Nitrogen-doped coal-based porous carbon: A one-step synthesis approach for superior anode performance in lithium-ion batteries
Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating...
Saved in:
Published in | Diamond and related materials Vol. 157; p. 112531 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating chemical activation and nitrogen doping into a one-step process, high-performance anode materials for lithium-ion batteries have been successfully developed. This approach not only leverages the advantages of anthracite's low cost and abundant availability but also significantly enhances the electrochemical performance of the material through nitrogen doping and porous structure design. Specifically, the NPC anode material exhibits remarkable cycling stability, maintaining a discharge specific capacity of 488.5 mAh/g after 500 cycles at a high current density of 1 A/g. Additionally, the NPC anode exhibits outstanding rate capability, with 397.4 mAh/g at 1.0 A/g and 285.7 mAh/g at 2.0 A/g. These superior performances are not only related to the pore structure that can provide efficient channels for lithium ion transport, but also to the nitrogen doping that can enhance the conductivity of the material. This study offers an innovative and effective strategy for the design of high-performance anode materials for lithium-ion batteries, particularly in the context of utilizing low-cost and abundant raw materials to produce high-performance energy storage materials.
[Display omitted]
•The preparation process is very simple.•This approach leverages the advantages of anthracite’s low cost and abundant availability.•In this study, anthracite coal is used as raw material to produce porous carbon anode materials, which effectively reduces the damage caused by coal burning to the environment. |
---|---|
AbstractList | Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating chemical activation and nitrogen doping into a one-step process, high-performance anode materials for lithium-ion batteries have been successfully developed. This approach not only leverages the advantages of anthracite's low cost and abundant availability but also significantly enhances the electrochemical performance of the material through nitrogen doping and porous structure design. Specifically, the NPC anode material exhibits remarkable cycling stability, maintaining a discharge specific capacity of 488.5 mAh/g after 500 cycles at a high current density of 1 A/g. Additionally, the NPC anode exhibits outstanding rate capability, with 397.4 mAh/g at 1.0 A/g and 285.7 mAh/g at 2.0 A/g. These superior performances are not only related to the pore structure that can provide efficient channels for lithium ion transport, but also to the nitrogen doping that can enhance the conductivity of the material. This study offers an innovative and effective strategy for the design of high-performance anode materials for lithium-ion batteries, particularly in the context of utilizing low-cost and abundant raw materials to produce high-performance energy storage materials.
[Display omitted]
•The preparation process is very simple.•This approach leverages the advantages of anthracite’s low cost and abundant availability.•In this study, anthracite coal is used as raw material to produce porous carbon anode materials, which effectively reduces the damage caused by coal burning to the environment. |
ArticleNumber | 112531 |
Author | Li, Xu Li, Songquan Xu, Tao Liu, Yonghong Jin, Yongzhong Jiang, Dongwei Zhang, Zhengquan |
Author_xml | – sequence: 1 givenname: Dongwei surname: Jiang fullname: Jiang, Dongwei organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 2 givenname: Songquan surname: Li fullname: Li, Songquan organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 3 givenname: Xu surname: Li fullname: Li, Xu organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 4 givenname: Yongzhong surname: Jin fullname: Jin, Yongzhong email: jyzcd@163.com organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 5 givenname: Zhengquan surname: Zhang fullname: Zhang, Zhengquan organization: Bazhong Yike Carbon Co. Ltd, Bazhong 636000, China – sequence: 6 givenname: Yonghong surname: Liu fullname: Liu, Yonghong organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China – sequence: 7 givenname: Tao surname: Xu fullname: Xu, Tao organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China |
BookMark | eNqFUMtOQyEUZFET2-onmPADVOA-Cm5M0_hKGt3omnDhXEvTCzdATbrx26Vp967OIzNzzswMTXzwgNAdowtGWXu_W1inh-DtglPeLBjjTcUmaEolb4hsq-YazVLaUcq4rNkU_b67HMM3eGLDCBaboPek06m0Y4jhkLDRsQv-Aa9wuURShhGno89bSC5hPY4xaLPFfYg4HUaIrjTaBwu4DGU7aG8AO4_3Lm_dYSAueNzpnAsU0g266vU-we2lztHX89Pn-pVsPl7e1qsNMbyRmSylNJZ1TBjgxQjtWMephK4TUC0rIWnNLeemZ2xZi1a0tQVRgFpwVgtOTTVHzVnXxJBShF6N0Q06HhWj6hSc2qlLcOoUnDoHV3iPZx6U534cRJWMg-LIuggmKxvcPwp_t1d_Jg |
Cites_doi | 10.1039/C8RA01729H 10.1002/chem.201605019 10.1007/s11581-024-06030-1 10.1016/j.electacta.2019.134698 10.1016/j.ijhydene.2023.12.248 10.1016/j.apsusc.2018.04.251 10.3390/ijms24010284 10.1016/j.powtec.2018.11.100 10.1039/D1TA07782A 10.1016/j.cej.2017.03.092 10.1007/s12274-023-6006-2 10.1016/j.jpowsour.2016.05.084 10.1007/s10854-023-10356-3 10.1016/j.ijhydene.2024.04.363 10.1007/s42823-024-00816-z 10.1039/D0NR01126F 10.1016/j.jallcom.2023.171917 10.1016/j.jallcom.2020.156881 10.1016/j.est.2023.109013 10.1002/ente.202400094 10.1016/j.jechem.2018.01.013 10.1039/D0TA04784H 10.1021/acs.nanolett.9b04395 10.1002/adma.201600164 10.1021/acs.inorgchem.8b01156 10.1016/j.jpowsour.2024.235858 10.1016/j.colsurfa.2021.126402 10.1039/D1DT00797A 10.1016/j.diamond.2023.109696 10.1039/C5RA08148C 10.1016/j.jcis.2023.09.150 10.1016/j.ensm.2019.04.037 10.1007/s11581-020-03464-1 10.1002/ejic.201800853 10.1016/j.carbon.2023.118447 10.1021/acsaem.2c01898 10.1016/j.diamond.2018.04.019 10.1002/er.7676 10.1016/j.electacta.2023.142431 10.1016/j.micromeso.2021.111565 10.1016/j.matlet.2018.11.084 10.1016/j.jcis.2020.11.019 10.1021/acsami.8b12302 10.1016/j.electacta.2024.145512 10.1039/D1QI01105G 10.1007/s12598-021-01863-5 10.1007/s40820-021-00728-x |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.diamond.2025.112531 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology Engineering Chemistry |
ExternalDocumentID | 10_1016_j_diamond_2025_112531 S0925963525005886 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29G 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ABXRA ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SSM SST SSZ T5K WUQ XPP ZMT ~02 ~G- AAYXX AFXIZ AGRNS BNPGV CITATION RIG |
ID | FETCH-LOGICAL-c259t-799cd1b18ce29250b1b209ebb8e37389042d22cf117486864de8292a8214820c3 |
IEDL.DBID | .~1 |
ISSN | 0925-9635 |
IngestDate | Thu Jul 31 00:23:18 EDT 2025 Sat Aug 30 17:17:28 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Lithium-ion batteries Low-cost High performance Coal-based porous carbon Anode materials |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-799cd1b18ce29250b1b209ebb8e37389042d22cf117486864de8292a8214820c3 |
ParticipantIDs | crossref_primary_10_1016_j_diamond_2025_112531 elsevier_sciencedirect_doi_10_1016_j_diamond_2025_112531 |
PublicationCentury | 2000 |
PublicationDate | August 2025 2025-08-00 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
PublicationDecade | 2020 |
PublicationTitle | Diamond and related materials |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhu, Huang, Chen, Wang, Liu (bb0105) 2019; 321 Gan, Wu, Chen, Li, Liu (bb0175) 2020; 8 Mondal, Kretschmer, Zhao, Liu, Wang, Sun, Wang (bb0095) 2017; 23 Qu, Zhao, Song, Wang, Kong, Gan, Ma, Dong, Han, Niu (bb0090) 2021; 9 Shao, Ma, Wu, Dai, Geng, Song, Wan (bb0145) 2017; 321 Gulavani, Kanade, Lokhande, Thotiyl, John, Yengantiwar (bb0065) 2024; 12 Zhang, Yu, Li, Shen, Yu, Yu (bb0075) 2024; 21 Yasin, Arif, Ma, Ibraheem, Yu, Zhang, Liu, Dai (bb0080) 2022; 9 Li, Deng, Li, Chen, Zhang, Li, Song, Duan (bb0170) 2024; 56 Wang, Yang, Li, Liu, Liang, Wang, Li, Sun, An (bb0180) 2024; 68 Rao, Saisrinu, Khatua, Bharathi, Patro (bb0165) 2023; 968 Singh, Haskin, Dastgheib (bb0055) 2023; 215 Huo, An, Fu, Gao, Wang, Peng, Cheng, Chu (bb0160) 2016; 324 Zhang, He, Xu, Ma, Liang, Wang, Zhu (bb0025) 2021; 41 Xu, van der Watt, Laudal, Zhang, Ahmed, Hou (bb0050) 2025; 628 Chen, Yan, Luo, Guo (bb0015) 2016; 28 Ouyang, Luo, Mao, Liu, Chen, Du, Zhang, Wang, Chen, Yuan, Dong, Lu, Chen, Li, Zhang (bb0120) 2025; 512 Wang, Wu, Huang, Zhao, Liu, Chen, Liu, Zhang (bb0250) 2018; 57 Bugday, Altin, Bulut, Altin, Yaşar (bb0205) 2022; 46 Shen, Li, Xu, Chen, Katiyar, Zhu, Xie, Han, Qiu, Wu, Cao (bb0210) 2024; 653 Kwon, Hwang, Shin, Jeong, Chung, Sun, Jung (bb0215) 2019; 20 Zhu, Zuo, Li, Tu, Bai, Jiao (bb0060) 2020; 26 Katchala, E, Bulusu, V, U.V, Tata, Srinivasan (bb0130) 2019; 237 Vu, Le, Hoang, Dao, Huu, Jun, Im (bb0240) 2021; 851 Li, Luo, He, Lu, Du, Tao, Cheng, Wang (bb0200) 2022; 24 Fu, Wei, Zhang, Sun (bb0010) 2018; 8 Li, Zhang, Sun, Zhang, Wang, Liang, Si, Ci (bb0225) 2019; 23 Divya, Natarajan, Aravindan (bb0035) 2022; 5 Muchuweni, Mombeshora, Muiva, Sathiaraj (bb0005) 2023; 73 Zhang, Wang, Xu, Lian, Bao, Zhao, Qiu, Li (bb0115) 2018; 451 Shi, Wang, Wan, Tang, Zhao, Deng, Chai, Wei, Wang (bb0245) 2021; 587 Ma, Deng, Liao, He, Ma, Xiong (bb0195) 2018; 10 Zhang, Yuan, Zhang, Shi, Wang, Ding, He (bb0040) 2024; 34 Li, Li, Guo, Zhang (bb0030) 2018; 2018 Wang, Yuan, Li, Li, Ju (bb0085) 2022; 5 Chen, Shi, Li, Dong, Yuan, Huang, Yang, Wei, Zhuang, Ju, Song (bb0140) 2020; 12 Wan, Chen, Kong, Qi, Zhang, Li, Xu, Zhuang, Du (bb0135) 2021; 619 Sun, Liu, Liu, Wang, Wang, Li (bb0100) 2018; 8 Nwanno, Li (bb0045) 2023; 16 Cao, Liu, Zhang, Zhang, Zhu, Du, Wang, Zhang, Xu (bb0190) 2021; 13 Wang, Bai, Gong, Shahzad, Shi, Cao, Zhu (bb0155) 2023; 455 Kietisirirojana, Tunkasiri, Pengpat, Khamman, Intatha, Eitssayeam (bb0220) 2022; 331 Liu, Wang, Liu, Wei, Ma, Xue, Zhang, Li (bb0070) 2021; 50 Ou, Deng, Li, Li, Li (bb0235) 2023; 133 Wang, Yang, Pan, Zhong, Liu, Gu, Yu (bb0110) 2015; 5 Yang, Guo, Li, Li, Wang, Cui, Wang (bb0230) 2018; 27 Ou, Yang, Zhang (bb0150) 2019; 344 Cui, Wang, Sha, Li, Zhuo, Hu (bb0125) 2023; 34 Gopalakrishnan, Suntharam, Bashir, Vengadaesvaran, Rahim, Gunasekaran, Ramesh, Ramesh, Uttran (bb0020) 2024; 31 Yu, Li, Qi, Liang (bb0185) 2018; 86 Muchuweni (10.1016/j.diamond.2025.112531_bb0005) 2023; 73 Zhang (10.1016/j.diamond.2025.112531_bb0040) 2024; 34 Kietisirirojana (10.1016/j.diamond.2025.112531_bb0220) 2022; 331 Wang (10.1016/j.diamond.2025.112531_bb0085) 2022; 5 Ou (10.1016/j.diamond.2025.112531_bb0150) 2019; 344 Li (10.1016/j.diamond.2025.112531_bb0030) 2018; 2018 Cui (10.1016/j.diamond.2025.112531_bb0125) 2023; 34 Yang (10.1016/j.diamond.2025.112531_bb0230) 2018; 27 Gulavani (10.1016/j.diamond.2025.112531_bb0065) 2024; 12 Sun (10.1016/j.diamond.2025.112531_bb0100) 2018; 8 Mondal (10.1016/j.diamond.2025.112531_bb0095) 2017; 23 Nwanno (10.1016/j.diamond.2025.112531_bb0045) 2023; 16 Gopalakrishnan (10.1016/j.diamond.2025.112531_bb0020) 2024; 31 Wang (10.1016/j.diamond.2025.112531_bb0180) 2024; 68 Shi (10.1016/j.diamond.2025.112531_bb0245) 2021; 587 Divya (10.1016/j.diamond.2025.112531_bb0035) 2022; 5 Katchala (10.1016/j.diamond.2025.112531_bb0130) 2019; 237 Wan (10.1016/j.diamond.2025.112531_bb0135) 2021; 619 Wang (10.1016/j.diamond.2025.112531_bb0110) 2015; 5 Li (10.1016/j.diamond.2025.112531_bb0170) 2024; 56 Chen (10.1016/j.diamond.2025.112531_bb0015) 2016; 28 Xu (10.1016/j.diamond.2025.112531_bb0050) 2025; 628 Wang (10.1016/j.diamond.2025.112531_bb0250) 2018; 57 Liu (10.1016/j.diamond.2025.112531_bb0070) 2021; 50 Vu (10.1016/j.diamond.2025.112531_bb0240) 2021; 851 Bugday (10.1016/j.diamond.2025.112531_bb0205) 2022; 46 Wang (10.1016/j.diamond.2025.112531_bb0155) 2023; 455 Zhu (10.1016/j.diamond.2025.112531_bb0060) 2020; 26 Huo (10.1016/j.diamond.2025.112531_bb0160) 2016; 324 Cao (10.1016/j.diamond.2025.112531_bb0190) 2021; 13 Zhang (10.1016/j.diamond.2025.112531_bb0025) 2021; 41 Li (10.1016/j.diamond.2025.112531_bb0200) 2022; 24 Fu (10.1016/j.diamond.2025.112531_bb0010) 2018; 8 Shao (10.1016/j.diamond.2025.112531_bb0145) 2017; 321 Li (10.1016/j.diamond.2025.112531_bb0225) 2019; 23 Zhu (10.1016/j.diamond.2025.112531_bb0105) 2019; 321 Singh (10.1016/j.diamond.2025.112531_bb0055) 2023; 215 Gan (10.1016/j.diamond.2025.112531_bb0175) 2020; 8 Zhang (10.1016/j.diamond.2025.112531_bb0115) 2018; 451 Rao (10.1016/j.diamond.2025.112531_bb0165) 2023; 968 Qu (10.1016/j.diamond.2025.112531_bb0090) 2021; 9 Yasin (10.1016/j.diamond.2025.112531_bb0080) 2022; 9 Ma (10.1016/j.diamond.2025.112531_bb0195) 2018; 10 Ou (10.1016/j.diamond.2025.112531_bb0235) 2023; 133 Kwon (10.1016/j.diamond.2025.112531_bb0215) 2019; 20 Yu (10.1016/j.diamond.2025.112531_bb0185) 2018; 86 Chen (10.1016/j.diamond.2025.112531_bb0140) 2020; 12 Shen (10.1016/j.diamond.2025.112531_bb0210) 2024; 653 Ouyang (10.1016/j.diamond.2025.112531_bb0120) 2025; 512 Zhang (10.1016/j.diamond.2025.112531_bb0075) 2024; 21 |
References_xml | – volume: 9 start-page: 25094 year: 2021 end-page: 25103 ident: bb0090 article-title: Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries publication-title: J. Mater. Chem. A – volume: 619 year: 2021 ident: bb0135 article-title: N-doped egg-box-like porous carbons with superior rate capacities for lithium/sodium ions storage publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 86 start-page: 139 year: 2018 end-page: 145 ident: bb0185 article-title: High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method publication-title: Diamond Relat. Mater. – volume: 34 start-page: 2055 year: 2024 end-page: 2079 ident: bb0040 article-title: Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review publication-title: Carbon Lett. – volume: 31 start-page: 1153 year: 2024 end-page: 1180 ident: bb0020 article-title: Advancements in cathode materials for lithium-ion batteries: an overview of future prospects publication-title: Ionics – volume: 331 year: 2022 ident: bb0220 article-title: Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries publication-title: Microporous Mesoporous Mater. – volume: 28 start-page: 7580 year: 2016 end-page: 7602 ident: bb0015 article-title: Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage publication-title: Adv. Mater. – volume: 56 start-page: 828 year: 2024 end-page: 836 ident: bb0170 article-title: Biomass-derived N–P double-doped porous carbon spheres and their lithium storage mechanism publication-title: Int. J. Hydrogen Energy – volume: 8 start-page: 13480 year: 2020 end-page: 13489 ident: bb0175 article-title: Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes publication-title: J. Mater. Chem. A – volume: 27 start-page: 1390 year: 2018 end-page: 1396 ident: bb0230 article-title: Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon publication-title: J. Energy Chem. – volume: 5 year: 2022 ident: bb0035 article-title: Graphene from spent lithium-ion batteries publication-title: Batter. Supercaps. – volume: 26 start-page: 3351 year: 2020 end-page: 3358 ident: bb0060 article-title: Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries publication-title: Ionics – volume: 5 start-page: 11462 year: 2022 end-page: 11471 ident: bb0085 article-title: Freestanding porous silicon@heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries publication-title: ACS Appl. Energy Mater. – volume: 23 start-page: 3683 year: 2017 end-page: 3690 ident: bb0095 article-title: Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries publication-title: Chem. Eur. J. – volume: 68 start-page: 1229 year: 2024 end-page: 1239 ident: bb0180 article-title: A hierarchical porous structure and nitrogen-doping jointly enhance the lithium-ion storage capacity of biomass-derived carbon materials publication-title: Int. J. Hydrogen Energy – volume: 23 start-page: 367 year: 2019 end-page: 374 ident: bb0225 article-title: Hierarchically porous carbon supported Sn publication-title: Energy Storage Mater. – volume: 215 year: 2023 ident: bb0055 article-title: Coal-based graphene oxide-like materials: a comprehensive review publication-title: Carbon – volume: 2018 start-page: 4508 year: 2018 end-page: 4521 ident: bb0030 article-title: Recent progress and challenges of micro−/nanostructured transition metal carbonate anodes for lithium ion batteries publication-title: Eur. J. Inorg. Chem. – volume: 8 year: 2018 ident: bb0010 article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives publication-title: Adv. Energy Mater. – volume: 41 start-page: 814 year: 2021 end-page: 821 ident: bb0025 article-title: Nb publication-title: Rare Metals – volume: 34 start-page: 987 year: 2023 ident: bb0125 article-title: Vesicular mesoporous copper oxide as anode for high lithium storage publication-title: J. Mater. Sci. Mater. Electron. – volume: 5 start-page: 55136 year: 2015 end-page: 55142 ident: bb0110 article-title: Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries† publication-title: RSC Adv. – volume: 587 start-page: 622 year: 2021 end-page: 632 ident: bb0245 article-title: Titanium niobate (Ti publication-title: J. Colloid Interface Sci. – volume: 324 start-page: 233 year: 2016 end-page: 238 ident: bb0160 article-title: Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries publication-title: J. Power Sources – volume: 20 start-page: 625 year: 2019 end-page: 635 ident: bb0215 article-title: Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries publication-title: Nano Lett. – volume: 344 start-page: 89 year: 2019 end-page: 95 ident: bb0150 article-title: Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries publication-title: Powder Technol. – volume: 512 year: 2025 ident: bb0120 article-title: Nitrogen-doped corn Stover-based porous carbon by double-defect synthesis strategy for highly lithium storage properties publication-title: Electrochim. Acta – volume: 851 year: 2021 ident: bb0240 article-title: Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries publication-title: J. Alloys Compd. – volume: 10 start-page: 36969 year: 2018 end-page: 36975 ident: bb0195 article-title: Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 7622 year: 2020 end-page: 7630 ident: bb0140 article-title: Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage publication-title: Nanoscale – volume: 50 start-page: 13476 year: 2021 end-page: 13482 ident: bb0070 article-title: Scalable synthesis of 3D porous germanium encapsulated in nitrogen-doped carbon matrix as an ultra-long-cycle life anode for lithium-ion batteries publication-title: Dalton Trans. – volume: 653 start-page: 1588 year: 2024 end-page: 1599 ident: bb0210 article-title: Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries publication-title: J. Colloid Interface Sci. – volume: 133 year: 2023 ident: bb0235 article-title: High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries publication-title: Diamond Relat. Mater. – volume: 9 start-page: 1058 year: 2022 end-page: 1069 ident: bb0080 article-title: Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries publication-title: Inorg. Chem. Front. – volume: 451 start-page: 298 year: 2018 end-page: 305 ident: bb0115 article-title: Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries publication-title: Appl. Surf. Sci. – volume: 13 start-page: 1 year: 2021 end-page: 17 ident: bb0190 article-title: MOF-derived ZnS nanodots/Ti publication-title: Nano-Micro Lett. – volume: 57 start-page: 7993 year: 2018 end-page: 8001 ident: bb0250 article-title: Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage publication-title: Inorg. Chem. – volume: 628 year: 2025 ident: bb0050 article-title: Coal-derived carbon anodes for lithium-ion batteries: development, challenges, and