Full-crystalline monolithic EU-1 zeolite: sustainable synthesis and its applications in the hydroisomerization of ethylbenzene with meta -xylene
EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in petrochemical processes to increase the para -xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of...
Saved in:
Published in | Catalysis science & technology Vol. 13; no. 10; pp. 3060 - 3068 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
22.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (
i.e.
, xylenes, ethylbenzene) in petrochemical processes to increase the
para
-xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with
meta
-xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications. |
---|---|
AbstractList | EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (i.e., xylenes, ethylbenzene) in petrochemical processes to increase the para-xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with meta-xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications. EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in petrochemical processes to increase the para -xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with meta -xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications. |
Author | Liang, Guanghua Chen, Jianyi Dou, Tao Wu, Zhijie Liu, Yuanshuai Li, Xiaofeng |
Author_xml | – sequence: 1 givenname: Guanghua surname: Liang fullname: Liang, Guanghua organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China, Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, 102249, PR China – sequence: 2 givenname: Jianyi surname: Chen fullname: Chen, Jianyi organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China, Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, 102249, PR China – sequence: 3 givenname: Tao surname: Dou fullname: Dou, Tao organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China – sequence: 4 givenname: Zhijie orcidid: 0000-0002-8160-6615 surname: Wu fullname: Wu, Zhijie organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China – sequence: 5 givenname: Xiaofeng surname: Li fullname: Li, Xiaofeng organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China – sequence: 6 givenname: Yuanshuai orcidid: 0000-0002-4020-7538 surname: Liu fullname: Liu, Yuanshuai organization: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China, Shandong Energy Institute, Qingdao, 266101, China |
BookMark | eNpFUMFKAzEUDKJgrb34BQFvwmqSzW433qS2VSh4sQdPS5p9S1OySU1SdPsVfrKpFX2Xee_NMANzgU6ts4DQFSW3lOTi7jGfvBFCOZmfoAEjnGd8XNLTv73Iz9EohA1JwwUlFRugr9nOmEz5PkRpjLaAO2ed0XGtFZ4uM4r3cDjhHodd0mgrVwZw6G1cQ9ABS9tgHRNut0YrGbWzAWuLE43XfeOdDq4Dr_c_FHYthrjuzQrsHlLaR0rCHUSJs8_epM8lOmulCTD6xSFazqavk6ds8TJ_njwsMsUKEbNqJcWYUjouiCJEqgKoolWjRMu5aGhTCiKasiS5aplkitEVaVWTK1YKkNAU-RBdH3233r3vIMR643bepsiaVbQcc0EoS6qbo0p5F4KHtt563Unf15TUh9Lr_9Lzbz11eQ0 |
CitedBy_id | crossref_primary_10_1016_j_micromeso_2024_113179 |
Cites_doi | 10.1007/s11705-020-1948-3 10.1021/ja3044954 10.1039/C5CY02027A 10.1016/S0144-2449(88)80033-2 10.1007/s12182-012-0241-6 10.1021/cr020060i 10.1002/anie.201302672 10.1016/S0166-9834(00)82395-7 10.1038/nmat4173 10.1016/j.micromeso.2016.08.017 10.1002/anie.200702239 10.1021/ja057933l 10.1016/j.micromeso.2003.10.010 10.1021/cm060035j 10.1016/j.micromeso.2022.112201 10.1080/01614940.2014.946846 10.1016/j.jcat.2016.05.009 10.1016/j.micromeso.2007.05.015 10.1016/j.micromeso.2009.06.019 10.1016/j.micromeso.2015.01.006 10.1021/ja036071q 10.1039/D1CY00948F 10.1021/cr960406n 10.1039/c3cy20866d 10.1016/S1387-1811(01)00284-0 10.1016/j.micromeso.2005.08.032 10.1016/j.micromeso.2009.05.015 10.1016/S0166-9834(00)83025-0 10.1038/nature02860 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2023 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2023 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/D3CY00140G |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2044-4761 |
EndPage | 3068 |
ExternalDocumentID | 10_1039_D3CY00140G |
GroupedDBID | -JG 0-7 0R~ 705 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACAYK ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- OK1 R7G RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c259t-8ba97111750c00ac5e1c18dc9f449d1d6909d6603cf2a2c21b0fcd3c269eaed53 |
ISSN | 2044-4753 |
IngestDate | Thu Oct 10 17:36:10 EDT 2024 Fri Aug 23 00:51:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-8ba97111750c00ac5e1c18dc9f449d1d6909d6603cf2a2c21b0fcd3c269eaed53 |
ORCID | 0000-0002-8160-6615 0000-0002-4020-7538 |
PQID | 2816749012 |
PQPubID | 2047527 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2816749012 crossref_primary_10_1039_D3CY00140G |
PublicationCentury | 2000 |
PublicationDate | 2023-05-22 |
PublicationDateYYYYMMDD | 2023-05-22 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Catalysis science & technology |
PublicationYear | 2023 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Arnold (D3CY00140G/cit13/1) 2004; 67 Tong (D3CY00140G/cit17/1) 2006; 18 Moreau (D3CY00140G/cit20/1) 2006; 90 Cundy (D3CY00140G/cit1/1) 2003; 34 Rao (D3CY00140G/cit22/1) 1989; 49 Wang (D3CY00140G/cit4/1) 2003; 125 Drylie (D3CY00140G/cit7/1) 2007; 46 Teng (D3CY00140G/cit15/1) 2015; 45 Goergen (D3CY00140G/cit12/1) 2009; 126 Cooper (D3CY00140G/cit6/1) 2004; 430 Briscoe (D3CY00140G/cit26/1) 1988; 8 Al-Khattaf (D3CY00140G/cit19/1) 2014; 56 Ahmed (D3CY00140G/cit28/1) 2015; 207 Hargreaves (D3CY00140G/cit27/1) 2013; 3 Luan (D3CY00140G/cit16/1) 2021; 11 Li (D3CY00140G/cit24/1) 2022; 344 Awala (D3CY00140G/cit5/1) 2015; 14 Mota (D3CY00140G/cit18/1) 2016; 6 Gui (D3CY00140G/cit25/1) 2009; 38 Jin (D3CY00140G/cit9/1) 2013; 52 Zhou (D3CY00140G/cit14/1) 2016; 340 Hou (D3CY00140G/cit31/1) 2021; 15 Corma (D3CY00140G/cit2/1) 1997; 97 Ren (D3CY00140G/cit10/1) 2012; 134 Chen (D3CY00140G/cit11/1) 2007; 104 Millini (D3CY00140G/cit29/1) 2001; 46 Gui (D3CY00140G/cit23/1) 2012; 9 Duan (D3CY00140G/cit3/1) 2009; 126 Pan (D3CY00140G/cit30/1) 2016; 235 Pamham (D3CY00140G/cit8/1) 2006; 128 Martens (D3CY00140G/cit33/1) 1988; 45 |
References_xml | – volume: 38 start-page: 379 year: 2009 ident: D3CY00140G/cit25/1 publication-title: Petrochem. Technol. contributor: fullname: Gui – volume: 15 start-page: 269 year: 2021 ident: D3CY00140G/cit31/1 publication-title: Front. Chem. Sci. Eng. doi: 10.1007/s11705-020-1948-3 contributor: fullname: Hou – volume: 134 start-page: 15173 year: 2012 ident: D3CY00140G/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3044954 contributor: fullname: Ren – volume: 6 start-page: 2735 year: 2016 ident: D3CY00140G/cit18/1 publication-title: Catal. Sci. Technol. doi: 10.1039/C5CY02027A contributor: fullname: Mota – volume: 8 start-page: 74 year: 1988 ident: D3CY00140G/cit26/1 publication-title: Zeolites doi: 10.1016/S0144-2449(88)80033-2 contributor: fullname: Briscoe – volume: 9 start-page: 544 year: 2012 ident: D3CY00140G/cit23/1 publication-title: Pet. Sci. doi: 10.1007/s12182-012-0241-6 contributor: fullname: Gui – volume: 34 start-page: 663 year: 2003 ident: D3CY00140G/cit1/1 publication-title: Chem. Rev. doi: 10.1021/cr020060i contributor: fullname: Cundy – volume: 52 start-page: 9172 year: 2013 ident: D3CY00140G/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201302672 contributor: fullname: Jin – volume: 45 start-page: 85 year: 1988 ident: D3CY00140G/cit33/1 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)82395-7 contributor: fullname: Martens – volume: 14 start-page: 447 year: 2015 ident: D3CY00140G/cit5/1 publication-title: Nat. Mater. doi: 10.1038/nmat4173 contributor: fullname: Awala – volume: 235 start-page: 246 year: 2016 ident: D3CY00140G/cit30/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2016.08.017 contributor: fullname: Pan – volume: 46 start-page: 7839 year: 2007 ident: D3CY00140G/cit7/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702239 contributor: fullname: Drylie – volume: 128 start-page: 2204 year: 2006 ident: D3CY00140G/cit8/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja057933l contributor: fullname: Pamham – volume: 67 start-page: 205 year: 2004 ident: D3CY00140G/cit13/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2003.10.010 contributor: fullname: Arnold – volume: 18 start-page: 4218 year: 2006 ident: D3CY00140G/cit17/1 publication-title: Chem. Mater. doi: 10.1021/cm060035j contributor: fullname: Tong – volume: 344 start-page: 112201 year: 2022 ident: D3CY00140G/cit24/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2022.112201 contributor: fullname: Li – volume: 56 start-page: 333 year: 2014 ident: D3CY00140G/cit19/1 publication-title: Catal. Rev.: Sci. Eng. doi: 10.1080/01614940.2014.946846 contributor: fullname: Al-Khattaf – volume: 340 start-page: 166 year: 2016 ident: D3CY00140G/cit14/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2016.05.009 contributor: fullname: Zhou – volume: 45 start-page: 533 year: 2015 ident: D3CY00140G/cit15/1 publication-title: Zhongguo Kexue: Huaxue contributor: fullname: Teng – volume: 104 start-page: 296 year: 2007 ident: D3CY00140G/cit11/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2007.05.015 contributor: fullname: Chen – volume: 126 start-page: 283 year: 2009 ident: D3CY00140G/cit12/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.06.019 contributor: fullname: Goergen – volume: 207 start-page: 9 year: 2015 ident: D3CY00140G/cit28/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2015.01.006 contributor: fullname: Ahmed – volume: 125 start-page: 9928 year: 2003 ident: D3CY00140G/cit4/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja036071q contributor: fullname: Wang – volume: 11 start-page: 5650 year: 2021 ident: D3CY00140G/cit16/1 publication-title: Catal. Sci. Technol. doi: 10.1039/D1CY00948F contributor: fullname: Luan – volume: 97 start-page: 2372 year: 1997 ident: D3CY00140G/cit2/1 publication-title: Chem. Rev. doi: 10.1021/cr960406n contributor: fullname: Corma – volume: 3 start-page: 1165 year: 2013 ident: D3CY00140G/cit27/1 publication-title: Catal. Sci. Technol. doi: 10.1039/c3cy20866d contributor: fullname: Hargreaves – volume: 46 start-page: 191 year: 2001 ident: D3CY00140G/cit29/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/S1387-1811(01)00284-0 contributor: fullname: Millini – volume: 90 start-page: 327 year: 2006 ident: D3CY00140G/cit20/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2005.08.032 contributor: fullname: Moreau – volume: 126 start-page: 26 year: 2009 ident: D3CY00140G/cit3/1 publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2009.05.015 contributor: fullname: Duan – volume: 49 start-page: 307 year: 1989 ident: D3CY00140G/cit22/1 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)83025-0 contributor: fullname: Rao – volume: 430 start-page: 1012 year: 2004 ident: D3CY00140G/cit6/1 publication-title: Nature doi: 10.1038/nature02860 contributor: fullname: Cooper |
SSID | ssj0000491082 |
Score | 2.3975081 |
Snippet | EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (
i.e.
, xylenes, ethylbenzene) in... EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (i.e., xylenes, ethylbenzene) in... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 3060 |
SubjectTerms | Catalysts Crystallization Ethylbenzene Isomerization Mass transfer Raw materials Recrystallization Synthesis Xylene Zeolites |
Title | Full-crystalline monolithic EU-1 zeolite: sustainable synthesis and its applications in the hydroisomerization of ethylbenzene with meta -xylene |
URI | https://www.proquest.com/docview/2816749012 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdgEbxFMUChoJdpHLeDx2PexKKK14rRpR2ETzJEbFRokj4XwFf8PvccfPadJFYWPZ42Si-B7PPfc5CL3QRGoOPBRsE3jdWJLKQIAeDIw11HJDjZKuUPjjp-R0yt6dx-ej0R8va2lVygO1vrKu5H-kCmMgV1cl-w-S7SeFATgH-cIRJAzHa8nY2Y-BWlTA8C5qugi_7PLZ5pkaH0-DcLw27rIuP196lVLLKgfe51qRdKEDP47dpT7OK70osmXhYjrrnlkakOyFNPkaFsnGi_vDlGIc_KpAf200Pijbhidd7ZCDWbnly_-QtT5rgGv-bb4acoe6yhH4QJX1lLtY1SATRa9Q6oGv8-x7ZnwvBq1zBqnn2KSEsYAdNo2DD4w_1jRr71fryEcl8dZeMH6Ip8fhMr1SR5DItVh9E02-1M2FTgZN2EX_NxRkn7ZYB-wjPhu-ewPtUljhYGndPXr_-uRz794Dwysk9VZl_T_rmuNG_OUwwWU6dJkN1BTn7A663dom-KgB2l00Mvk9dHPSbQl4H_3eBBweAIcd4HALuFfYgxvu4YYBbhjghn244SzHcBtvww0XFvtwww5u2MENt3B7gKZvj88mp0G7pUegwM4ug1QKfhi69rBEESJUbEIVplpxyxjXoU444TpJSKQsFVTRUBKrdKRowo0wOo4eop28yM0jhA1JrLGxETK1jFoiYibTJDaxSDWzNN1Dz7snO_vZdG6ZbQtwD-13D33WvtnLGU1dbQ4wZfr4WpM8QbcGTO-jnXKxMk-Bq5byWYuLv7hKm9g |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-crystalline+monolithic+EU-1+zeolite%3A+sustainable+synthesis+and+its+applications+in+the+hydroisomerization+of+ethylbenzene+with+meta+-xylene&rft.jtitle=Catalysis+science+%26+technology&rft.au=Liang%2C+Guanghua&rft.au=Chen%2C+Jianyi&rft.au=Dou%2C+Tao&rft.au=Wu%2C+Zhijie&rft.date=2023-05-22&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=13&rft.issue=10&rft.spage=3060&rft.epage=3068&rft_id=info:doi/10.1039%2FD3CY00140G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CY00140G |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon |