Enhanced impact tolerant core reinforced space shielding
•Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation...
Saved in:
Published in | International journal of impact engineering Vol. 197; p. 105184 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation is modified preventing debris channeling.•Novel honeycomb implementation improves shielding performance significantly.
The threat of orbital debris to space structures is well understood with efforts being made to develop superior shielding for objects operating in low Earth orbit. In traditional Whipple shield designs, the area between the front bumper and rear pressure wall, termed the stand-off distance, is left empty. One of the more recent discussions in shield design has been the utilization of a honeycomb sandwich core design. In this design an initial thin bumper plate is used to fragment the projectile, followed by a honeycomb design which is implemented to further slowdown the resulting fragments in the stand-off region. By using this implementation, the rear pressure wall is theoretically subject to less damage as a result of the impact, due to the addition of the honeycomb core. It is often argued that the addition of a honeycomb core within the Whipple shield induces a channeling behavior of the projectile, where the sharp edges of the honeycomb split the projectile, and the fragments generated are unable to escape the individual honeycomb core that it is propelled into. It is theorized that this channeling effect causes more damage than an impact where no honeycomb is present. This channeling effect induces a large amount of the mass of the projectile to impact the backplate over a much smaller area. As a result, the damage to the backplate is far more localized and of a higher intensity. In this paper the efficacy of this theory has been studied through an analytical approach, where Whipple shields with the honeycomb and standard 2-plate designs are subjected to hypervelocity impacts of orbital debris.
[Display omitted] |
---|---|
AbstractList | •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling effect was observed for the honeycomb structure.•Standard honeycomb structure performs worse than traditional shielding.•Honeycomb orientation is modified preventing debris channeling.•Novel honeycomb implementation improves shielding performance significantly.
The threat of orbital debris to space structures is well understood with efforts being made to develop superior shielding for objects operating in low Earth orbit. In traditional Whipple shield designs, the area between the front bumper and rear pressure wall, termed the stand-off distance, is left empty. One of the more recent discussions in shield design has been the utilization of a honeycomb sandwich core design. In this design an initial thin bumper plate is used to fragment the projectile, followed by a honeycomb design which is implemented to further slowdown the resulting fragments in the stand-off region. By using this implementation, the rear pressure wall is theoretically subject to less damage as a result of the impact, due to the addition of the honeycomb core. It is often argued that the addition of a honeycomb core within the Whipple shield induces a channeling behavior of the projectile, where the sharp edges of the honeycomb split the projectile, and the fragments generated are unable to escape the individual honeycomb core that it is propelled into. It is theorized that this channeling effect causes more damage than an impact where no honeycomb is present. This channeling effect induces a large amount of the mass of the projectile to impact the backplate over a much smaller area. As a result, the damage to the backplate is far more localized and of a higher intensity. In this paper the efficacy of this theory has been studied through an analytical approach, where Whipple shields with the honeycomb and standard 2-plate designs are subjected to hypervelocity impacts of orbital debris.
[Display omitted] |
ArticleNumber | 105184 |
Author | Stokes, Sean Bayandor, Javid |
Author_xml | – sequence: 1 givenname: Sean orcidid: 0000-0003-3665-8560 surname: Stokes fullname: Stokes, Sean – sequence: 2 givenname: Javid surname: Bayandor fullname: Bayandor, Javid email: bayandor@buffalo.edu |
BookMark | eNqFj81qAyEUhV2k0CTtK5R5gZmqo6PuWkL6A4FuWuhOjF4Th4kTdCj07euQdt3VhXv4DudboUUcIyB0R3BDMOnu-yb04XSGeGgopqw8OZFsgZZYtKwWrP28Rquce4yJwBwvkdzGo4kWXFUwY6dqGgdIJk6VHRNUCUL0Y5rzXGKo8jHA4EI83KArb4YMt793jT6etu-bl3r39vy6edzVlnI11UpY75jn3ksKyoGRZZcjopUGM2OlYUrtlWVGCtyBUoQSIjpOOVF7iqVv16i79No05pzA63MKJ5O-NcF6dta9_nPWs7O-OBfw4QJCWfcVIOlsA8yqIYGdtBvDfxU_N5Rm-A |
Cites_doi | 10.1016/j.ijimpeng.2008.08.004 10.1016/j.asr.2005.06.021 10.1115/1.4028854 10.1080/13588265.2018.1424683 10.1029/JA092iA13p14959 10.1016/j.ijimpeng.2020.103557 10.1093/mnras/181.3.375 10.1016/0734-743X(95)99848-L 10.1016/j.engfracmech.2024.110009 10.1016/S0081-1947(08)60724-9 10.1007/s43452-024-00895-9 10.1016/j.ijimpeng.2006.09.018 10.1063/1.1604967 10.1061/(ASCE)AS.1943-5525.0001436 10.1063/5.0132256 10.1006/jcph.1994.1034 10.1016/0734-743X(93)90053-A 10.1016/0734-743X(90)90024-P 10.1086/112164 10.3390/applmech2010003 |
ContentType | Journal Article |
Copyright | 2024 |
Copyright_xml | – notice: 2024 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijimpeng.2024.105184 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ijimpeng_2024_105184 S0734743X24003099 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c259t-97cfd4f5ff82e9dea8202d1738a04ac8a499b9c4a8706e9912117652519b208f3 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Tue Jul 01 03:54:36 EDT 2025 Sat Dec 21 16:00:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Hypervelocity impact physics Smoothed particle hydrodynamics Whipple shield Finite element analysis Honeycomb structure |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-97cfd4f5ff82e9dea8202d1738a04ac8a499b9c4a8706e9912117652519b208f3 |
ORCID | 0000-0003-3665-8560 |
ParticipantIDs | crossref_primary_10_1016_j_ijimpeng_2024_105184 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2024_105184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Choudhary, Singh, Khare, Kumar, Mahajan, Verma (bib0004) 2020; 140 Knudson, Lemke, Hayes, Hall, Deeney, Asay (bib0024) 2003; 94 Wang, Cai, Deng (bib0026) 2024; 300 Piekutowski (bib0005) 1993; 14 Gurnett, Kurth, Scarf, Burns, Cuzzi, Grün (bib0003) 1987; 92 Sibeaud, Thamié, Puillet (bib0029) 2008; 35 Stahlecker, Mobasher, Rajan, Pereira (bib0019) 2009; 36 Gingold, Monaghan (bib0016) 1977; 181 Libersky, Petschek (bib0013) 1991 Johnson, Cooke (bib0020) 1983 Krisko (bib0021) 2014 Thurber, Bayandor (bib0002) 2015; 137 Song, Horton, Perino, Thurber, Bayandor (bib0018) 2019; 24 Carriere, Cherniaev (bib0008) 2021; 2 ESA Annual Space Environment Report, 2022. . GEN-DB-LOG-00288-OPS-SD. Johnson, Holmquist (bib0030) 1989 Carriere, Cherniaev (bib0022) 2022; 35 Rice, M.H., McQueen, R.G., Walsh, J.M., 1958. Compression of solids by strong shock waves. Anderson, Trucanot, Mullint (bib0007) 1990; 9 Monaghan (bib0014) 1994; 110 Cai, Deng, Wang (bib0025) 2024; 24 Wang, Liu, Deng (bib0027) 2024; 205 Christiansen, Crews, Williamsen, Robinson, Nolen (bib0006) 1995; 17 . Lucy (bib0015) 1977; 82 Meyers (bib0010) 1994 Maskaly, Stevens, La Lone, Turley, Staska, Najjar, Hartsfield (bib0011) 2023; 133 Steinberg (bib0031) 1991 Horton, Bayandor (bib0017) 2016 Liou (bib0009) 2006; 38 Piekutowski, Poormon (bib0012) 2006; 33 Sibeaud, Prieur, Puillet (bib0028) 2005 Wang (10.1016/j.ijimpeng.2024.105184_bib0027) 2024; 205 Krisko (10.1016/j.ijimpeng.2024.105184_bib0021) 2014 Knudson (10.1016/j.ijimpeng.2024.105184_bib0024) 2003; 94 Gurnett (10.1016/j.ijimpeng.2024.105184_bib0003) 1987; 92 Stahlecker (10.1016/j.ijimpeng.2024.105184_bib0019) 2009; 36 Cai (10.1016/j.ijimpeng.2024.105184_bib0025) 2024; 24 Christiansen (10.1016/j.ijimpeng.2024.105184_bib0006) 1995; 17 Sibeaud (10.1016/j.ijimpeng.2024.105184_bib0029) 2008; 35 Steinberg (10.1016/j.ijimpeng.2024.105184_bib0031) 1991 Horton (10.1016/j.ijimpeng.2024.105184_bib0017) 2016 Piekutowski (10.1016/j.ijimpeng.2024.105184_bib0005) 1993; 14 Piekutowski (10.1016/j.ijimpeng.2024.105184_bib0012) 2006; 33 Lucy (10.1016/j.ijimpeng.2024.105184_bib0015) 1977; 82 Anderson (10.1016/j.ijimpeng.2024.105184_bib0007) 1990; 9 Johnson (10.1016/j.ijimpeng.2024.105184_bib0030) 1989 Maskaly (10.1016/j.ijimpeng.2024.105184_bib0011) 2023; 133 Song (10.1016/j.ijimpeng.2024.105184_bib0018) 2019; 24 Gingold (10.1016/j.ijimpeng.2024.105184_bib0016) 1977; 181 Wang (10.1016/j.ijimpeng.2024.105184_bib0026) 2024; 300 Liou (10.1016/j.ijimpeng.2024.105184_bib0009) 2006; 38 Meyers (10.1016/j.ijimpeng.2024.105184_bib0010) 1994 Choudhary (10.1016/j.ijimpeng.2024.105184_bib0004) 2020; 140 Carriere (10.1016/j.ijimpeng.2024.105184_bib0008) 2021; 2 Carriere (10.1016/j.ijimpeng.2024.105184_bib0022) 2022; 35 Johnson (10.1016/j.ijimpeng.2024.105184_bib0020) 1983 10.1016/j.ijimpeng.2024.105184_bib0001 10.1016/j.ijimpeng.2024.105184_bib0023 Monaghan (10.1016/j.ijimpeng.2024.105184_bib0014) 1994; 110 Sibeaud (10.1016/j.ijimpeng.2024.105184_bib0028) 2005 Libersky (10.1016/j.ijimpeng.2024.105184_bib0013) 1991 Thurber (10.1016/j.ijimpeng.2024.105184_bib0002) 2015; 137 |
References_xml | – volume: 137 year: 2015 ident: bib0002 article-title: On the fluidic response of structures in hypervelocity impacts publication-title: J Fluids Eng Trans ASME – volume: 92 start-page: 14959 year: 1987 end-page: 14968 ident: bib0003 article-title: Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument publication-title: J Geophys Res Space Phys – start-page: 541 year: 1983 end-page: 547 ident: bib0020 article-title: A constitutive model and data for metals subject to large strains, high strain rates, and high temperatures publication-title: Proceedings of the 7th Interntional Symposium on Ballistics. The Hague – start-page: 248 year: 1991 end-page: 257 ident: bib0013 article-title: Smooth particle hydrodynamics with strength of materials publication-title: Advances in the free-lagrange method including contributions on adaptive gridding and the smooth particle hydrodynamics method – volume: 24 start-page: 77 year: 2024 ident: bib0025 article-title: Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements publication-title: Arch Civ Mech Eng – volume: 140 year: 2020 ident: bib0004 article-title: Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study publication-title: Int J Impact Eng – volume: 17 year: 1995 ident: bib0006 article-title: Enhanced meteoroid and orbital debris shielding publication-title: Int J Impact Eng – volume: 82 start-page: 1013 year: 1977 ident: bib0015 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron J – volume: 110 year: 1994 ident: bib0014 article-title: Simulating free surface flows with SPH publication-title: J Comput Phys – volume: 24 start-page: 243 year: 2019 end-page: 256 ident: bib0018 article-title: A contribution to full-scale high fidelity aircraft progressive dynamic damage modelling for certification by analysis publication-title: Int J Crashworthiness – volume: 2 start-page: 25 year: 2021 end-page: 45 ident: bib0008 article-title: Hypervelocity impacts on satellite sandwich structures—a review of experimental findings and predictive models publication-title: Appl Mech – reference: Rice, M.H., McQueen, R.G., Walsh, J.M., 1958. Compression of solids by strong shock waves. – volume: 205 year: 2024 ident: bib0027 article-title: In-plane mechanical behavior design of triangular gradient rib honeycombs publication-title: Thin-Walled Struct – volume: 14 start-page: 573 year: 1993 end-page: 586 ident: bib0005 article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates publication-title: Int J Impact Eng – volume: 38 start-page: 2102 year: 2006 end-page: 2106 ident: bib0009 article-title: Collision activities in the future orbital debris environment publication-title: Adv Space Res – volume: 33 year: 2006 ident: bib0012 article-title: Development of a three-stage, light-gas gun at the University of Dayton Research Institute publication-title: Int J Impact Eng – reference: ESA Annual Space Environment Report, 2022. . GEN-DB-LOG-00288-OPS-SD. – volume: 133 year: 2023 ident: bib0011 article-title: Non-Richtmyer-Meshkov instability ejecta production based on shallow bubble collapse publication-title: J Appl Phys – year: 1989 ident: bib0030 article-title: Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures publication-title: Rep – volume: 35 start-page: 1799 year: 2008 end-page: 1807 ident: bib0029 article-title: Hypervelocity impact on honeycomb target structures: experiments and modeling publication-title: Int J Impact Eng Hypervel Impact Proc 2007 Symposium – volume: 36 year: 2009 ident: bib0019 article-title: Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: finite element analysis publication-title: Int J Impact Eng – year: 1991 ident: bib0031 article-title: Equation of state and strength properties of selected materials publication-title: Rep – reference: . – volume: 35 year: 2022 ident: bib0022 article-title: Honeycomb Parameter-sensitive predictive models for ballistic limit of spacecraft sandwich panels subjected to hypervelocity impact at normal incidence publication-title: J Aerosp Eng – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: bib0016 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc – volume: 300 year: 2024 ident: bib0026 article-title: In-plane dynamic impact mechanical properties of novel bi-directional hierarchical honeycomb publication-title: Eng Fract Mech – volume: 94 year: 2003 ident: bib0024 article-title: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique publication-title: J Appl Phys – year: 2014 ident: bib0021 article-title: The new NASA orbital debris engineering model ORDEM 30 publication-title: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference. San Diego, CA – year: 2005 ident: bib0028 article-title: Hypervelocity impact on honeycomb target structures: experimental part publication-title: Presented at the 4th European Conference on Space Debris – volume: 9 start-page: 89 year: 1990 end-page: 113 ident: bib0007 article-title: Debris cloud dynamics publication-title: Int J Impact Eng – year: 1994 ident: bib0010 article-title: Dynamic behavior of materials – start-page: 1 year: 2016 end-page: 8 ident: bib0017 article-title: Numerical investigation of fan-blade out using 167 | page meso-scale composite modeling publication-title: 30th Congress of the international council of the aeronautical sciences – volume: 35 start-page: 1799 year: 2008 ident: 10.1016/j.ijimpeng.2024.105184_bib0029 article-title: Hypervelocity impact on honeycomb target structures: experiments and modeling publication-title: Int J Impact Eng Hypervel Impact Proc 2007 Symposium – volume: 36 year: 2009 ident: 10.1016/j.ijimpeng.2024.105184_bib0019 article-title: Development of reliable modeling methodologies for engine fan blade out containment analysis. Part II: finite element analysis publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.08.004 – year: 1989 ident: 10.1016/j.ijimpeng.2024.105184_bib0030 article-title: Test data and computational strength and fracture model constants for 23 materials subjected to large strains, high strain rates, and high temperatures publication-title: Rep – volume: 38 start-page: 2102 year: 2006 ident: 10.1016/j.ijimpeng.2024.105184_bib0009 article-title: Collision activities in the future orbital debris environment publication-title: Adv Space Res doi: 10.1016/j.asr.2005.06.021 – volume: 137 year: 2015 ident: 10.1016/j.ijimpeng.2024.105184_bib0002 article-title: On the fluidic response of structures in hypervelocity impacts publication-title: J Fluids Eng Trans ASME doi: 10.1115/1.4028854 – start-page: 1 year: 2016 ident: 10.1016/j.ijimpeng.2024.105184_bib0017 article-title: Numerical investigation of fan-blade out using 167 | page meso-scale composite modeling – year: 1994 ident: 10.1016/j.ijimpeng.2024.105184_bib0010 – volume: 24 start-page: 243 year: 2019 ident: 10.1016/j.ijimpeng.2024.105184_bib0018 article-title: A contribution to full-scale high fidelity aircraft progressive dynamic damage modelling for certification by analysis publication-title: Int J Crashworthiness doi: 10.1080/13588265.2018.1424683 – year: 2005 ident: 10.1016/j.ijimpeng.2024.105184_bib0028 article-title: Hypervelocity impact on honeycomb target structures: experimental part publication-title: Presented at the 4th European Conference on Space Debris – ident: 10.1016/j.ijimpeng.2024.105184_bib0001 – volume: 92 start-page: 14959 year: 1987 ident: 10.1016/j.ijimpeng.2024.105184_bib0003 article-title: Micron-sized particle impacts detected near Uranus by the Voyager 2 plasma wave instrument publication-title: J Geophys Res Space Phys doi: 10.1029/JA092iA13p14959 – volume: 140 year: 2020 ident: 10.1016/j.ijimpeng.2024.105184_bib0004 article-title: Ballistic impact behaviour of newly developed armour grade steel: an experimental and numerical study publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2020.103557 – volume: 181 start-page: 375 year: 1977 ident: 10.1016/j.ijimpeng.2024.105184_bib0016 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon Not R Astron Soc doi: 10.1093/mnras/181.3.375 – volume: 17 year: 1995 ident: 10.1016/j.ijimpeng.2024.105184_bib0006 article-title: Enhanced meteoroid and orbital debris shielding publication-title: Int J Impact Eng doi: 10.1016/0734-743X(95)99848-L – volume: 300 year: 2024 ident: 10.1016/j.ijimpeng.2024.105184_bib0026 article-title: In-plane dynamic impact mechanical properties of novel bi-directional hierarchical honeycomb publication-title: Eng Fract Mech doi: 10.1016/j.engfracmech.2024.110009 – year: 2014 ident: 10.1016/j.ijimpeng.2024.105184_bib0021 article-title: The new NASA orbital debris engineering model ORDEM 30 – year: 1991 ident: 10.1016/j.ijimpeng.2024.105184_bib0031 article-title: Equation of state and strength properties of selected materials publication-title: Rep – ident: 10.1016/j.ijimpeng.2024.105184_bib0023 doi: 10.1016/S0081-1947(08)60724-9 – start-page: 248 year: 1991 ident: 10.1016/j.ijimpeng.2024.105184_bib0013 article-title: Smooth particle hydrodynamics with strength of materials – volume: 24 start-page: 77 year: 2024 ident: 10.1016/j.ijimpeng.2024.105184_bib0025 article-title: Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements publication-title: Arch Civ Mech Eng doi: 10.1007/s43452-024-00895-9 – volume: 33 year: 2006 ident: 10.1016/j.ijimpeng.2024.105184_bib0012 article-title: Development of a three-stage, light-gas gun at the University of Dayton Research Institute publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2006.09.018 – volume: 94 year: 2003 ident: 10.1016/j.ijimpeng.2024.105184_bib0024 article-title: Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique publication-title: J Appl Phys doi: 10.1063/1.1604967 – volume: 35 year: 2022 ident: 10.1016/j.ijimpeng.2024.105184_bib0022 article-title: Honeycomb Parameter-sensitive predictive models for ballistic limit of spacecraft sandwich panels subjected to hypervelocity impact at normal incidence publication-title: J Aerosp Eng doi: 10.1061/(ASCE)AS.1943-5525.0001436 – start-page: 541 year: 1983 ident: 10.1016/j.ijimpeng.2024.105184_bib0020 article-title: A constitutive model and data for metals subject to large strains, high strain rates, and high temperatures – volume: 133 year: 2023 ident: 10.1016/j.ijimpeng.2024.105184_bib0011 article-title: Non-Richtmyer-Meshkov instability ejecta production based on shallow bubble collapse publication-title: J Appl Phys doi: 10.1063/5.0132256 – volume: 110 year: 1994 ident: 10.1016/j.ijimpeng.2024.105184_bib0014 article-title: Simulating free surface flows with SPH publication-title: J Comput Phys doi: 10.1006/jcph.1994.1034 – volume: 205 year: 2024 ident: 10.1016/j.ijimpeng.2024.105184_bib0027 article-title: In-plane mechanical behavior design of triangular gradient rib honeycombs publication-title: Thin-Walled Struct – volume: 14 start-page: 573 year: 1993 ident: 10.1016/j.ijimpeng.2024.105184_bib0005 article-title: Characteristics of debris clouds produced by hypervelocity impact of aluminum spheres with thin aluminum plates publication-title: Int J Impact Eng doi: 10.1016/0734-743X(93)90053-A – volume: 9 start-page: 89 year: 1990 ident: 10.1016/j.ijimpeng.2024.105184_bib0007 article-title: Debris cloud dynamics publication-title: Int J Impact Eng doi: 10.1016/0734-743X(90)90024-P – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.ijimpeng.2024.105184_bib0015 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron J doi: 10.1086/112164 – volume: 2 start-page: 25 year: 2021 ident: 10.1016/j.ijimpeng.2024.105184_bib0008 article-title: Hypervelocity impacts on satellite sandwich structures—a review of experimental findings and predictive models publication-title: Appl Mech doi: 10.3390/applmech2010003 |
SSID | ssj0017050 |
Score | 2.4314787 |
Snippet | •Spacecraft shielding performance is benchmarked using traditional space shielding.•Advanced space shield using honeycomb structure is simulated.•Channeling... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 105184 |
SubjectTerms | Finite element analysis Honeycomb structure Hypervelocity impact physics Smoothed particle hydrodynamics Whipple shield |
Title | Enhanced impact tolerant core reinforced space shielding |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2024.105184 |
Volume | 197 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB5KvehBfGJ9lBy8pnltmt1jKS1VoRct9BZ2N7s2RdJS49Xf7kweUkHw4DXZgfBlMvNN9ptZgPtQx0r6gXK5UMZlehi7gpQ5EcuExYLED2wlkJ0PZwv2uIyXHRi3vTAkq2xifx3Tq2jdXPEaNL1tnnvP6JwM89-SVJAREh3qYGcJefng81vmQdNiqv8suNil1XtdwutBvs6RnBavWCeGjI68DTj7PUHtJZ3pCRw3bNEZ1Q90Ch1TnMHR3gzBc-CTYlXt4jt1w6NTbt4MJqDSoQGVzs5Uo1HpPsYObZz3FWnW0PQCFtPJy3jmNschuBprlNIVibYZs7G1PDQiMxKTd5gFScSlz6TmEosXJTSTtHVpkPdhbZcMY2pNVaHPbXQJ3WJTmCtwIm60kRa_TRUyZEQyyBIrMyG04CYObA-8FoN0W0-9SFs52DptUUsJtbRGrQeihSr98f5SDM1_2F7_w_YGDkM6kbdShd1Ct9x9mDukCaXqV37Qh4PRw9Ns_gW8abyW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4gHtSD8Rnx2YMeC3S7hd2DB6MQEOQiJNzqdrsrEFMI1Bgv_in_oLN9GExMPBiubabZfJ3MfNN-MwNwSaQXiKoT2IwHyqay5tncKHNcGnKNBUnV0YlAtldrDej90BsW4DPvhTGyyiz2pzE9idbZlUqGZmU2Hlce0Tkp5r-hUUG6SHQyZWVHvb9h3ba4bt_hS74ipNno37bsbLWALZHvxzavSx1S7WnNiOKhEpgISejUXSaqVEgmsBAIuKTC_AZUyKGwTqrXPNPmGZAq0y4-dw3WKYYLszah_PGtKzHjaZIPO3g62xxvqS15Uh5PxsiGo2csTAk1O3YdRn_PiEtZrrkD2xk9tW5SBHahoKI92FoaWrgPrBGNEtmAlXZYWvH0RWHGiy0zEdOaq2QWq7mPwUoqazEyIjk0PYDBSkA6hGI0jdQRWC5TUgmNwSAgFCmYcMK6FiHnkjPlOboElRwDf5aO2fBz_dnEz1HzDWp-iloJeA6V_8NhfMwFf9ge_8P2AjZa_Yeu3233OiewScw64ESSdgrFeP6qzpCjxMF54hMWPK3aCb8Aesf3Fg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+impact+tolerant+core+reinforced+space+shielding&rft.jtitle=International+journal+of+impact+engineering&rft.au=Stokes%2C+Sean&rft.au=Bayandor%2C+Javid&rft.date=2025-03-01&rft.issn=0734-743X&rft.volume=197&rft.spage=105184&rft_id=info:doi/10.1016%2Fj.ijimpeng.2024.105184&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2024_105184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |