Full-crystalline monolithic EU-1 zeolite: sustainable synthesis and its applications in the hydroisomerization of ethylbenzene with meta -xylene

EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in petrochemical processes to increase the para -xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of...

Full description

Saved in:
Bibliographic Details
Published inCatalysis science & technology Vol. 13; no. 10; pp. 3060 - 3068
Main Authors Liang, Guanghua, Chen, Jianyi, Dou, Tao, Wu, Zhijie, Li, Xiaofeng, Liu, Yuanshuai
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 22.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in petrochemical processes to increase the para -xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with meta -xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications.
AbstractList EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (i.e., xylenes, ethylbenzene) in petrochemical processes to increase the para-xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with meta-xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications.
EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in petrochemical processes to increase the para -xylene yield. However, conventional manufacturing of EU-1-based catalysts involves the production of mother liquors for zeolite synthesis which usually contain plentiful unreacted raw materials, or the negative impact of incorporated binders in mass transfer during reactions over shaped catalysts. Herein, we developed a novel route to prepare the monolithic EU-1 zeolite, and used it as an active component of a catalyst for hydroisomerization of ethylbenzene with meta -xylene. Recrystallization of the shaped zeolite precursors composed of incompletely crystallized zeolites with amorphous silica and alumina powders as binders in recycled mother liquor led to formation of the monolithic EU-1 zeolite. Transformation of binder species to a full-zeolitic phase was corroborated comprehensively by characterization methods. Compared with the conventionally fabricated counterpart, the monolithic EU-1 zeolite possessed similar mechanical strength, high crystallinity, and high acidity and, in particular, enhanced mesoporosity, which led to improved catalytic performances in hydroisomerization reactions. Our developed synthetic strategy provides an effective way to produce the monolithic EU-1 zeolite, but is also a reference for the sustainable production of other types of zeolitic materials for energy-related applications.
Author Liang, Guanghua
Chen, Jianyi
Dou, Tao
Wu, Zhijie
Liu, Yuanshuai
Li, Xiaofeng
Author_xml – sequence: 1
  givenname: Guanghua
  surname: Liang
  fullname: Liang, Guanghua
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China, Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, 102249, PR China
– sequence: 2
  givenname: Jianyi
  surname: Chen
  fullname: Chen, Jianyi
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China, Beijing Key Laboratory of Process Fluid Filtration and Separation, China University of Petroleum, 102249, PR China
– sequence: 3
  givenname: Tao
  surname: Dou
  fullname: Dou, Tao
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
– sequence: 4
  givenname: Zhijie
  orcidid: 0000-0002-8160-6615
  surname: Wu
  fullname: Wu, Zhijie
  organization: State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
– sequence: 5
  givenname: Xiaofeng
  surname: Li
  fullname: Li, Xiaofeng
  organization: College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
– sequence: 6
  givenname: Yuanshuai
  orcidid: 0000-0002-4020-7538
  surname: Liu
  fullname: Liu, Yuanshuai
  organization: Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China, Shandong Energy Institute, Qingdao, 266101, China
BookMark eNpFUMFKAzEUDKJgrb34BQFvwmqSzW433qS2VSh4sQdPS5p9S1OySU1SdPsVfrKpFX2Xee_NMANzgU6ts4DQFSW3lOTi7jGfvBFCOZmfoAEjnGd8XNLTv73Iz9EohA1JwwUlFRugr9nOmEz5PkRpjLaAO2ed0XGtFZ4uM4r3cDjhHodd0mgrVwZw6G1cQ9ABS9tgHRNut0YrGbWzAWuLE43XfeOdDq4Dr_c_FHYthrjuzQrsHlLaR0rCHUSJs8_epM8lOmulCTD6xSFazqavk6ds8TJ_njwsMsUKEbNqJcWYUjouiCJEqgKoolWjRMu5aGhTCiKasiS5aplkitEVaVWTK1YKkNAU-RBdH3233r3vIMR643bepsiaVbQcc0EoS6qbo0p5F4KHtt563Unf15TUh9Lr_9Lzbz11eQ0
CitedBy_id crossref_primary_10_1016_j_micromeso_2024_113179
Cites_doi 10.1007/s11705-020-1948-3
10.1021/ja3044954
10.1039/C5CY02027A
10.1016/S0144-2449(88)80033-2
10.1007/s12182-012-0241-6
10.1021/cr020060i
10.1002/anie.201302672
10.1016/S0166-9834(00)82395-7
10.1038/nmat4173
10.1016/j.micromeso.2016.08.017
10.1002/anie.200702239
10.1021/ja057933l
10.1016/j.micromeso.2003.10.010
10.1021/cm060035j
10.1016/j.micromeso.2022.112201
10.1080/01614940.2014.946846
10.1016/j.jcat.2016.05.009
10.1016/j.micromeso.2007.05.015
10.1016/j.micromeso.2009.06.019
10.1016/j.micromeso.2015.01.006
10.1021/ja036071q
10.1039/D1CY00948F
10.1021/cr960406n
10.1039/c3cy20866d
10.1016/S1387-1811(01)00284-0
10.1016/j.micromeso.2005.08.032
10.1016/j.micromeso.2009.05.015
10.1016/S0166-9834(00)83025-0
10.1038/nature02860
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2023
Copyright_xml – notice: Copyright Royal Society of Chemistry 2023
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1039/D3CY00140G
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2044-4761
EndPage 3068
ExternalDocumentID 10_1039_D3CY00140G
GroupedDBID -JG
0-7
0R~
705
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACAYK
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
R7G
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c259t-8ba97111750c00ac5e1c18dc9f449d1d6909d6603cf2a2c21b0fcd3c269eaed53
ISSN 2044-4753
IngestDate Thu Oct 10 17:36:10 EDT 2024
Fri Aug 23 00:51:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-8ba97111750c00ac5e1c18dc9f449d1d6909d6603cf2a2c21b0fcd3c269eaed53
ORCID 0000-0002-8160-6615
0000-0002-4020-7538
PQID 2816749012
PQPubID 2047527
PageCount 9
ParticipantIDs proquest_journals_2816749012
crossref_primary_10_1039_D3CY00140G
PublicationCentury 2000
PublicationDate 2023-05-22
PublicationDateYYYYMMDD 2023-05-22
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-22
  day: 22
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Catalysis science & technology
PublicationYear 2023
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Arnold (D3CY00140G/cit13/1) 2004; 67
Tong (D3CY00140G/cit17/1) 2006; 18
Moreau (D3CY00140G/cit20/1) 2006; 90
Cundy (D3CY00140G/cit1/1) 2003; 34
Rao (D3CY00140G/cit22/1) 1989; 49
Wang (D3CY00140G/cit4/1) 2003; 125
Drylie (D3CY00140G/cit7/1) 2007; 46
Teng (D3CY00140G/cit15/1) 2015; 45
Goergen (D3CY00140G/cit12/1) 2009; 126
Cooper (D3CY00140G/cit6/1) 2004; 430
Briscoe (D3CY00140G/cit26/1) 1988; 8
Al-Khattaf (D3CY00140G/cit19/1) 2014; 56
Ahmed (D3CY00140G/cit28/1) 2015; 207
Hargreaves (D3CY00140G/cit27/1) 2013; 3
Luan (D3CY00140G/cit16/1) 2021; 11
Li (D3CY00140G/cit24/1) 2022; 344
Awala (D3CY00140G/cit5/1) 2015; 14
Mota (D3CY00140G/cit18/1) 2016; 6
Gui (D3CY00140G/cit25/1) 2009; 38
Jin (D3CY00140G/cit9/1) 2013; 52
Zhou (D3CY00140G/cit14/1) 2016; 340
Hou (D3CY00140G/cit31/1) 2021; 15
Corma (D3CY00140G/cit2/1) 1997; 97
Ren (D3CY00140G/cit10/1) 2012; 134
Chen (D3CY00140G/cit11/1) 2007; 104
Millini (D3CY00140G/cit29/1) 2001; 46
Gui (D3CY00140G/cit23/1) 2012; 9
Duan (D3CY00140G/cit3/1) 2009; 126
Pan (D3CY00140G/cit30/1) 2016; 235
Pamham (D3CY00140G/cit8/1) 2006; 128
Martens (D3CY00140G/cit33/1) 1988; 45
References_xml – volume: 38
  start-page: 379
  year: 2009
  ident: D3CY00140G/cit25/1
  publication-title: Petrochem. Technol.
  contributor:
    fullname: Gui
– volume: 15
  start-page: 269
  year: 2021
  ident: D3CY00140G/cit31/1
  publication-title: Front. Chem. Sci. Eng.
  doi: 10.1007/s11705-020-1948-3
  contributor:
    fullname: Hou
– volume: 134
  start-page: 15173
  year: 2012
  ident: D3CY00140G/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3044954
  contributor:
    fullname: Ren
– volume: 6
  start-page: 2735
  year: 2016
  ident: D3CY00140G/cit18/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/C5CY02027A
  contributor:
    fullname: Mota
– volume: 8
  start-page: 74
  year: 1988
  ident: D3CY00140G/cit26/1
  publication-title: Zeolites
  doi: 10.1016/S0144-2449(88)80033-2
  contributor:
    fullname: Briscoe
– volume: 9
  start-page: 544
  year: 2012
  ident: D3CY00140G/cit23/1
  publication-title: Pet. Sci.
  doi: 10.1007/s12182-012-0241-6
  contributor:
    fullname: Gui
– volume: 34
  start-page: 663
  year: 2003
  ident: D3CY00140G/cit1/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr020060i
  contributor:
    fullname: Cundy
– volume: 52
  start-page: 9172
  year: 2013
  ident: D3CY00140G/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201302672
  contributor:
    fullname: Jin
– volume: 45
  start-page: 85
  year: 1988
  ident: D3CY00140G/cit33/1
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)82395-7
  contributor:
    fullname: Martens
– volume: 14
  start-page: 447
  year: 2015
  ident: D3CY00140G/cit5/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4173
  contributor:
    fullname: Awala
– volume: 235
  start-page: 246
  year: 2016
  ident: D3CY00140G/cit30/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2016.08.017
  contributor:
    fullname: Pan
– volume: 46
  start-page: 7839
  year: 2007
  ident: D3CY00140G/cit7/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702239
  contributor:
    fullname: Drylie
– volume: 128
  start-page: 2204
  year: 2006
  ident: D3CY00140G/cit8/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja057933l
  contributor:
    fullname: Pamham
– volume: 67
  start-page: 205
  year: 2004
  ident: D3CY00140G/cit13/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2003.10.010
  contributor:
    fullname: Arnold
– volume: 18
  start-page: 4218
  year: 2006
  ident: D3CY00140G/cit17/1
  publication-title: Chem. Mater.
  doi: 10.1021/cm060035j
  contributor:
    fullname: Tong
– volume: 344
  start-page: 112201
  year: 2022
  ident: D3CY00140G/cit24/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2022.112201
  contributor:
    fullname: Li
– volume: 56
  start-page: 333
  year: 2014
  ident: D3CY00140G/cit19/1
  publication-title: Catal. Rev.: Sci. Eng.
  doi: 10.1080/01614940.2014.946846
  contributor:
    fullname: Al-Khattaf
– volume: 340
  start-page: 166
  year: 2016
  ident: D3CY00140G/cit14/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2016.05.009
  contributor:
    fullname: Zhou
– volume: 45
  start-page: 533
  year: 2015
  ident: D3CY00140G/cit15/1
  publication-title: Zhongguo Kexue: Huaxue
  contributor:
    fullname: Teng
– volume: 104
  start-page: 296
  year: 2007
  ident: D3CY00140G/cit11/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2007.05.015
  contributor:
    fullname: Chen
– volume: 126
  start-page: 283
  year: 2009
  ident: D3CY00140G/cit12/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2009.06.019
  contributor:
    fullname: Goergen
– volume: 207
  start-page: 9
  year: 2015
  ident: D3CY00140G/cit28/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2015.01.006
  contributor:
    fullname: Ahmed
– volume: 125
  start-page: 9928
  year: 2003
  ident: D3CY00140G/cit4/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja036071q
  contributor:
    fullname: Wang
– volume: 11
  start-page: 5650
  year: 2021
  ident: D3CY00140G/cit16/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/D1CY00948F
  contributor:
    fullname: Luan
– volume: 97
  start-page: 2372
  year: 1997
  ident: D3CY00140G/cit2/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr960406n
  contributor:
    fullname: Corma
– volume: 3
  start-page: 1165
  year: 2013
  ident: D3CY00140G/cit27/1
  publication-title: Catal. Sci. Technol.
  doi: 10.1039/c3cy20866d
  contributor:
    fullname: Hargreaves
– volume: 46
  start-page: 191
  year: 2001
  ident: D3CY00140G/cit29/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/S1387-1811(01)00284-0
  contributor:
    fullname: Millini
– volume: 90
  start-page: 327
  year: 2006
  ident: D3CY00140G/cit20/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2005.08.032
  contributor:
    fullname: Moreau
– volume: 126
  start-page: 26
  year: 2009
  ident: D3CY00140G/cit3/1
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2009.05.015
  contributor:
    fullname: Duan
– volume: 49
  start-page: 307
  year: 1989
  ident: D3CY00140G/cit22/1
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)83025-0
  contributor:
    fullname: Rao
– volume: 430
  start-page: 1012
  year: 2004
  ident: D3CY00140G/cit6/1
  publication-title: Nature
  doi: 10.1038/nature02860
  contributor:
    fullname: Cooper
SSID ssj0000491082
Score 2.3975081
Snippet EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics ( i.e. , xylenes, ethylbenzene) in...
EU-1 zeolite is employed as an active component of a catalyst for isomerization or hydroisomerization of C8 aromatics (i.e., xylenes, ethylbenzene) in...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 3060
SubjectTerms Catalysts
Crystallization
Ethylbenzene
Isomerization
Mass transfer
Raw materials
Recrystallization
Synthesis
Xylene
Zeolites
Title Full-crystalline monolithic EU-1 zeolite: sustainable synthesis and its applications in the hydroisomerization of ethylbenzene with meta -xylene
URI https://www.proquest.com/docview/2816749012
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdgEbxFMUChoJdpHLeDx2PexKKK14rRpR2ETzJEbFRokj4XwFf8PvccfPadJFYWPZ42Si-B7PPfc5CL3QRGoOPBRsE3jdWJLKQIAeDIw11HJDjZKuUPjjp-R0yt6dx-ej0R8va2lVygO1vrKu5H-kCmMgV1cl-w-S7SeFATgH-cIRJAzHa8nY2Y-BWlTA8C5qugi_7PLZ5pkaH0-DcLw27rIuP196lVLLKgfe51qRdKEDP47dpT7OK70osmXhYjrrnlkakOyFNPkaFsnGi_vDlGIc_KpAf200Pijbhidd7ZCDWbnly_-QtT5rgGv-bb4acoe6yhH4QJX1lLtY1SATRa9Q6oGv8-x7ZnwvBq1zBqnn2KSEsYAdNo2DD4w_1jRr71fryEcl8dZeMH6Ip8fhMr1SR5DItVh9E02-1M2FTgZN2EX_NxRkn7ZYB-wjPhu-ewPtUljhYGndPXr_-uRz794Dwysk9VZl_T_rmuNG_OUwwWU6dJkN1BTn7A663dom-KgB2l00Mvk9dHPSbQl4H_3eBBweAIcd4HALuFfYgxvu4YYBbhjghn244SzHcBtvww0XFvtwww5u2MENt3B7gKZvj88mp0G7pUegwM4ug1QKfhi69rBEESJUbEIVplpxyxjXoU444TpJSKQsFVTRUBKrdKRowo0wOo4eop28yM0jhA1JrLGxETK1jFoiYibTJDaxSDWzNN1Dz7snO_vZdG6ZbQtwD-13D33WvtnLGU1dbQ4wZfr4WpM8QbcGTO-jnXKxMk-Bq5byWYuLv7hKm9g
link.rule.ids 315,783,787,27936,27937
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Full-crystalline+monolithic+EU-1+zeolite%3A+sustainable+synthesis+and+its+applications+in+the+hydroisomerization+of+ethylbenzene+with+meta+-xylene&rft.jtitle=Catalysis+science+%26+technology&rft.au=Liang%2C+Guanghua&rft.au=Chen%2C+Jianyi&rft.au=Dou%2C+Tao&rft.au=Wu%2C+Zhijie&rft.date=2023-05-22&rft.issn=2044-4753&rft.eissn=2044-4761&rft.volume=13&rft.issue=10&rft.spage=3060&rft.epage=3068&rft_id=info:doi/10.1039%2FD3CY00140G&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3CY00140G
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2044-4753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2044-4753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2044-4753&client=summon