Enhanced impact tolerant core reinforced space shielding

•Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of impact engineering Vol. 197; p. 105184
Main Authors Stokes, Sean, Bayandor, Javid
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation is modified preventing debris channeling.•Novel honeycomb implementation improves shielding performance significantly. The threat of orbital debris to space structures is well understood with efforts being made to develop superior shielding for objects operating in low Earth orbit. In traditional Whipple shield designs, the area between the front bumper and rear pressure wall, termed the stand-off distance, is left empty. One of the more recent discussions in shield design has been the utilization of a honeycomb sandwich core design. In this design an initial thin bumper plate is used to fragment the projectile, followed by a honeycomb design which is implemented to further slowdown the resulting fragments in the stand-off region. By using this implementation, the rear pressure wall is theoretically subject to less damage as a result of the impact, due to the addition of the honeycomb core. It is often argued that the addition of a honeycomb core within the Whipple shield induces a channeling behavior of the projectile, where the sharp edges of the honeycomb split the projectile, and the fragments generated are unable to escape the individual honeycomb core that it is propelled into. It is theorized that this channeling effect causes more damage than an impact where no honeycomb is present. This channeling effect induces a large amount of the mass of the projectile to impact the backplate over a much smaller area. As a result, the damage to the backplate is far more localized and of a higher intensity. In this paper the efficacy of this theory has been studied through an analytical approach, where Whipple shields with the honeycomb and standard 2-plate designs are subjected to hypervelocity impacts of orbital debris. [Display omitted]
AbstractList •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation is modified preventing debris channeling.•Novel honeycomb implementation improves shielding performance significantly. The threat of orbital debris to space structures is well understood with efforts being made to develop superior shielding for objects operating in low Earth orbit. In traditional Whipple shield designs, the area between the front bumper and rear pressure wall, termed the stand-off distance, is left empty. One of the more recent discussions in shield design has been the utilization of a honeycomb sandwich core design. In this design an initial thin bumper plate is used to fragment the projectile, followed by a honeycomb design which is implemented to further slowdown the resulting fragments in the stand-off region. By using this implementation, the rear pressure wall is theoretically subject to less damage as a result of the impact, due to the addition of the honeycomb core. It is often argued that the addition of a honeycomb core within the Whipple shield induces a channeling behavior of the projectile, where the sharp edges of the honeycomb split the projectile, and the fragments generated are unable to escape the individual honeycomb core that it is propelled into. It is theorized that this channeling effect causes more damage than an impact where no honeycomb is present. This channeling effect induces a large amount of the mass of the projectile to impact the backplate over a much smaller area. As a result, the damage to the backplate is far more localized and of a higher intensity. In this paper the efficacy of this theory has been studied through an analytical approach, where Whipple shields with the honeycomb and standard 2-plate designs are subjected to hypervelocity impacts of orbital debris. [Display omitted]
ArticleNumber 105184
Author Stokes, Sean
Bayandor, Javid
Author_xml – sequence: 1
  givenname: Sean
  orcidid: 0000-0003-3665-8560
  surname: Stokes
  fullname: Stokes, Sean
– sequence: 2
  givenname: Javid
  surname: Bayandor
  fullname: Bayandor, Javid
  email: bayandor@buffalo.edu
BookMark eNqFj81qAyEUhV2k0CTtK5R5gZmqo6PuWkL6A4FuWuhOjF4Th4kTdCj07euQdt3VhXv4DudboUUcIyB0R3BDMOnu-yb04XSGeGgopqw8OZFsgZZYtKwWrP28Rquce4yJwBwvkdzGo4kWXFUwY6dqGgdIJk6VHRNUCUL0Y5rzXGKo8jHA4EI83KArb4YMt793jT6etu-bl3r39vy6edzVlnI11UpY75jn3ksKyoGRZZcjopUGM2OlYUrtlWVGCtyBUoQSIjpOOVF7iqVv16i79No05pzA63MKJ5O-NcF6dta9_nPWs7O-OBfw4QJCWfcVIOlsA8yqIYGdtBvDfxU_N5Rm-A
Cites_doi 10.1016/j.ijimpeng.2008.08.004
10.1016/j.asr.2005.06.021
10.1115/1.4028854
10.1080/13588265.2018.1424683
10.1029/JA092iA13p14959
10.1016/j.ijimpeng.2020.103557
10.1093/mnras/181.3.375
10.1016/0734-743X(95)99848-L
10.1016/j.engfracmech.2024.110009
10.1016/S0081-1947(08)60724-9
10.1007/s43452-024-00895-9
10.1016/j.ijimpeng.2006.09.018
10.1063/1.1604967
10.1061/(ASCE)AS.1943-5525.0001436
10.1063/5.0132256
10.1006/jcph.1994.1034
10.1016/0734-743X(93)90053-A
10.1016/0734-743X(90)90024-P
10.1086/112164
10.3390/applmech2010003
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.ijimpeng.2024.105184
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijimpeng_2024_105184
S0734743X24003099
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c259t-97cfd4f5ff82e9dea8202d1738a04ac8a499b9c4a8706e9912117652519b208f3
IEDL.DBID .~1
ISSN 0734-743X
IngestDate Tue Jul 01 03:54:36 EDT 2025
Sat Dec 21 16:00:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hypervelocity impact physics
Smoothed particle hydrodynamics
Whipple shield
Finite element analysis
Honeycomb structure
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-97cfd4f5ff82e9dea8202d1738a04ac8a499b9c4a8706e9912117652519b208f3
ORCID 0000-0003-3665-8560
ParticipantIDs crossref_primary_10_1016_j_ijimpeng_2024_105184
elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2024_105184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle International journal of impact engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Choudhary, Singh, Khare, Kumar, Mahajan, Verma (bib0004) 2020; 140
Knudson, Lemke, Hayes, Hall, Deeney, Asay (bib0024) 2003; 94
Wang, Cai, Deng (bib0026) 2024; 300
Piekutowski (bib0005) 1993; 14
Gurnett, Kurth, Scarf, Burns, Cuzzi, Grün (bib0003) 1987; 92
Sibeaud, Thamié, Puillet (bib0029) 2008; 35
Stahlecker, Mobasher, Rajan, Pereira (bib0019) 2009; 36
Gingold, Monaghan (bib0016) 1977; 181
Libersky, Petschek (bib0013) 1991
Johnson, Cooke (bib0020) 1983
Krisko (bib0021) 2014
Thurber, Bayandor (bib0002) 2015; 137
Song, Horton, Perino, Thurber, Bayandor (bib0018) 2019; 24
Carriere, Cherniaev (bib0008) 2021; 2
ESA Annual Space Environment Report, 2022. . GEN-DB-LOG-00288-OPS-SD.
Johnson, Holmquist (bib0030) 1989
Carriere, Cherniaev (bib0022) 2022; 35
Rice, M.H., McQueen, R.G., Walsh, J.M., 1958. Compression of solids by strong shock waves.
Anderson, Trucanot, Mullint (bib0007) 1990; 9
Monaghan (bib0014) 1994; 110
Cai, Deng, Wang (bib0025) 2024; 24
Wang, Liu, Deng (bib0027) 2024; 205
Christiansen, Crews, Williamsen, Robinson, Nolen (bib0006) 1995; 17
.
Lucy (bib0015) 1977; 82
Meyers (bib0010) 1994
Maskaly, Stevens, La Lone, Turley, Staska, Najjar, Hartsfield (bib0011) 2023; 133
Steinberg (bib0031) 1991
Horton, Bayandor (bib0017) 2016
Liou (bib0009) 2006; 38
Piekutowski, Poormon (bib0012) 2006; 33
Sibeaud, Prieur, Puillet (bib0028) 2005
Wang (10.1016/j.ijimpeng.2024.105184_bib0027) 2024; 205
Krisko (10.1016/j.ijimpeng.2024.105184_bib0021) 2014
Knudson (10.1016/j.ijimpeng.2024.105184_bib0024) 2003; 94
Gurnett (10.1016/j.ijimpeng.2024.105184_bib0003) 1987; 92
Stahlecker (10.1016/j.ijimpeng.2024.105184_bib0019) 2009; 36
Cai (10.1016/j.ijimpeng.2024.105184_bib0025) 2024; 24
Christiansen (10.1016/j.ijimpeng.2024.105184_bib0006) 1995; 17
Sibeaud (10.1016/j.ijimpeng.2024.105184_bib0029) 2008; 35
Steinberg (10.1016/j.ijimpeng.2024.105184_bib0031) 1991
Horton (10.1016/j.ijimpeng.2024.105184_bib0017) 2016
Piekutowski (10.1016/j.ijimpeng.2024.105184_bib0005) 1993; 14
Piekutowski (10.1016/j.ijimpeng.2024.105184_bib0012) 2006; 33
Lucy (10.1016/j.ijimpeng.2024.105184_bib0015) 1977; 82
Anderson (10.1016/j.ijimpeng.2024.105184_bib0007) 1990; 9
Johnson (10.1016/j.ijimpeng.2024.105184_bib0030) 1989
Maskaly (10.1016/j.ijimpeng.2024.105184_bib0011) 2023; 133
Song (10.1016/j.ijimpeng.2024.105184_bib0018) 2019; 24
Gingold (10.1016/j.ijimpeng.2024.105184_bib0016) 1977; 181
Wang (10.1016/j.ijimpeng.2024.105184_bib0026) 2024; 300
Liou (10.1016/j.ijimpeng.2024.105184_bib0009) 2006; 38
Meyers (10.1016/j.ijimpeng.2024.105184_bib0010) 1994
Choudhary (10.1016/j.ijimpeng.2024.105184_bib0004) 2020; 140
Carriere (10.1016/j.ijimpeng.2024.105184_bib0008) 2021; 2
Carriere (10.1016/j.ijimpeng.2024.105184_bib0022) 2022; 35
Johnson (10.1016/j.ijimpeng.2024.105184_bib0020) 1983
10.1016/j.ijimpeng.2024.105184_bib0001
10.1016/j.ijimpeng.2024.105184_bib0023
Monaghan (10.1016/j.ijimpeng.2024.105184_bib0014) 1994; 110
Sibeaud (10.1016/j.ijimpeng.2024.105184_bib0028) 2005
Libersky (10.1016/j.ijimpeng.2024.105184_bib0013) 1991
Thurber (10.1016/j.ijimpeng.2024.105184_bib0002) 2015; 137
References_xml – volume: 137
  year: 2015
  ident: bib0002
  article-title: On the fluidic response of structures in hypervelocity impacts
  publication-title: J Fluids Eng Trans ASME
– volume: 92
  start-page: 14959
  year: 1987
  end-page: 14968
  ident: bib0003
  article-title: Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument
  publication-title: J Geophys Res Space Phys
– start-page: 541
  year: 1983
  end-page: 547
  ident: bib0020
  article-title: A constitutive model and data for metals subject to large strains, high strain rates, and high temperatures
  publication-title: Proceedings of the 7th Interntional Symposium on Ballistics. The Hague
– start-page: 248
  year: 1991
  end-page: 257
  ident: bib0013
  article-title: Smooth particle hydrodynamics with strength of materials
  publication-title: Advances in the free-lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method
– volume: 24
  start-page: 77
  year: 2024
  ident: bib0025
  article-title: Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements
  publication-title: Arch Civ Mech Eng
– volume: 140
  year: 2020
  ident: bib0004
  article-title: Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study
  publication-title: Int J Impact Eng
– volume: 17
  year: 1995
  ident: bib0006
  article-title: Enhanced meteoroid and orbital debris shielding
  publication-title: Int J Impact Eng
– volume: 82
  start-page: 1013
  year: 1977
  ident: bib0015
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron J
– volume: 110
  year: 1994
  ident: bib0014
  article-title: Simulating free surface flows with SPH
  publication-title: J Comput Phys
– volume: 24
  start-page: 243
  year: 2019
  end-page: 256
  ident: bib0018
  article-title: A contribution to full-scale high fidelity aircraft progressive dynamic damage modelling for certification by analysis
  publication-title: Int J Crashworthiness
– volume: 2
  start-page: 25
  year: 2021
  end-page: 45
  ident: bib0008
  article-title: Hypervelocity impacts on satellite sandwich structures—a review of experimental findings and predictive models
  publication-title: Appl Mech
– reference: Rice, M.H., McQueen, R.G., Walsh, J.M., 1958. Compression of solids by strong shock waves.
– volume: 205
  year: 2024
  ident: bib0027
  article-title: In-plane mechanical behavior design of triangular gradient rib honeycombs
  publication-title: Thin-Walled Struct
– volume: 14
  start-page: 573
  year: 1993
  end-page: 586
  ident: bib0005
  article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates
  publication-title: Int J Impact Eng
– volume: 38
  start-page: 2102
  year: 2006
  end-page: 2106
  ident: bib0009
  article-title: Collision activities in the future orbital debris environment
  publication-title: Adv Space Res
– volume: 33
  year: 2006
  ident: bib0012
  article-title: Development of a three-stage, light-gas gun at the University of Dayton Research Institute
  publication-title: Int J Impact Eng
– reference: ESA Annual Space Environment Report, 2022. . GEN-DB-LOG-00288-OPS-SD.
– volume: 133
  year: 2023
  ident: bib0011
  article-title: Non-Richtmyer-Meshkov instability ejecta production based on shallow bubble collapse
  publication-title: J Appl Phys
– year: 1989
  ident: bib0030
  article-title: Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures
  publication-title: Rep
– volume: 35
  start-page: 1799
  year: 2008
  end-page: 1807
  ident: bib0029
  article-title: Hypervelocity impact on honeycomb target structures: experiments and modeling
  publication-title: Int J Impact Eng Hypervel Impact Proc 2007 Symposium
– volume: 36
  year: 2009
  ident: bib0019
  article-title: Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: finite element analysis
  publication-title: Int J Impact Eng
– year: 1991
  ident: bib0031
  article-title: Equation of state and strength properties of selected materials
  publication-title: Rep
– reference: .
– volume: 35
  year: 2022
  ident: bib0022
  article-title: Honeycomb Parameter-sensitive predictive models for ballistic limit of spacecraft sandwich panels subjected to hypervelocity impact at normal incidence
  publication-title: J Aerosp Eng
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: bib0016
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
– volume: 300
  year: 2024
  ident: bib0026
  article-title: In-plane dynamic impact mechanical properties of novel bi-directional hierarchical honeycomb
  publication-title: Eng Fract Mech
– volume: 94
  year: 2003
  ident: bib0024
  article-title: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique
  publication-title: J Appl Phys
– year: 2014
  ident: bib0021
  article-title: The new NASA orbital debris engineering model ORDEM 30
  publication-title: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. San Diego, CA
– year: 2005
  ident: bib0028
  article-title: Hypervelocity impact on honeycomb target structures: experimental part
  publication-title: Presented at the 4th European Conference on Space Debris
– volume: 9
  start-page: 89
  year: 1990
  end-page: 113
  ident: bib0007
  article-title: Debris cloud dynamics
  publication-title: Int J Impact Eng
– year: 1994
  ident: bib0010
  article-title: Dynamic behavior of materials
– start-page: 1
  year: 2016
  end-page: 8
  ident: bib0017
  article-title: Numerical investigation of fan-blade out using 167 | page meso-scale composite modeling
  publication-title: 30th Congress of the international council of the aeronautical sciences
– volume: 35
  start-page: 1799
  year: 2008
  ident: 10.1016/j.ijimpeng.2024.105184_bib0029
  article-title: Hypervelocity impact on honeycomb target structures: experiments and modeling
  publication-title: Int J Impact Eng Hypervel Impact Proc 2007 Symposium
– volume: 36
  year: 2009
  ident: 10.1016/j.ijimpeng.2024.105184_bib0019
  article-title: Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: finite element analysis
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2008.08.004
– year: 1989
  ident: 10.1016/j.ijimpeng.2024.105184_bib0030
  article-title: Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures
  publication-title: Rep
– volume: 38
  start-page: 2102
  year: 2006
  ident: 10.1016/j.ijimpeng.2024.105184_bib0009
  article-title: Collision activities in the future orbital debris environment
  publication-title: Adv Space Res
  doi: 10.1016/j.asr.2005.06.021
– volume: 137
  year: 2015
  ident: 10.1016/j.ijimpeng.2024.105184_bib0002
  article-title: On the fluidic response of structures in hypervelocity impacts
  publication-title: J Fluids Eng Trans ASME
  doi: 10.1115/1.4028854
– start-page: 1
  year: 2016
  ident: 10.1016/j.ijimpeng.2024.105184_bib0017
  article-title: Numerical investigation of fan-blade out using 167 | page meso-scale composite modeling
– year: 1994
  ident: 10.1016/j.ijimpeng.2024.105184_bib0010
– volume: 24
  start-page: 243
  year: 2019
  ident: 10.1016/j.ijimpeng.2024.105184_bib0018
  article-title: A contribution to full-scale high fidelity aircraft progressive dynamic damage modelling for certification by analysis
  publication-title: Int J Crashworthiness
  doi: 10.1080/13588265.2018.1424683
– year: 2005
  ident: 10.1016/j.ijimpeng.2024.105184_bib0028
  article-title: Hypervelocity impact on honeycomb target structures: experimental part
  publication-title: Presented at the 4th European Conference on Space Debris
– ident: 10.1016/j.ijimpeng.2024.105184_bib0001
– volume: 92
  start-page: 14959
  year: 1987
  ident: 10.1016/j.ijimpeng.2024.105184_bib0003
  article-title: Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument
  publication-title: J Geophys Res Space Phys
  doi: 10.1029/JA092iA13p14959
– volume: 140
  year: 2020
  ident: 10.1016/j.ijimpeng.2024.105184_bib0004
  article-title: Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2020.103557
– volume: 181
  start-page: 375
  year: 1977
  ident: 10.1016/j.ijimpeng.2024.105184_bib0016
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon Not R Astron Soc
  doi: 10.1093/mnras/181.3.375
– volume: 17
  year: 1995
  ident: 10.1016/j.ijimpeng.2024.105184_bib0006
  article-title: Enhanced meteoroid and orbital debris shielding
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(95)99848-L
– volume: 300
  year: 2024
  ident: 10.1016/j.ijimpeng.2024.105184_bib0026
  article-title: In-plane dynamic impact mechanical properties of novel bi-directional hierarchical honeycomb
  publication-title: Eng Fract Mech
  doi: 10.1016/j.engfracmech.2024.110009
– year: 2014
  ident: 10.1016/j.ijimpeng.2024.105184_bib0021
  article-title: The new NASA orbital debris engineering model ORDEM 30
– year: 1991
  ident: 10.1016/j.ijimpeng.2024.105184_bib0031
  article-title: Equation of state and strength properties of selected materials
  publication-title: Rep
– ident: 10.1016/j.ijimpeng.2024.105184_bib0023
  doi: 10.1016/S0081-1947(08)60724-9
– start-page: 248
  year: 1991
  ident: 10.1016/j.ijimpeng.2024.105184_bib0013
  article-title: Smooth particle hydrodynamics with strength of materials
– volume: 24
  start-page: 77
  year: 2024
  ident: 10.1016/j.ijimpeng.2024.105184_bib0025
  article-title: Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements
  publication-title: Arch Civ Mech Eng
  doi: 10.1007/s43452-024-00895-9
– volume: 33
  year: 2006
  ident: 10.1016/j.ijimpeng.2024.105184_bib0012
  article-title: Development of a three-stage, light-gas gun at the University of Dayton Research Institute
  publication-title: Int J Impact Eng
  doi: 10.1016/j.ijimpeng.2006.09.018
– volume: 94
  year: 2003
  ident: 10.1016/j.ijimpeng.2024.105184_bib0024
  article-title: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique
  publication-title: J Appl Phys
  doi: 10.1063/1.1604967
– volume: 35
  year: 2022
  ident: 10.1016/j.ijimpeng.2024.105184_bib0022
  article-title: Honeycomb Parameter-sensitive predictive models for ballistic limit of spacecraft sandwich panels subjected to hypervelocity impact at normal incidence
  publication-title: J Aerosp Eng
  doi: 10.1061/(ASCE)AS.1943-5525.0001436
– start-page: 541
  year: 1983
  ident: 10.1016/j.ijimpeng.2024.105184_bib0020
  article-title: A constitutive model and data for metals subject to large strains, high strain rates, and high temperatures
– volume: 133
  year: 2023
  ident: 10.1016/j.ijimpeng.2024.105184_bib0011
  article-title: Non-Richtmyer-Meshkov instability ejecta production based on shallow bubble collapse
  publication-title: J Appl Phys
  doi: 10.1063/5.0132256
– volume: 110
  year: 1994
  ident: 10.1016/j.ijimpeng.2024.105184_bib0014
  article-title: Simulating free surface flows with SPH
  publication-title: J Comput Phys
  doi: 10.1006/jcph.1994.1034
– volume: 205
  year: 2024
  ident: 10.1016/j.ijimpeng.2024.105184_bib0027
  article-title: In-plane mechanical behavior design of triangular gradient rib honeycombs
  publication-title: Thin-Walled Struct
– volume: 14
  start-page: 573
  year: 1993
  ident: 10.1016/j.ijimpeng.2024.105184_bib0005
  article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(93)90053-A
– volume: 9
  start-page: 89
  year: 1990
  ident: 10.1016/j.ijimpeng.2024.105184_bib0007
  article-title: Debris cloud dynamics
  publication-title: Int J Impact Eng
  doi: 10.1016/0734-743X(90)90024-P
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.ijimpeng.2024.105184_bib0015
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron J
  doi: 10.1086/112164
– volume: 2
  start-page: 25
  year: 2021
  ident: 10.1016/j.ijimpeng.2024.105184_bib0008
  article-title: Hypervelocity impacts on satellite sandwich structures—a review of experimental findings and predictive models
  publication-title: Appl Mech
  doi: 10.3390/applmech2010003
SSID ssj0017050
Score 2.4314787
Snippet •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 105184
SubjectTerms Finite element analysis
Honeycomb structure
Hypervelocity impact physics
Smoothed particle hydrodynamics
Whipple shield
Title Enhanced impact tolerant core reinforced space shielding
URI https://dx.doi.org/10.1016/j.ijimpeng.2024.105184
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfGJ9lBy8pnltmt1jKS1VoRct9BZ2N7s2RdJS49Xf7kweUkHw4DXZgfBlMvNN9ptZgPtQx0r6gXK5UMZlehi7gpQ5EcuExYLED2wlkJ0PZwv2uIyXHRi3vTAkq2xifx3Tq2jdXPEaNL1tnnvP6JwM89-SVJAREh3qYGcJefng81vmQdNiqv8suNil1XtdwutBvs6RnBavWCeGjI68DTj7PUHtJZ3pCRw3bNEZ1Q90Ch1TnMHR3gzBc-CTYlXt4jt1w6NTbt4MJqDSoQGVzs5Uo1HpPsYObZz3FWnW0PQCFtPJy3jmNschuBprlNIVibYZs7G1PDQiMxKTd5gFScSlz6TmEosXJTSTtHVpkPdhbZcMY2pNVaHPbXQJ3WJTmCtwIm60kRa_TRUyZEQyyBIrMyG04CYObA-8FoN0W0-9SFs52DptUUsJtbRGrQeihSr98f5SDM1_2F7_w_YGDkM6kbdShd1Ct9x9mDukCaXqV37Qh4PRw9Ns_gW8abyW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8Rnx2YMeC3S7hd2DB6MQEOQiJNzqdrsrEFMI1Bgv_in_oLN9GExMPBiubabZfJ3MfNN-MwNwSaQXiKoT2IwHyqay5tncKHNcGnKNBUnV0YlAtldrDej90BsW4DPvhTGyyiz2pzE9idbZlUqGZmU2Hlce0Tkp5r-hUUG6SHQyZWVHvb9h3ba4bt_hS74ipNno37bsbLWALZHvxzavSx1S7WnNiOKhEpgISejUXSaqVEgmsBAIuKTC_AZUyKGwTqrXPNPmGZAq0y4-dw3WKYYLszah_PGtKzHjaZIPO3g62xxvqS15Uh5PxsiGo2csTAk1O3YdRn_PiEtZrrkD2xk9tW5SBHahoKI92FoaWrgPrBGNEtmAlXZYWvH0RWHGiy0zEdOaq2QWq7mPwUoqazEyIjk0PYDBSkA6hGI0jdQRWC5TUgmNwSAgFCmYcMK6FiHnkjPlOboElRwDf5aO2fBz_dnEz1HzDWp-iloJeA6V_8NhfMwFf9ge_8P2AjZa_Yeu3233OiewScw64ESSdgrFeP6qzpCjxMF54hMWPK3aCb8Aesf3Fg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+impact+tolerant+core+reinforced+space+shielding&rft.jtitle=International+journal+of+impact+engineering&rft.au=Stokes%2C+Sean&rft.au=Bayandor%2C+Javid&rft.date=2025-03-01&rft.issn=0734-743X&rft.volume=197&rft.spage=105184&rft_id=info:doi/10.1016%2Fj.ijimpeng.2024.105184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2024_105184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon