Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome v...
Saved in:
Published in | Journal of computational and graphical statistics pp. 1 - 14 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
17.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1061-8600 1537-2715 |
DOI | 10.1080/10618600.2025.2461222 |
Cover
Loading…
Abstract | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. |
---|---|
AbstractList | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach. |
Author | Heng, Siyu Shaw, Pamela A. |
Author_xml | – sequence: 1 givenname: Siyu orcidid: 0000-0002-9313-3667 surname: Heng fullname: Heng, Siyu – sequence: 2 givenname: Pamela A. surname: Shaw fullname: Shaw, Pamela A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40881310$$D View this record in MEDLINE/PubMed |
BookMark | eNo9kVtLAzEQhYNU7EV_gpJHX7bm0mR3H2vxUlAqWp9Dmk1qZDepyW6h_npT2voyZxg-hplzhqDnvNMAXGM0xqhAdxhxXHCExgQRNiYTjgkhZ2CAGc0zkmPWS31isj3UB8MYvxFCmJf5BehPUFFgitEAfH1oF21rt7bdwamT9S7aCI0P8N46GXZw0bXKNxq-2qhqGaM1VsnWegetg-_SVb6xv4fBUsc2wq2VcO5avdYBvgW_DrJprFtfgnMj66ivjjoCn48Py9lz9rJ4ms-mL5kirGyzkim2UqhaGcZLXqWCclYWxpS0oJgbyiYTzZNqwnNldIVJQVFlSk1MzjWnI3B72LsJ_qdLF4kmXa7rWjrtuyhosoomtxhN6M0R7VaNrsQm2Ca9LE7uJIAdABV8jEGbfwQjsU9BnFIQ-xTEMQX6B0TKelg |
Cites_doi | 10.1007/978-3-030-46405-9 10.1080/01621459.2017.1295865 10.3322/caac.21601 10.1177/0962280214523192 10.1080/01621459.2018.1429277 10.5705/ss.2011.227 10.1001/archinte.168.22.2459 10.1016/0197-2456(94)00xxx-m 10.1198/016214504000000647 10.1056/NEJMoa030660 10.1201/9781420010138 10.1214/13-AOAS713 10.1111/rssb.12439 10.1198/016214508000000706 10.1002/sim.8073 10.1111/biom.13400 10.1007/978-1-4757-3692-2 10.1037/h0037350 10.1093/oxfordjournals.aje.a009251 10.1016/0735-6757(95)90196-5 10.1097/EDE.0000000000001193 10.1148/rg.245045008 10.1214/22-STS851 10.1080/00224498609551289 10.1158/1940-6207.CAPR-08-0092 10.1080/01621459.2016.1138865 10.1093/jnci/djm117 10.7326/M16-2607 10.1201/9781420066586 10.1080/01621459.2023.2199814 10.1111/rssb.12290 10.1136/bmj.39465.451748.AD 10.1016/bs.hefe.2016.10.003 10.1016/0022-3956(94)90026-4 10.1001/jama.2016.17700 10.1080/01621459.2015.1112802 10.1017/CBO9781139025751 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1080/10618600.2025.2461222 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1537-2715 |
EndPage | 14 |
ExternalDocumentID | 40881310 10_1080_10618600_2025_2461222 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI131771 – fundername: NIDA NIH HHS grantid: R21 DA060433 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 30N 4.4 5GY AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR AAYXX ABCCY ABFAN ABFIM ABJNI ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYWD ACGFO ACGFS ACIWK ACMTB ACTIO ACTMH ADCVX ADGTB AEGXH AELLO AENEX AEOZL AEPSL AEYOC AFRVT AFVYC AGDLA AGMYJ AHDZW AIAGR AIJEM AKBRZ AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CITATION CS3 D0L DGEBU DKSSO DU5 EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P JAA KYCEM LJTGL M4Z MS~ NA5 NY~ O9- P2P PQQKQ RIG RNANH ROSJB RTWRZ RWL RXW S-T SNACF TAE TASJS TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ UT5 UU3 WZA XWC ZGOLN ~S~ .4S NPM 7X8 |
ID | FETCH-LOGICAL-c259t-95c5bc0dbf5696d56907598ff938316f3544e66f3e267cfed12830df9e2f76e63 |
ISSN | 1061-8600 |
IngestDate | Thu Sep 04 12:32:58 EDT 2025 Thu Sep 04 05:04:05 EDT 2025 Tue Aug 05 12:06:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | randomization inference Neyman’s weak null Fisher’s sharp null integer programming matched observational studies design-based causal inference |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-95c5bc0dbf5696d56907598ff938316f3544e66f3e267cfed12830df9e2f76e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-9313-3667 |
PMID | 40881310 |
PQID | 3246346153 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_3246346153 pubmed_primary_40881310 crossref_primary_10_1080_10618600_2025_2461222 |
PublicationCentury | 2000 |
PublicationDate | 2025-Apr-17 |
PublicationDateYYYYMMDD | 2025-04-17 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-Apr-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of computational and graphical statistics |
PublicationTitleAlternate | J Comput Graph Stat |
PublicationYear | 2025 |
References | Scott W. R. (e_1_3_3_36_1) 2012 Hernán M. A. (e_1_3_3_19_1) 2020 Athey S. (e_1_3_3_3_1) 2017 e_1_3_3_18_1 e_1_3_3_17_1 Mantel N. (e_1_3_3_27_1) 1959; 22 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 Fisher R. A. (e_1_3_3_12_1) 1935 e_1_3_3_15_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 e_1_3_3_40_1 e_1_3_3_41_1 Margot F. (e_1_3_3_28_1) 2010 e_1_3_3_7_1 e_1_3_3_6_1 e_1_3_3_8_1 Cox D. R. (e_1_3_3_9_1) 2018 e_1_3_3_29_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_46_1 e_1_3_3_26_1 e_1_3_3_47_1 e_1_3_3_21_1 e_1_3_3_44_1 e_1_3_3_2_1 e_1_3_3_20_1 NIH (e_1_3_3_30_1) 2013 e_1_3_3_45_1 e_1_3_3_5_1 e_1_3_3_23_1 e_1_3_3_42_1 e_1_3_3_4_1 e_1_3_3_22_1 e_1_3_3_43_1 |
References_xml | – ident: e_1_3_3_34_1 doi: 10.1007/978-3-030-46405-9 – ident: e_1_3_3_23_1 doi: 10.1080/01621459.2017.1295865 – ident: e_1_3_3_39_1 doi: 10.3322/caac.21601 – ident: e_1_3_3_16_1 doi: 10.1177/0962280214523192 – ident: e_1_3_3_46_1 doi: 10.1080/01621459.2018.1429277 – ident: e_1_3_3_11_1 doi: 10.5705/ss.2011.227 – ident: e_1_3_3_31_1 doi: 10.1001/archinte.168.22.2459 – ident: e_1_3_3_10_1 doi: 10.1016/0197-2456(94)00xxx-m – volume: 22 start-page: 719 year: 1959 ident: e_1_3_3_27_1 article-title: “Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease,” publication-title: Journal of the National Cancer Institute – ident: e_1_3_3_18_1 doi: 10.1198/016214504000000647 – ident: e_1_3_3_40_1 doi: 10.1056/NEJMoa030660 – ident: e_1_3_3_6_1 doi: 10.1201/9781420010138 – volume-title: Symmetry in Integer Linear Programming year: 2010 ident: e_1_3_3_28_1 – ident: e_1_3_3_47_1 doi: 10.1214/13-AOAS713 – volume-title: Causal Inference: What If year: 2020 ident: e_1_3_3_19_1 – ident: e_1_3_3_8_1 doi: 10.1111/rssb.12439 – ident: e_1_3_3_37_1 doi: 10.1198/016214508000000706 – ident: e_1_3_3_38_1 doi: 10.1002/sim.8073 – ident: e_1_3_3_4_1 doi: 10.1111/biom.13400 – volume-title: Prostate Cancer Prevention Trial (PCPT): Questions and Answers year: 2013 ident: e_1_3_3_30_1 – volume-title: Analysis of Binary Data year: 2018 ident: e_1_3_3_9_1 – ident: e_1_3_3_33_1 doi: 10.1007/978-1-4757-3692-2 – ident: e_1_3_3_35_1 doi: 10.1037/h0037350 – volume-title: The Design of Experiments year: 1935 ident: e_1_3_3_12_1 – ident: e_1_3_3_26_1 doi: 10.1093/oxfordjournals.aje.a009251 – ident: e_1_3_3_29_1 – ident: e_1_3_3_42_1 doi: 10.1016/0735-6757(95)90196-5 – ident: e_1_3_3_20_1 doi: 10.1097/EDE.0000000000001193 – ident: e_1_3_3_43_1 doi: 10.1148/rg.245045008 – ident: e_1_3_3_24_1 doi: 10.1214/22-STS851 – ident: e_1_3_3_7_1 doi: 10.1080/00224498609551289 – ident: e_1_3_3_32_1 doi: 10.1158/1940-6207.CAPR-08-0092 – ident: e_1_3_3_15_1 doi: 10.1080/01621459.2016.1138865 – ident: e_1_3_3_25_1 doi: 10.1093/jnci/djm117 – ident: e_1_3_3_41_1 doi: 10.7326/M16-2607 – ident: e_1_3_3_5_1 doi: 10.1201/9781420066586 – ident: e_1_3_3_17_1 – volume-title: Group Theory year: 2012 ident: e_1_3_3_36_1 – ident: e_1_3_3_45_1 doi: 10.1080/01621459.2023.2199814 – ident: e_1_3_3_13_1 doi: 10.1111/rssb.12290 – ident: e_1_3_3_44_1 doi: 10.1136/bmj.39465.451748.AD – start-page: 73 volume-title: Handbook of Economic Field Experiments (Vol year: 2017 ident: e_1_3_3_3_1 doi: 10.1016/bs.hefe.2016.10.003 – ident: e_1_3_3_22_1 doi: 10.1016/0022-3956(94)90026-4 – ident: e_1_3_3_2_1 doi: 10.1001/jama.2016.17700 – ident: e_1_3_3_14_1 doi: 10.1080/01621459.2015.1112802 – ident: e_1_3_3_21_1 doi: 10.1017/CBO9781139025751 |
SSID | ssj0001697 |
Score | 2.4130304 |
SecondaryResourceType | online_first |
Snippet | Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database |
StartPage | 1 |
Title | Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40881310 https://www.proquest.com/docview/3246346153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbByN9KFt3S3dBg70VZ7FkyfbjNjbKoN1YU-ibkWWJBhanLE7H-ut7ji5OQlrY9uIE2chG32fp6Ph85xDyDlbk3DLOE8szDRuUJktKXarEsFyptNZwEoXCxyfy6Cz7ei7OV0UQnbqkq0f6-lZdyf-gCm2AK6pk_wHZvlNogP-ALxwBYTj-FcanGH0eyj_02UUwbvCjV9l-W3ZwW3hxpwuNVjKGBakY3fhDtc18FmSYhxNYHRaHV1PlfIQoBf7uI7dmcW3btmC1qwgRvYnogXfpr73QEttdDuiVtzV4pqd_lr1f50L99nbszPxUwa8afBBM4OcUL7kM0yZYBUkhXc7R7UnZRzHiNXjJCDsYYRo75hXJa0BdzhxSGUx9KQ_hrpvZsOOp--QBg40BFuvg45N-7U1DOZ34PFGzVYzf33r_AXkYe9w0TO7YbTirY_KI7IXBph889o_JPdPuk93jPtfuYp8MTvuhfkIu1ihBIyUoUIJ6StBACbpFCTpt6QYlqKMEBUrQQAm6Romn5OzL58mnoyQU00g07HC7pBRa1Hrc1FbIUjYCvSKiLKwtecFTabnIMiPh1zCZa2uaFFPDNbY0zObSSP6M7LTz1rwgtGTwNttGFYKJLFdCjZUopIF-VJ5roYdkFEeyuvQ5U6o0pKKNKFSIQhVQGJK3cbwrmN3wk5VqzXy5qMDclzzDTcmQPPdA9F1G4A7uPPOSDFZsfUV2ul9L8xpsyK5-42hzA_QFbkc |
linkProvider | Taylor & Francis |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+for+Binary+Outcome+Misclassification+in+Randomization+Tests+via+Integer+Programming&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Heng%2C+Siyu&rft.au=Shaw%2C+Pamela+A&rft.date=2025-04-17&rft.issn=1061-8600&rft_id=info:doi/10.1080%2F10618600.2025.2461222&rft_id=info%3Apmid%2F40881310&rft.externalDocID=40881310 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon |