Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming

Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome v...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics pp. 1 - 14
Main Authors Heng, Siyu, Shaw, Pamela A.
Format Journal Article
LanguageEnglish
Published United States 17.04.2025
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1080/10618600.2025.2461222

Cover

Loading…
Abstract Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
AbstractList Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is largely because their statistical validity only depends on the randomization design, and no distributional or modeling assumption on the outcome variable is needed. However, randomization tests may still suffer from other sources of bias, among which outcome misclassification is a significant one. We propose a model-free and finite-population sensitivity analysis approach for binary outcome misclassification in randomization tests. A central quantity in our framework is "warning accuracy," defined as the threshold such that a randomization test result based on the measured outcomes may differ from that based on the true outcomes if the outcome measurement accuracy did not surpass that threshold. We show how learning the warning accuracy and related concepts can amplify analyses of randomization tests subject to outcome misclassification without adding additional assumptions. We show that the warning accuracy can be computed efficiently for large data sets by adaptively reformulating a large-scale integer program with respect to the randomization design. We apply the proposed approach to the Prostate Cancer Prevention Trial (PCPT). We also developed an open-source R package for implementation of our approach.
Author Heng, Siyu
Shaw, Pamela A.
Author_xml – sequence: 1
  givenname: Siyu
  orcidid: 0000-0002-9313-3667
  surname: Heng
  fullname: Heng, Siyu
– sequence: 2
  givenname: Pamela A.
  surname: Shaw
  fullname: Shaw, Pamela A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40881310$$D View this record in MEDLINE/PubMed
BookMark eNo9kVtLAzEQhYNU7EV_gpJHX7bm0mR3H2vxUlAqWp9Dmk1qZDepyW6h_npT2voyZxg-hplzhqDnvNMAXGM0xqhAdxhxXHCExgQRNiYTjgkhZ2CAGc0zkmPWS31isj3UB8MYvxFCmJf5BehPUFFgitEAfH1oF21rt7bdwamT9S7aCI0P8N46GXZw0bXKNxq-2qhqGaM1VsnWegetg-_SVb6xv4fBUsc2wq2VcO5avdYBvgW_DrJprFtfgnMj66ivjjoCn48Py9lz9rJ4ms-mL5kirGyzkim2UqhaGcZLXqWCclYWxpS0oJgbyiYTzZNqwnNldIVJQVFlSk1MzjWnI3B72LsJ_qdLF4kmXa7rWjrtuyhosoomtxhN6M0R7VaNrsQm2Ca9LE7uJIAdABV8jEGbfwQjsU9BnFIQ-xTEMQX6B0TKelg
Cites_doi 10.1007/978-3-030-46405-9
10.1080/01621459.2017.1295865
10.3322/caac.21601
10.1177/0962280214523192
10.1080/01621459.2018.1429277
10.5705/ss.2011.227
10.1001/archinte.168.22.2459
10.1016/0197-2456(94)00xxx-m
10.1198/016214504000000647
10.1056/NEJMoa030660
10.1201/9781420010138
10.1214/13-AOAS713
10.1111/rssb.12439
10.1198/016214508000000706
10.1002/sim.8073
10.1111/biom.13400
10.1007/978-1-4757-3692-2
10.1037/h0037350
10.1093/oxfordjournals.aje.a009251
10.1016/0735-6757(95)90196-5
10.1097/EDE.0000000000001193
10.1148/rg.245045008
10.1214/22-STS851
10.1080/00224498609551289
10.1158/1940-6207.CAPR-08-0092
10.1080/01621459.2016.1138865
10.1093/jnci/djm117
10.7326/M16-2607
10.1201/9781420066586
10.1080/01621459.2023.2199814
10.1111/rssb.12290
10.1136/bmj.39465.451748.AD
10.1016/bs.hefe.2016.10.003
10.1016/0022-3956(94)90026-4
10.1001/jama.2016.17700
10.1080/01621459.2015.1112802
10.1017/CBO9781139025751
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1080/10618600.2025.2461222
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 14
ExternalDocumentID 40881310
10_1080_10618600_2025_2461222
Genre Journal Article
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI131771
– fundername: NIDA NIH HHS
  grantid: R21 DA060433
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAYXX
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYWD
ACGFO
ACGFS
ACIWK
ACMTB
ACTIO
ACTMH
ADCVX
ADGTB
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFRVT
AFVYC
AGDLA
AGMYJ
AHDZW
AIAGR
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CITATION
CS3
D0L
DGEBU
DKSSO
DU5
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
JAA
KYCEM
LJTGL
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UT5
UU3
WZA
XWC
ZGOLN
~S~
.4S
NPM
7X8
ID FETCH-LOGICAL-c259t-95c5bc0dbf5696d56907598ff938316f3544e66f3e267cfed12830df9e2f76e63
ISSN 1061-8600
IngestDate Thu Sep 04 12:32:58 EDT 2025
Thu Sep 04 05:04:05 EDT 2025
Tue Aug 05 12:06:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords randomization inference
Neyman’s weak null
Fisher’s sharp null
integer programming
matched observational studies
design-based causal inference
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-95c5bc0dbf5696d56907598ff938316f3544e66f3e267cfed12830df9e2f76e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9313-3667
PMID 40881310
PQID 3246346153
PQPubID 23479
PageCount 14
ParticipantIDs proquest_miscellaneous_3246346153
pubmed_primary_40881310
crossref_primary_10_1080_10618600_2025_2461222
PublicationCentury 2000
PublicationDate 2025-Apr-17
PublicationDateYYYYMMDD 2025-04-17
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-Apr-17
  day: 17
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of computational and graphical statistics
PublicationTitleAlternate J Comput Graph Stat
PublicationYear 2025
References Scott W. R. (e_1_3_3_36_1) 2012
Hernán M. A. (e_1_3_3_19_1) 2020
Athey S. (e_1_3_3_3_1) 2017
e_1_3_3_18_1
e_1_3_3_17_1
Mantel N. (e_1_3_3_27_1) 1959; 22
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
Fisher R. A. (e_1_3_3_12_1) 1935
e_1_3_3_15_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
e_1_3_3_40_1
e_1_3_3_41_1
Margot F. (e_1_3_3_28_1) 2010
e_1_3_3_7_1
e_1_3_3_6_1
e_1_3_3_8_1
Cox D. R. (e_1_3_3_9_1) 2018
e_1_3_3_29_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_46_1
e_1_3_3_26_1
e_1_3_3_47_1
e_1_3_3_21_1
e_1_3_3_44_1
e_1_3_3_2_1
e_1_3_3_20_1
NIH (e_1_3_3_30_1) 2013
e_1_3_3_45_1
e_1_3_3_5_1
e_1_3_3_23_1
e_1_3_3_42_1
e_1_3_3_4_1
e_1_3_3_22_1
e_1_3_3_43_1
References_xml – ident: e_1_3_3_34_1
  doi: 10.1007/978-3-030-46405-9
– ident: e_1_3_3_23_1
  doi: 10.1080/01621459.2017.1295865
– ident: e_1_3_3_39_1
  doi: 10.3322/caac.21601
– ident: e_1_3_3_16_1
  doi: 10.1177/0962280214523192
– ident: e_1_3_3_46_1
  doi: 10.1080/01621459.2018.1429277
– ident: e_1_3_3_11_1
  doi: 10.5705/ss.2011.227
– ident: e_1_3_3_31_1
  doi: 10.1001/archinte.168.22.2459
– ident: e_1_3_3_10_1
  doi: 10.1016/0197-2456(94)00xxx-m
– volume: 22
  start-page: 719
  year: 1959
  ident: e_1_3_3_27_1
  article-title: “Statistical Aspects of the Analysis of Data from Retrospective Studies of Disease,”
  publication-title: Journal of the National Cancer Institute
– ident: e_1_3_3_18_1
  doi: 10.1198/016214504000000647
– ident: e_1_3_3_40_1
  doi: 10.1056/NEJMoa030660
– ident: e_1_3_3_6_1
  doi: 10.1201/9781420010138
– volume-title: Symmetry in Integer Linear Programming
  year: 2010
  ident: e_1_3_3_28_1
– ident: e_1_3_3_47_1
  doi: 10.1214/13-AOAS713
– volume-title: Causal Inference: What If
  year: 2020
  ident: e_1_3_3_19_1
– ident: e_1_3_3_8_1
  doi: 10.1111/rssb.12439
– ident: e_1_3_3_37_1
  doi: 10.1198/016214508000000706
– ident: e_1_3_3_38_1
  doi: 10.1002/sim.8073
– ident: e_1_3_3_4_1
  doi: 10.1111/biom.13400
– volume-title: Prostate Cancer Prevention Trial (PCPT): Questions and Answers
  year: 2013
  ident: e_1_3_3_30_1
– volume-title: Analysis of Binary Data
  year: 2018
  ident: e_1_3_3_9_1
– ident: e_1_3_3_33_1
  doi: 10.1007/978-1-4757-3692-2
– ident: e_1_3_3_35_1
  doi: 10.1037/h0037350
– volume-title: The Design of Experiments
  year: 1935
  ident: e_1_3_3_12_1
– ident: e_1_3_3_26_1
  doi: 10.1093/oxfordjournals.aje.a009251
– ident: e_1_3_3_29_1
– ident: e_1_3_3_42_1
  doi: 10.1016/0735-6757(95)90196-5
– ident: e_1_3_3_20_1
  doi: 10.1097/EDE.0000000000001193
– ident: e_1_3_3_43_1
  doi: 10.1148/rg.245045008
– ident: e_1_3_3_24_1
  doi: 10.1214/22-STS851
– ident: e_1_3_3_7_1
  doi: 10.1080/00224498609551289
– ident: e_1_3_3_32_1
  doi: 10.1158/1940-6207.CAPR-08-0092
– ident: e_1_3_3_15_1
  doi: 10.1080/01621459.2016.1138865
– ident: e_1_3_3_25_1
  doi: 10.1093/jnci/djm117
– ident: e_1_3_3_41_1
  doi: 10.7326/M16-2607
– ident: e_1_3_3_5_1
  doi: 10.1201/9781420066586
– ident: e_1_3_3_17_1
– volume-title: Group Theory
  year: 2012
  ident: e_1_3_3_36_1
– ident: e_1_3_3_45_1
  doi: 10.1080/01621459.2023.2199814
– ident: e_1_3_3_13_1
  doi: 10.1111/rssb.12290
– ident: e_1_3_3_44_1
  doi: 10.1136/bmj.39465.451748.AD
– start-page: 73
  volume-title: Handbook of Economic Field Experiments (Vol
  year: 2017
  ident: e_1_3_3_3_1
  doi: 10.1016/bs.hefe.2016.10.003
– ident: e_1_3_3_22_1
  doi: 10.1016/0022-3956(94)90026-4
– ident: e_1_3_3_2_1
  doi: 10.1001/jama.2016.17700
– ident: e_1_3_3_14_1
  doi: 10.1080/01621459.2015.1112802
– ident: e_1_3_3_21_1
  doi: 10.1017/CBO9781139025751
SSID ssj0001697
Score 2.4130304
SecondaryResourceType online_first
Snippet Conducting a randomization test is a common method for testing causal null hypotheses in randomized experiments. The popularity of randomization tests is...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
StartPage 1
Title Sensitivity Analysis for Binary Outcome Misclassification in Randomization Tests via Integer Programming
URI https://www.ncbi.nlm.nih.gov/pubmed/40881310
https://www.proquest.com/docview/3246346153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbByN9KFt3S3dBg70VZ7FkyfbjNjbKoN1YU-ibkWWJBhanLE7H-ut7ji5OQlrY9uIE2chG32fp6Ph85xDyDlbk3DLOE8szDRuUJktKXarEsFyptNZwEoXCxyfy6Cz7ei7OV0UQnbqkq0f6-lZdyf-gCm2AK6pk_wHZvlNogP-ALxwBYTj-FcanGH0eyj_02UUwbvCjV9l-W3ZwW3hxpwuNVjKGBakY3fhDtc18FmSYhxNYHRaHV1PlfIQoBf7uI7dmcW3btmC1qwgRvYnogXfpr73QEttdDuiVtzV4pqd_lr1f50L99nbszPxUwa8afBBM4OcUL7kM0yZYBUkhXc7R7UnZRzHiNXjJCDsYYRo75hXJa0BdzhxSGUx9KQ_hrpvZsOOp--QBg40BFuvg45N-7U1DOZ34PFGzVYzf33r_AXkYe9w0TO7YbTirY_KI7IXBph889o_JPdPuk93jPtfuYp8MTvuhfkIu1ihBIyUoUIJ6StBACbpFCTpt6QYlqKMEBUrQQAm6Romn5OzL58mnoyQU00g07HC7pBRa1Hrc1FbIUjYCvSKiLKwtecFTabnIMiPh1zCZa2uaFFPDNbY0zObSSP6M7LTz1rwgtGTwNttGFYKJLFdCjZUopIF-VJ5roYdkFEeyuvQ5U6o0pKKNKFSIQhVQGJK3cbwrmN3wk5VqzXy5qMDclzzDTcmQPPdA9F1G4A7uPPOSDFZsfUV2ul9L8xpsyK5-42hzA_QFbkc
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+Analysis+for+Binary+Outcome+Misclassification+in+Randomization+Tests+via+Integer+Programming&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Heng%2C+Siyu&rft.au=Shaw%2C+Pamela+A&rft.date=2025-04-17&rft.issn=1061-8600&rft_id=info:doi/10.1080%2F10618600.2025.2461222&rft_id=info%3Apmid%2F40881310&rft.externalDocID=40881310
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon