RqsYW0JYWVK2RGYHnTe6w0aHehzwoIfR-RpCzOJxmsYwg8Vvw7s_cOzGgBv_1WQThKR7PRjAnZ8bf-wzn8y1nmcIJ5wyLOBep8XrLt6gK5cG3P7ONfp8fvrY7rL94eV1-7jPDCuqOauMNUy4opSSW8OTqiVxbsOlFZyzylDnQFSWW0EdkYWUmlKj0ykrIZXlayQuuSaMMQZwagq-1-GkKFFnPKpVf3jUGY-64EnGh4sR0nffHoKKxkNqZ30AMys7-v8ifgAbPXd_ |
Cites_doi | 10.1016/j.est.2023.109013 10.1016/j.apsusc.2020.146457 10.1016/j.apsusc.2023.158949 10.1016/j.materresbull.2015.05.029 10.1016/j.ceramint.2023.12.153 10.1039/D2TA03295C 10.1039/D2GC01431A 10.1039/C7DT04886F 10.1016/j.ceramint.2021.08.334 10.1021/acsaem.0c02738 10.1016/j.apsusc.2014.10.107 10.1016/j.est.2023.108715 10.1016/j.elecom.2022.107284 10.1016/j.cej.2019.123161 10.1016/j.cej.2017.07.153 10.1016/j.jallcom.2021.160642 10.1021/acsami.2c06897 10.1016/j.carbon.2020.09.058 10.1021/acsami.3c07612 10.1016/j.electacta.2016.11.009 10.3390/nano12101649 10.1016/j.jcis.2022.05.016 10.1016/j.ceramint.2021.09.074 10.1016/j.jcis.2021.11.137 10.1016/j.apsusc.2019.06.136 10.1021/acsami.9b13013 10.1039/D3NJ03659F 10.1016/j.jcis.2019.08.054 10.1039/C5SC02525G 10.1016/j.jpowsour.2020.228234 10.1039/D1DT00275A 10.1016/j.ceramint.2022.05.221 10.1007/s12598-019-01354-8 10.1039/D2QM00376G 10.1016/j.cej.2017.07.039 10.1088/0957-4484/27/36/365401 10.1016/j.jechem.2020.01.001 10.1016/j.jpowsour.2017.02.061 10.1016/j.jallcom.2019.07.012 10.1016/j.ensm.2019.07.045 10.1016/j.cej.2022.141031 10.1016/j.jpcs.2023.111857 10.1016/j.ensm.2021.01.003 10.1016/j.ceramint.2020.05.167 10.1002/smll.201903418 10.1016/j.electacta.2023.143428 10.1021/acssuschemeng.0c05851 10.1016/j.jallcom.2019.01.195 10.1016/j.jallcom.2018.09.157 10.1039/D1DT02325J 10.1016/j.matchemphys.2022.127179 10.1016/j.matlet.2022.133534 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. |
Copyright_xml | – notice: 2024 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jelechem.2024.118849 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
ExternalDocumentID | 10_1016_j_jelechem_2024_118849 S1572665724008282 |
GroupedDBID | --K --M -~X .~1 1B1 1RT 1~. 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXKI AAXUO ABFRF ABJNI ABMAC ABNUV ACBEA ACDAQ ACGFO ACGFS ACRLP ADBBV ADECG ADEWK ADEZE AEBSH AEFWE AEIPS AEKER AENEX AFJKZ AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AJSZI AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M23 M2Z M41 MO0 N9A NQ- O-L OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSG SSK SSZ T5K TWZ UPT YQT ~02 186 29K AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AJQLL AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION D-I EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCH SSH WUQ |
ID | FETCH-LOGICAL-c259t-9cdc26f58773dc36f5b70ff437d63329c1ffe69d3d61f07577a11cadc328e0243 |
IEDL.DBID | .~1 |
ISSN | 1572-6657 |
IngestDate | Tue Jul 01 03:34:15 EDT 2025 Sat Feb 01 16:09:42 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Helical carbon nanofibers Metal silicate Anode materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-9cdc26f58773dc36f5b70ff437d63329c1ffe69d3d61f07577a11cadc328e0243 |
ORCID | 0000-0002-6130-4513 |
ParticipantIDs | crossref_primary_10_1016_j_jelechem_2024_118849 elsevier_sciencedirect_doi_10_1016_j_jelechem_2024_118849 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Journal of electroanalytical chemistry (Lausanne, Switzerland) |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Shaji, Santhoshkumar, Nanthagopal, Senthil, Lee (b0030) 2019; 491 Wang, Yang, Yuan, Wang, Zhang, Li (b0045) 2023; 33 Chen, Wang, Guan, Tao, Li, Wei, Wang, Shen, Yang (b0135) 2023; 47 Zhang, Zheng, Wei, Zhang, Niu, Wang, Yan, Li, Meng (b0175) 2022; 623 Zhang, An, Zhai, Gao, Feng, Ci, Xiong (b0275) 2015; 70 Dai, Li, Zhang, Zhang, Zou, Zhao, Li, He (b0160) 2021; 47 Zhang, Zhao, Luo, Dong, Xu, Yan, Ren, Zhou, Qu, Mai (b0260) 2016; 8 Liang, Li, Zhu, Li, Chou, Li (b0010) 2021; 17 Zhu, Zhang, Ye, Li, Cheng (b0140) 2023; 15 Yang, Guo, Zhang, Sun, Yan, Dong (b0125) 2016; 27 Avvaru, Fernandez, Feng, Hinder, Rodríguez, Etacheri (b0235) 2021; 171 Wang, Zhang, Sun, Qian, Bao (b0020) 2022; 10 Du, Liu, Zeb, Lin (b0165) 2022; 14 Seo, Park, Kim (b0265) 2022; 138 Imae, Yukinaga, Imato, Ooyama, Kimura (b0035) 2022; 48 Li, Wang, Li (b0015) 2022; 431 Luo, Liu, Yang, Sun, Chen, Tian (b0095) 2024; 50 Xia, Qian, Chen, Li, He, He, Chen (b0055) 2023; 72 Yang, Luo, Pan, Tian, Chen, Sui (b0210) 2024; 187 Wang, Wang, Guan, Wei, Tao, Li, Ma, Wu, Pang, Shen, Chen (b0115) 2023; 472 Zheng, Liu, Lan, Yu, Yang (b0220) 2017; 330 Han, Zhao, Yang, Liu, Huang, Wei, Yang, Su (b0105) 2021; 50 Wang, Zhou, Cao, Xu, Zhang, Li, Zhou, Ma, Chen, Song (b0065) 2020; 24 Ertekin, Ozgenc, Ozer, Icten, Elmaci, Kose, Pekmez, Zumreoglu-Karan (b0190) 2021; 47 Cheng, Li, Liu, Xia, Chang, Yan, Ding, Hu, Wu, Guo, Zhang (b0195) 2019; 11 Zhang, Cui, Zhang, Li, Meng (b0180) 2022; 6 Jin, Chen, Fu, Li, Zhang, Gong (b0145) 2015; 324 Wu, Wu, Fang, Qi, Yu, Yang (b0050) 2021; 40 Pan, Zuo, Mu, Du, Cheng, Mu, Gao, Yin (b0230) 2017; 347 Luo, Yin, Ou, Zhang (b0025) 2022; 24 Wang, Yang, Meng, Yang, Huang, Gu, Zhang, Meng, Tong (b0085) 2021; 36 Dong, Sun, Mu, Yu, Hu, Miao, Huang, Meng, Zhang (b0170) 2022; 610 Feng, Li, Wang, Zhang, Yang, Yuan, Chai (b0100) 2018; 47 Guo, Jian, Zhang, Feng, Kou, Ji, Yang (b0200) 2021; 882 Qing, Liu, Jin, Min, Chen (b0150) 2021; 50 Lin, Kang, Liang, Ye, Li, Feng, Zheng, Huang (b0255) 2020; 526 Huang, Zhang, Yu, Yang, Wang, Li, Su (b0215) 2016; 222 Huang, Huang, Wan, Yu (b0225) 2021; 9 Wang, Kou, Song, Ai, Wang, Bao (b0245) 2023; 295 Wang, Zheng, Li, Yu, Liu, Peng, Zhang, Shui, Shu (b0250) 2020; 46 Chen, Zhong, Zhang, Gao, Liu, Li, Ren (b0240) 2019; 772 Ren, Li, Zhang, Lin, Chen, Gao, Zhou, Deng, Huang, Sun (b0070) 2020; 48 Wang, Shi, Yang, Liu, Jiang, Dai, Guo, Yan (b0080) 2019; 804 Muchuweni, Mombeshora, Muiva, Sathiaraj (b0005) 2023; 73 Dong, Mu, Shen, Wang, Huang, Meng, Zhang (b0130) 2023; 456 Wang, Li, Meng, Huang, Hu, Su, Meng, Tong (b0090) 2021; 4 Li, Zhang, Hu, Dou, Xia, Zhang, Zheng, Pan, Yu, Chen (b0185) 2019; 556 Wang, Liu, Liu, Fu, Nan (b0205) 2017; 328 Hwang, Jung, Park, Kim, Lee, Lee, Choi, Song (b0060) 2022; 12 Cheng, Rechberger, Ilari, Ma, Lin, Niederberger (b0270) 2015; 6 Zeng, Niu, Zou, Zeng, Zhu, Huang, Wang, Kong, Han (b0075) 2020; 466 Li, Ruan, Tian, Zhang, Hou, Zhong, Cheng, Tong, Fang (b0040) 2024; 646 Chen, Li, Tang, Han, Liu, Zhang, Li, Cui (b0110) 2023; 331 Liu, Wang, Liu, Zhao, Lai, Bi, Gao (b0155) 2020; 383 Yang, Huang, Zhang, Han, Cao, Liu (b0120) 2019; 785 Han (10.1016/j.jelechem.2024.118849_b0105) 2021; 50 Dong (10.1016/j.jelechem.2024.118849_b0170) 2022; 610 Xia (10.1016/j.jelechem.2024.118849_b0055) 2023; 72 Dai (10.1016/j.jelechem.2024.118849_b0160) 2021; 47 Li (10.1016/j.jelechem.2024.118849_b0185) 2019; 556 Seo (10.1016/j.jelechem.2024.118849_b0265) 2022; 138 Yang (10.1016/j.jelechem.2024.118849_b0125) 2016; 27 Wang (10.1016/j.jelechem.2024.118849_b0080) 2019; 804 Avvaru (10.1016/j.jelechem.2024.118849_b0235) 2021; 171 Dong (10.1016/j.jelechem.2024.118849_b0130) 2023; 456 Luo (10.1016/j.jelechem.2024.118849_b0095) 2024; 50 Shaji (10.1016/j.jelechem.2024.118849_b0030) 2019; 491 Liu (10.1016/j.jelechem.2024.118849_b0155) 2020; 383 Wang (10.1016/j.jelechem.2024.118849_b0045) 2023; 33 Feng (10.1016/j.jelechem.2024.118849_b0100) 2018; 47 Zhang (10.1016/j.jelechem.2024.118849_b0275) 2015; 70 Chen (10.1016/j.jelechem.2024.118849_b0135) 2023; 47 Wang (10.1016/j.jelechem.2024.118849_b0205) 2017; 328 Wang (10.1016/j.jelechem.2024.118849_b0245) 2023; 295 Cheng (10.1016/j.jelechem.2024.118849_b0270) 2015; 6 Wang (10.1016/j.jelechem.2024.118849_b0090) 2021; 4 Wang (10.1016/j.jelechem.2024.118849_b0085) 2021; 36 Zhang (10.1016/j.jelechem.2024.118849_b0175) 2022; 623 Cheng (10.1016/j.jelechem.2024.118849_b0195) 2019; 11 Wu (10.1016/j.jelechem.2024.118849_b0050) 2021; 40 Qing (10.1016/j.jelechem.2024.118849_b0150) 2021; 50 Guo (10.1016/j.jelechem.2024.118849_b0200) 2021; 882 Li (10.1016/j.jelechem.2024.118849_b0015) 2022; 431 Muchuweni (10.1016/j.jelechem.2024.118849_b0005) 2023; 73 Jin (10.1016/j.jelechem.2024.118849_b0145) 2015; 324 Zhang (10.1016/j.jelechem.2024.118849_b0260) 2016; 8 Huang (10.1016/j.jelechem.2024.118849_b0225) 2021; 9 Huang (10.1016/j.jelechem.2024.118849_b0215) 2016; 222 Imae (10.1016/j.jelechem.2024.118849_b0035) 2022; 48 Zhang (10.1016/j.jelechem.2024.118849_b0180) 2022; 6 Li (10.1016/j.jelechem.2024.118849_b0040) 2024; 646 Lin (10.1016/j.jelechem.2024.118849_b0255) 2020; 526 Zeng (10.1016/j.jelechem.2024.118849_b0075) 2020; 466 Du (10.1016/j.jelechem.2024.118849_b0165) 2022; 14 Yang (10.1016/j.jelechem.2024.118849_b0210) 2024; 187 Chen (10.1016/j.jelechem.2024.118849_b0110) 2023; 331 Liang (10.1016/j.jelechem.2024.118849_b0010) 2021; 17 Yang (10.1016/j.jelechem.2024.118849_b0120) 2019; 785 Wang (10.1016/j.jelechem.2024.118849_b0065) 2020; 24 Ren (10.1016/j.jelechem.2024.118849_b0070) 2020; 48 Pan (10.1016/j.jelechem.2024.118849_b0230) 2017; 347 Wang (10.1016/j.jelechem.2024.118849_b0020) 2022; 10 Zhu (10.1016/j.jelechem.2024.118849_b0140) 2023; 15 Wang (10.1016/j.jelechem.2024.118849_b0250) 2020; 46 Hwang (10.1016/j.jelechem.2024.118849_b0060) 2022; 12 Wang (10.1016/j.jelechem.2024.118849_b0115) 2023; 472 Luo (10.1016/j.jelechem.2024.118849_b0025) 2022; 24 Ertekin (10.1016/j.jelechem.2024.118849_b0190) 2021; 47 Chen (10.1016/j.jelechem.2024.118849_b0240) 2019; 772 Zheng (10.1016/j.jelechem.2024.118849_b0220) 2017; 330 |
References_xml | – volume: 50 start-page: 13756 year: 2021 end-page: 13767 ident: b0105 article-title: Facile hydrothermal synthesis and enhanced electrochemical properties of a layered NiSiO/RGO nanocomposite with an interesting dandelion-like structure publication-title: Dalton Trans. – volume: 431 year: 2022 ident: b0015 article-title: A safer organic cathode material with overheating self-protection function for lithium batteries publication-title: Chem. Eng. J. – volume: 491 start-page: 757 year: 2019 end-page: 764 ident: b0030 article-title: Electrochemical performance of porous CaFe publication-title: Appl. Surf. Sci. – volume: 10 start-page: 17053 year: 2022 end-page: 17076 ident: b0020 article-title: Emerging green technologies for recovery and reuse of spent lithium-ion batteries - a review publication-title: J. Mater. Chem. A – volume: 785 start-page: 80 year: 2019 end-page: 88 ident: b0120 article-title: Fabrication and characterization of dinickel orthosilicate nanosheets as high performance anode material for lithium-ion batteries publication-title: J. Alloys Compd. – volume: 324 start-page: 438 year: 2015 end-page: 442 ident: b0145 article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition publication-title: Appl. Surf. Sci. – volume: 556 start-page: 239 year: 2019 end-page: 248 ident: b0185 article-title: Mixed-valent MnSiO publication-title: J. Colloid Interface Sci. – volume: 9 start-page: 648 year: 2021 end-page: 657 ident: b0225 article-title: Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder publication-title: ACS Sustainable Chem. Eng. – volume: 331 year: 2023 ident: b0110 article-title: Carbon coated zinc silicate hierarchical flowers as anode for lithium and sodium ion batteries publication-title: Mater. Lett. – volume: 171 start-page: 869 year: 2021 end-page: 881 ident: b0235 article-title: Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries publication-title: Carbon – volume: 187 year: 2024 ident: b0210 article-title: 2D carbon-supported MnO@C nanoparticles for high capacity and long life lithium-ion battery anode enabled by a relatively green and facile method publication-title: J. Phys. Chem. Solids – volume: 882 year: 2021 ident: b0200 article-title: The effect of Ni oxidation state on the crystal structure and electrochemical properties of LiNi publication-title: J. Alloys Compd. – volume: 610 start-page: 805 year: 2022 end-page: 817 ident: b0170 article-title: RGO/Manganese Silicate/MOF-derived carbon Double-Sandwich-Like structure as the cathode material for aqueous rechargeable Zn-ion batteries publication-title: J. Colloid Interface Sci. – volume: 47 start-page: 35312 year: 2021 end-page: 35319 ident: b0190 article-title: The electrochemical performance of manganese oxoborate cathodes for lithium-ion batteries: Effect of synthesis method publication-title: Ceram. Int. – volume: 6 start-page: 2447 year: 2022 end-page: 2457 ident: b0180 article-title: Petal-like and cube-like manganese silicates derived from natural reed leaves for high-performance supercapacitors publication-title: Mater. Chem. Front. – volume: 46 start-page: 20537 year: 2020 end-page: 20544 ident: b0250 article-title: Electrochemical uptake/release of lithium in GaNb publication-title: Ceram. Int. – volume: 623 start-page: 135 year: 2022 end-page: 145 ident: b0175 article-title: Alkali etching zinc and manganese silicates derived from natural green algaes for supercapacitors with enhanced electrochemical properties publication-title: J. Colloid Interface Sci. – volume: 466 year: 2020 ident: b0075 article-title: Green and scalable preparation of disproportionated SiO anode materials with cocoon-like buffer layer publication-title: J. Power Sources – volume: 50 start-page: 8221 year: 2024 end-page: 8230 ident: b0095 article-title: Constructing quasi-2D amorphous MnSiO publication-title: Ceram. Int. – volume: 36 start-page: 365 year: 2021 end-page: 375 ident: b0085 article-title: Boosting Electron Transfer with Heterointerface Effect for High-Performance Lithium-Ion Storage publication-title: Energy Storage Mater – volume: 138 year: 2022 ident: b0265 article-title: Synthesis of Si-Zn publication-title: Electrochem. Commun. – volume: 14 start-page: 37652 year: 2022 end-page: 37666 ident: b0165 article-title: Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries publication-title: ACS Appl. Mater. Interfaces – volume: 40 start-page: 2440 year: 2021 end-page: 2446 ident: b0050 article-title: A comparison of core-shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries publication-title: Rare Met. – volume: 456 year: 2023 ident: b0130 article-title: Structure engineering of Mn publication-title: Chem. Eng. J. – volume: 646 year: 2024 ident: b0040 article-title: Dual regulation mechanism of MoS publication-title: Appl. Surf. Sci. – volume: 6 start-page: 6908 year: 2015 end-page: 6915 ident: b0270 article-title: Amorphous cobalt silicate nanobelts@ carbon composites as a stable anode material for lithium ion batteries publication-title: Chem. Sci. – volume: 33 year: 2023 ident: b0045 article-title: N-Rich Solid Electrolyte Interface Constructed In Situ Via a Binder Strategy for Highly Stable Silicon Anode publication-title: Adv. Funct. Mater. – volume: 4 start-page: 1548 year: 2021 end-page: 1559 ident: b0090 article-title: Engineering Heterostructure-Incorporated Metal Silicates Anchored on Carbon Nanotubes for Highly Durable Lithium Storage publication-title: ACS Appl. Energy Mater. – volume: 27 year: 2016 ident: b0125 article-title: Cobalt silicate hierarchical hollow spheres for lithium-ion batteries publication-title: Nanotechnology – volume: 48 start-page: 25439 year: 2022 end-page: 25444 ident: b0035 article-title: Facile silicon/graphene composite synthesis method for application in lithium-ion batteries publication-title: Ceram. Int. – volume: 48 start-page: 160 year: 2020 end-page: 168 ident: b0070 article-title: Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries publication-title: J. Energy Chem. – volume: 330 start-page: 1289 year: 2017 end-page: 1296 ident: b0220 article-title: Hierarchical heterostructure of interconnected ultrafine MnO publication-title: Chem. Eng. J. – volume: 50 start-page: 5819 year: 2021 end-page: 5827 ident: b0150 article-title: Helical carbon nanofibers modified with Fe publication-title: Dalton Trans. – volume: 24 start-page: 6562 year: 2022 end-page: 6570 ident: b0025 article-title: Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents publication-title: Green Chem. – volume: 526 year: 2020 ident: b0255 article-title: Hybrid nanostructured MnO publication-title: Appl. Surf. Sci. – volume: 11 start-page: 41304 year: 2019 end-page: 41312 ident: b0195 article-title: Elucidation of Anionic and Cationic Redox Reactions in a Prototype Sodium-Layered Oxide Cathode publication-title: ACS Appl. Mater. Interfaces – volume: 328 start-page: 591 year: 2017 end-page: 598 ident: b0205 article-title: Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries publication-title: Chem. Eng. J. – volume: 222 start-page: 561 year: 2016 end-page: 569 ident: b0215 article-title: Grain Boundaries Enriched Hierarchically Mesoporous MnO/Carbon Microspheres for Superior Lithium Ion Battery Anode publication-title: Electrochim. Acta – volume: 347 start-page: 170 year: 2017 end-page: 177 ident: b0230 article-title: Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder publication-title: J. Power Sources – volume: 24 start-page: 312 year: 2020 end-page: 318 ident: b0065 article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries publication-title: Energy Storage Mater – volume: 70 start-page: 573 year: 2015 end-page: 578 ident: b0275 article-title: Nanotubes within transition metal silicate hollow spheres: facile preparation and superior lithium storage performances publication-title: Mater. Res. Bull. – volume: 47 start-page: 34242 year: 2021 end-page: 34252 ident: b0160 article-title: Defect engineering on the defluorinated MWCNTs@SnO publication-title: Ceram. Int. – volume: 17 year: 2021 ident: b0010 article-title: Cobalt Chalcogenides/Cobalt Phosphides/Cobaltates with Hierarchical Nanostructures for Anode Materials of Lithium-Ion Batteries: Improving the Lithiation Environment publication-title: Small – volume: 472 year: 2023 ident: b0115 article-title: Revealing the key role of MnSiO publication-title: Electrochim. Acta – volume: 72 year: 2023 ident: b0055 article-title: Recent progress of Si-based anodes in the application of lithium-ion batteries publication-title: J. Energy Storage – volume: 73 year: 2023 ident: b0005 article-title: Lithium-ion batteries: Recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials publication-title: J. Energy Storage – volume: 8 start-page: 7139 year: 2016 end-page: 7146 ident: b0260 article-title: Acetylene black induced heterogeneous growth of macroporous CoV publication-title: J. Energy Chem. – volume: 295 year: 2023 ident: b0245 article-title: Crystalline-amorphous core-shell copper vanadate coralline as anode material for high-performance lithium-ion battery publication-title: Mater. Chem. Phys. – volume: 47 start-page: 18983 year: 2023 end-page: 18994 ident: b0135 article-title: Elevating the comprehensive performance of carbon-based hybrid electrode materials by incorporating nickel silicate for lithium-ion capacitors publication-title: New J. Chem. – volume: 804 start-page: 243 year: 2019 end-page: 251 ident: b0080 article-title: Amorphous MnSiO publication-title: J. Alloys Compd. – volume: 383 year: 2020 ident: b0155 article-title: In-situ N-doped MnCO publication-title: Chem. Eng. J. – volume: 15 start-page: 39363 year: 2023 end-page: 39373 ident: b0140 article-title: ZIF-8-Derived Carbon In-Situ Encapsulated Hollow Mn publication-title: ACS Appl. Mater. Interfaces – volume: 47 start-page: 5328 year: 2018 end-page: 5334 ident: b0100 article-title: Core-shell structured MnSiO publication-title: Dalton Trans. – volume: 772 start-page: 557 year: 2019 end-page: 564 ident: b0240 article-title: Fe publication-title: J. Alloys Compd. – volume: 12 start-page: 1649 year: 2022 ident: b0060 article-title: Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process publication-title: Nanomaterials – volume: 73 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0005 article-title: Lithium-ion batteries: Recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109013 – volume: 526 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0255 article-title: Hybrid nanostructured MnO2 nanowire/graphdiyne with enhanced lithium-ion performance promoting by interfacial storage publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2020.146457 – volume: 646 year: 2024 ident: 10.1016/j.jelechem.2024.118849_b0040 article-title: Dual regulation mechanism of MoS2/MoO3 heterostructure for polysulfide and volume effect enables stable and durable lithium storage publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.158949 – volume: 70 start-page: 573 year: 2015 ident: 10.1016/j.jelechem.2024.118849_b0275 article-title: Nanotubes within transition metal silicate hollow spheres: facile preparation and superior lithium storage performances publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2015.05.029 – volume: 50 start-page: 8221 year: 2024 ident: 10.1016/j.jelechem.2024.118849_b0095 article-title: Constructing quasi-2D amorphous MnSiO3@C toward stable and high lithium storage publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2023.12.153 – volume: 10 start-page: 17053 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0020 article-title: Emerging green technologies for recovery and reuse of spent lithium-ion batteries - a review publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03295C – volume: 24 start-page: 6562 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0025 article-title: Highly efficient dissolution of the cathode materials of spent Ni-Co-Mn lithium batteries using deep eutectic solvents publication-title: Green Chem. doi: 10.1039/D2GC01431A – volume: 47 start-page: 5328 year: 2018 ident: 10.1016/j.jelechem.2024.118849_b0100 article-title: Core-shell structured MnSiO3 supported with CNTs as a high capacity anode for lithium-ion batteries publication-title: Dalton Trans. doi: 10.1039/C7DT04886F – volume: 47 start-page: 34242 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0160 article-title: Defect engineering on the defluorinated MWCNTs@SnO2@N-doped carbon composite for enhanced lithium storage performance publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.08.334 – volume: 4 start-page: 1548 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0090 article-title: Engineering Heterostructure-Incorporated Metal Silicates Anchored on Carbon Nanotubes for Highly Durable Lithium Storage publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c02738 – volume: 324 start-page: 438 year: 2015 ident: 10.1016/j.jelechem.2024.118849_b0145 article-title: Low-temperature synthesis and characterization of helical carbon fibers by one-step chemical vapour deposition publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.10.107 – volume: 72 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0055 article-title: Recent progress of Si-based anodes in the application of lithium-ion batteries publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108715 – volume: 138 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0265 article-title: Synthesis of Si-Zn2SiO4 composite as Li-ion battery anodes and its electrochemical mechanism analysis publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2022.107284 – volume: 383 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0155 article-title: In-situ N-doped MnCO3 anode material via one-step solvothermal synthesis: Doping mechanisms and enhanced electrochemical performances publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.123161 – volume: 330 start-page: 1289 year: 2017 ident: 10.1016/j.jelechem.2024.118849_b0220 article-title: Hierarchical heterostructure of interconnected ultrafine MnO2 nanosheets grown on carbon-coated MnO nanorods toward high-performance lithium-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.153 – volume: 882 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0200 article-title: The effect of Ni oxidation state on the crystal structure and electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material for highly reversible lithium storage publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2021.160642 – volume: 14 start-page: 37652 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0165 article-title: Regulating the Electronic Configuration of Spinel Zinc Manganate Derived from Metal-Organic Frameworks: Controlled Synthesis and Application in Anode Materials for Lithium-Ion Batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c06897 – volume: 171 start-page: 869 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0235 article-title: Extremely pseudocapacitive interface engineered CoO@3D-NRGO hybrid anodes for high energy/ power density and ultralong life lithium-ion batteries publication-title: Carbon doi: 10.1016/j.carbon.2020.09.058 – volume: 15 start-page: 39363 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0140 article-title: ZIF-8-Derived Carbon In-Situ Encapsulated Hollow Mn2SiO4 Microspheres as Anode for Lithium-Ion Batteries with Ultrahigh Capacity and Excellent Rate Performance publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c07612 – volume: 222 start-page: 561 year: 2016 ident: 10.1016/j.jelechem.2024.118849_b0215 article-title: Grain Boundaries Enriched Hierarchically Mesoporous MnO/Carbon Microspheres for Superior Lithium Ion Battery Anode publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.11.009 – volume: 12 start-page: 1649 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0060 article-title: Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process publication-title: Nanomaterials doi: 10.3390/nano12101649 – volume: 623 start-page: 135 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0175 article-title: Alkali etching zinc and manganese silicates derived from natural green algaes for supercapacitors with enhanced electrochemical properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.05.016 – volume: 47 start-page: 35312 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0190 article-title: The electrochemical performance of manganese oxoborate cathodes for lithium-ion batteries: Effect of synthesis method publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2021.09.074 – volume: 610 start-page: 805 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0170 article-title: RGO/Manganese Silicate/MOF-derived carbon Double-Sandwich-Like structure as the cathode material for aqueous rechargeable Zn-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2021.11.137 – volume: 491 start-page: 757 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0030 article-title: Electrochemical performance of porous CaFe2O4 as a promising anode material for lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.136 – volume: 33 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0045 article-title: N-Rich Solid Electrolyte Interface Constructed In Situ Via a Binder Strategy for Highly Stable Silicon Anode publication-title: Adv. Funct. Mater. – volume: 11 start-page: 41304 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0195 article-title: Elucidation of Anionic and Cationic Redox Reactions in a Prototype Sodium-Layered Oxide Cathode publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b13013 – volume: 47 start-page: 18983 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0135 article-title: Elevating the comprehensive performance of carbon-based hybrid electrode materials by incorporating nickel silicate for lithium-ion capacitors publication-title: New J. Chem. doi: 10.1039/D3NJ03659F – volume: 556 start-page: 239 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0185 article-title: Mixed-valent MnSiO3/C nanocomposite for high-performance asymmetric supercapacitor publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.08.054 – volume: 6 start-page: 6908 year: 2015 ident: 10.1016/j.jelechem.2024.118849_b0270 article-title: Amorphous cobalt silicate nanobelts@ carbon composites as a stable anode material for lithium ion batteries publication-title: Chem. Sci. doi: 10.1039/C5SC02525G – volume: 466 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0075 article-title: Green and scalable preparation of disproportionated SiO anode materials with cocoon-like buffer layer publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2020.228234 – volume: 431 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0015 article-title: A safer organic cathode material with overheating self-protection function for lithium batteries publication-title: Chem. Eng. J. – volume: 50 start-page: 5819 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0150 article-title: Helical carbon nanofibers modified with Fe2O3 as a high performance anode material for lithium-ion batteries publication-title: Dalton Trans. doi: 10.1039/D1DT00275A – volume: 48 start-page: 25439 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0035 article-title: Facile silicon/graphene composite synthesis method for application in lithium-ion batteries publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.05.221 – volume: 8 start-page: 7139 year: 2016 ident: 10.1016/j.jelechem.2024.118849_b0260 article-title: Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode publication-title: J. Energy Chem. – volume: 40 start-page: 2440 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0050 article-title: A comparison of core-shell Si/C and embedded structure Si/C composites as negative materials for lithium-ion batteries publication-title: Rare Met. doi: 10.1007/s12598-019-01354-8 – volume: 6 start-page: 2447 year: 2022 ident: 10.1016/j.jelechem.2024.118849_b0180 article-title: Petal-like and cube-like manganese silicates derived from natural reed leaves for high-performance supercapacitors publication-title: Mater. Chem. Front. doi: 10.1039/D2QM00376G – volume: 328 start-page: 591 year: 2017 ident: 10.1016/j.jelechem.2024.118849_b0205 article-title: Facile synthesis of microsized MnO/C composites with high tap density as high performance anodes for Li-ion batteries publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.07.039 – volume: 27 year: 2016 ident: 10.1016/j.jelechem.2024.118849_b0125 article-title: Cobalt silicate hierarchical hollow spheres for lithium-ion batteries publication-title: Nanotechnology doi: 10.1088/0957-4484/27/36/365401 – volume: 48 start-page: 160 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0070 article-title: Fabrication of multi-shell coated silicon nanoparticles via in-situ electroless deposition as high performance anodes for lithium ion batteries publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2020.01.001 – volume: 347 start-page: 170 year: 2017 ident: 10.1016/j.jelechem.2024.118849_b0230 article-title: Improved electrochemical performance of micro-sized SiO-based composite anode by prelithiation of stabilized lithium metal powder publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.02.061 – volume: 804 start-page: 243 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0080 article-title: Amorphous MnSiO3 confined in graphene sheets for superior lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.07.012 – volume: 24 start-page: 312 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0065 article-title: One-step synthesis of spherical Si/C composites with onion-like buffer structure as high-performance anodes for lithium-ion batteries publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2019.07.045 – volume: 456 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0130 article-title: Structure engineering of Mn2SiO4/C architecture improving the potential window boosting aqueous Li-ion storage publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.141031 – volume: 187 year: 2024 ident: 10.1016/j.jelechem.2024.118849_b0210 article-title: 2D carbon-supported MnO@C nanoparticles for high capacity and long life lithium-ion battery anode enabled by a relatively green and facile method publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2023.111857 – volume: 36 start-page: 365 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0085 article-title: Boosting Electron Transfer with Heterointerface Effect for High-Performance Lithium-Ion Storage publication-title: Energy Storage Mater doi: 10.1016/j.ensm.2021.01.003 – volume: 46 start-page: 20537 year: 2020 ident: 10.1016/j.jelechem.2024.118849_b0250 article-title: Electrochemical uptake/release of lithium in GaNb11O29 nanowires as anode material for rechargeable lithium ion battery publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.167 – volume: 17 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0010 article-title: Cobalt Chalcogenides/Cobalt Phosphides/Cobaltates with Hierarchical Nanostructures for Anode Materials of Lithium-Ion Batteries: Improving the Lithiation Environment publication-title: Small doi: 10.1002/smll.201903418 – volume: 472 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0115 article-title: Revealing the key role of MnSiO3 in boosting the lithium storage performance of bamboo-derived anode materials publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.143428 – volume: 9 start-page: 648 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0225 article-title: Pre-Lithiating SiO Anodes for Lithium-Ion Batteries by a Simple, Effective, and Controllable Strategy Using Stabilized Lithium Metal Powder publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c05851 – volume: 785 start-page: 80 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0120 article-title: Fabrication and characterization of dinickel orthosilicate nanosheets as high performance anode material for lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.01.195 – volume: 772 start-page: 557 year: 2019 ident: 10.1016/j.jelechem.2024.118849_b0240 article-title: Fe3O4 nanorods in N-doped carbon matrix with pseudo-capacitive behaviors as an excellent anode for subzero lithium-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.09.157 – volume: 50 start-page: 13756 year: 2021 ident: 10.1016/j.jelechem.2024.118849_b0105 article-title: Facile hydrothermal synthesis and enhanced electrochemical properties of a layered NiSiO/RGO nanocomposite with an interesting dandelion-like structure publication-title: Dalton Trans. doi: 10.1039/D1DT02325J – volume: 295 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0245 article-title: Crystalline-amorphous core-shell copper vanadate coralline as anode material for high-performance lithium-ion battery publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.127179 – volume: 331 year: 2023 ident: 10.1016/j.jelechem.2024.118849_b0110 article-title: Carbon coated zinc silicate hierarchical flowers as anode for lithium and sodium ion batteries publication-title: Mater. Lett. doi: 10.1016/j.matlet.2022.133534 |
SSID | ssj0028812 |
Score | 2.463872 |
Snippet | [Display omitted]
Metal silicates are regarded as promising candidates for lithium-ion batteries due to their high capacity, ease of synthesis, and... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 118849 |
SubjectTerms | Anode materials Helical carbon nanofibers Lithium-ion batteries Metal silicate |
Title | Helical carbon nanofibers-supported MnSiO3 for high-performance lithium-ion battery anode materials |
URI | https://dx.doi.org/10.1016/j.jelechem.2024.118849 |
Volume | 977 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KPehFfGJ9lD143bab3SSbYymWarGCtdhbSPZBWzANtT148bc70yQ-QPAgOSSE2bB8O5n5lp0HIddGKad54DGXRIJJGzn4paxkSA-EdQa7SWO0xSgYTOTd1J_WSK_KhcGwytL2FzZ9a63LN-0SzXY-n7fH3A89PDfAKEjYN6AdljJELW-9f4Z5eEoVJ54gx1D6W5bworXAXjMzixnpngTroRTW1PzNQX1zOv0Dsl-yRdotJnRIajY7Iru9qknbMdHgNhBmqpNVusxolmSgLSlGub9u8m3RckPvs_H8QVCgpxSrE7P8K1mAAgufzTcvDJaHpttam28UvmEsBSpbaOcJmfRvnnoDVvZNYBo2M2sWaaO9wPkqDIXRAp7SsOOcFKEJhPAizZ2zQWSECbgDyhCGCec6AVFPWaxQeErq2TKzZ4TiOWGSBr4T0sElU9jQ6iRInOTaRVY1SLsCK86L8hhxFTe2iCt4Y4Q3LuBtkKjCNP6x0DHY8D_Gnv9j7AXZ87B1b4cz7l-S-nq1sVfAJ9Zpc6swTbLTvR0ORngfPj4PPwBric3H |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF5ED_ZS-qT2uYdet7rZPDZHkYrWRw8qeAvJPlChMVg99N93xiSthUIPJZcQdkP4djP7DTPzDSGPWkqruO8wG4eCuSa08EsZlyE9EMZq7CaN2RZjvzdzX-bevEI6ZS0MplUWtj-36XtrXTxpFmg2s-WyOeFe4GDcALMgwW8AO1xDdSqvSmrt_qA3_vK7pMyDnjCU4YSDQuHV0wrbzSwMFqU7LhgQKVFW87cz6uDc6Z6Q44Iw0nb-TaekYtIzUu-UfdrOiYKTA5GmKt4k65SmcQobJsFE9_ddttct13SUTpavggJDpShQzLLvegEKRHyx3L0xWCGa7OU2Pyi8QxsKbDbfoBdk1n2ednqsaJ3AFPgzWxYqrRzfejIIhFYC7pKgZa0rAu0L4YSKW2v8UAvtcwusIQhizlUMQx1pUKTwklTTdWquCMVQYZz4nhWuhctNwKdVsR9blysbGtkgzRKsKMsVMqIydWwVlfBGCG-Uw9sgYYlp9GOtIzDjf8y9_sfcB1LvTUfDaNgfD27IkYOdfFucce-WVLebnbkDerFN7ovt8wkRJs7V |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Helical+carbon+nanofibers-supported+MnSiO3+for+high-performance+lithium-ion+battery+anode+materials&rft.jtitle=Journal+of+electroanalytical+chemistry+%28Lausanne%2C+Switzerland%29&rft.au=Jiang%2C+Dongwei&rft.au=Jin%2C+Yongzhong&rft.au=Zhang%2C+Wenjun&rft.au=Li%2C+Xu&rft.date=2025-01-15&rft.pub=Elsevier+B.V&rft.issn=1572-6657&rft.volume=977&rft_id=info:doi/10.1016%2Fj.jelechem.2024.118849&rft.externalDocID=S1572665724008282 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-6657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-6657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-6657&client=summon |