prospects publication-title: J. Power Sources – volume: 321 start-page: 301 year: 2017 end-page: 313 ident: bb0145 article-title: In-situ MgO (CaCO publication-title: Chem. Eng. J. – volume: 237 start-page: 156 year: 2019 end-page: 160 ident: bb0130 article-title: One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery publication-title: Mater. Lett. – volume: 12 year: 2024 ident: bb0065 article-title: Core shell structured silica/porous carbon composite as an efficient anode for lithium ion batteries publication-title: Energ. Technol. – volume: 968 year: 2023 ident: bb0165 article-title: Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for Na-ion batteries publication-title: J. Alloys Compd. – volume: 8 start-page: 19964 year: 2018 end-page: 19970 ident: bb0100 article-title: Sulfur-doped mesoporous carbon via thermal reduction of CS publication-title: RSC Adv. – volume: 16 start-page: 12384 year: 2023 end-page: 12410 ident: bb0045 article-title: Aligned carbon nanotubes for lithium-ion batteries: a review publication-title: Nano Res. – volume: 24 year: 2022 ident: bb0200 article-title: A lignin-based carbon anode with long-cycle stability for Li-ion batteries publication-title: Int. J. Mol. Sci. – volume: 46 start-page: 7732 year: 2022 end-page: 7748 ident: bb0205 article-title: Boron-doped porous carbon material derived from ZIF-11: investigation of cotton fabric supercapacitor and Li-ion battery performances publication-title: Int. J. Energy Res. – volume: 21 year: 2024 ident: bb0075 article-title: Hierarchical porous structured Si/C anode material for lithium-ion batteries by dual encapsulating layers for enhanced lithium-ion and electron transports rates publication-title: Small – volume: 455 year: 2023 ident: bb0155 article-title: Regulating surface condition of cotton-derived carbon towards enhanced lithium ion storage behavior publication-title: Electrochim. Acta – volume: 73 year: 2023 ident: bb0005 article-title: Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials publication-title: J. Energy Storage. – volume: 321 year: 2019 ident: bb0105 article-title: Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage publication-title: Electrochim. Acta – volume: 8 start-page: 19964 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0100 article-title: Sulfur-doped mesoporous carbon via thermal reduction of CS2 by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes† publication-title: RSC Adv. doi: 10.1039/C8RA01729H – volume: 23 start-page: 3683 year: 2017 ident: 10.1016/j.diamond.2025.112531_bb0095 article-title: Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries publication-title: Chem. Eur. J. doi: 10.1002/chem.201605019 – volume: 31 start-page: 1153 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0020 article-title: Advancements in cathode materials for lithium-ion batteries: an overview of future prospects publication-title: Ionics doi: 10.1007/s11581-024-06030-1 – volume: 321 year: 2019 ident: 10.1016/j.diamond.2025.112531_bb0105 article-title: Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.134698 – volume: 56 start-page: 828 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0170 article-title: Biomass-derived N–P double-doped porous carbon spheres and their lithium storage mechanism publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2023.12.248 – volume: 8 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0010 article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives publication-title: Adv. Energy Mater. – volume: 451 start-page: 298 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0115 article-title: Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.04.251 – volume: 24 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0200 article-title: A lignin-based carbon anode with long-cycle stability for Li-ion batteries publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms24010284 – volume: 344 start-page: 89 year: 2019 ident: 10.1016/j.diamond.2025.112531_bb0150 article-title: Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries publication-title: Powder Technol. doi: 10.1016/j.powtec.2018.11.100 – volume: 9 start-page: 25094 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0090 article-title: Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries publication-title: J. Mater. Chem. A doi: 10.1039/D1TA07782A – volume: 321 start-page: 301 year: 2017 ident: 10.1016/j.diamond.2025.112531_bb0145 article-title: In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.03.092 – volume: 16 start-page: 12384 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0045 article-title: Aligned carbon nanotubes for lithium-ion batteries: a review publication-title: Nano Res. doi: 10.1007/s12274-023-6006-2 – volume: 324 start-page: 233 year: 2016 ident: 10.1016/j.diamond.2025.112531_bb0160 article-title: Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.05.084 – volume: 34 start-page: 987 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0125 article-title: Vesicular mesoporous copper oxide as anode for high lithium storage publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-023-10356-3 – volume: 68 start-page: 1229 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0180 article-title: A hierarchical porous structure and nitrogen-doping jointly enhance the lithium-ion storage capacity of biomass-derived carbon materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2024.04.363 – volume: 34 start-page: 2055 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0040 article-title: Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review publication-title: Carbon Lett. doi: 10.1007/s42823-024-00816-z – volume: 12 start-page: 7622 year: 2020 ident: 10.1016/j.diamond.2025.112531_bb0140 article-title: Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage publication-title: Nanoscale doi: 10.1039/D0NR01126F – volume: 968 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0165 article-title: Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for Na-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.171917 – volume: 851 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0240 article-title: Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2020.156881 – volume: 73 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0005 article-title: Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials publication-title: J. Energy Storage. doi: 10.1016/j.est.2023.109013 – volume: 12 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0065 article-title: Core shell structured silica/porous carbon composite as an efficient anode for lithium ion batteries publication-title: Energ. Technol. doi: 10.1002/ente.202400094 – volume: 27 start-page: 1390 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0230 article-title: Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2018.01.013 – volume: 8 start-page: 13480 year: 2020 ident: 10.1016/j.diamond.2025.112531_bb0175 article-title: Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes publication-title: J. Mater. Chem. A doi: 10.1039/D0TA04784H – volume: 20 start-page: 625 year: 2019 ident: 10.1016/j.diamond.2025.112531_bb0215 article-title: Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b04395 – volume: 28 start-page: 7580 year: 2016 ident: 10.1016/j.diamond.2025.112531_bb0015 article-title: Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage publication-title: Adv. Mater. doi: 10.1002/adma.201600164 – volume: 57 start-page: 7993 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0250 article-title: Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b01156 – volume: 628 year: 2025 ident: 10.1016/j.diamond.2025.112531_bb0050 article-title: Coal-derived carbon anodes for lithium-ion batteries: development, challenges, and prospects publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2024.235858 – volume: 619 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0135 article-title: N-doped egg-box-like porous carbons with superior rate capacities for lithium/sodium ions storage publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2021.126402 – volume: 50 start-page: 13476 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0070 article-title: Scalable synthesis of 3D porous germanium encapsulated in nitrogen-doped carbon matrix as an ultra-long-cycle life anode for lithium-ion batteries publication-title: Dalton Trans. doi: 10.1039/D1DT00797A – volume: 133 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0235 article-title: High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2023.109696 – volume: 21 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0075 article-title: Hierarchical porous structured Si/C anode material for lithium-ion batteries by dual encapsulating layers for enhanced lithium-ion and electron transports rates publication-title: Small – volume: 5 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0035 article-title: Graphene from spent lithium-ion batteries publication-title: Batter. Supercaps. – volume: 5 start-page: 55136 year: 2015 ident: 10.1016/j.diamond.2025.112531_bb0110 article-title: Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries† publication-title: RSC Adv. doi: 10.1039/C5RA08148C – volume: 653 start-page: 1588 year: 2024 ident: 10.1016/j.diamond.2025.112531_bb0210 article-title: Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.09.150 – volume: 23 start-page: 367 year: 2019 ident: 10.1016/j.diamond.2025.112531_bb0225 article-title: Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.04.037 – volume: 26 start-page: 3351 year: 2020 ident: 10.1016/j.diamond.2025.112531_bb0060 article-title: Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries publication-title: Ionics doi: 10.1007/s11581-020-03464-1 – volume: 2018 start-page: 4508 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0030 article-title: Recent progress and challenges of micro−/nanostructured transition metal carbonate anodes for lithium ion batteries publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201800853 – volume: 215 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0055 article-title: Coal-based graphene oxide-like materials: a comprehensive review publication-title: Carbon doi: 10.1016/j.carbon.2023.118447 – volume: 5 start-page: 11462 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0085 article-title: Freestanding porous silicon@heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.2c01898 – volume: 86 start-page: 139 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0185 article-title: High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method publication-title: Diamond Relat. Mater. doi: 10.1016/j.diamond.2018.04.019 – volume: 46 start-page: 7732 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0205 article-title: Boron-doped porous carbon material derived from ZIF-11: investigation of cotton fabric supercapacitor and Li-ion battery performances publication-title: Int. J. Energy Res. doi: 10.1002/er.7676 – volume: 455 year: 2023 ident: 10.1016/j.diamond.2025.112531_bb0155 article-title: Regulating surface condition of cotton-derived carbon towards enhanced lithium ion storage behavior publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142431 – volume: 331 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0220 article-title: Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2021.111565 – volume: 237 start-page: 156 year: 2019 ident: 10.1016/j.diamond.2025.112531_bb0130 article-title: One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.11.084 – volume: 587 start-page: 622 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0245 article-title: Titanium niobate (Ti2Nb10O29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.11.019 – volume: 10 start-page: 36969 year: 2018 ident: 10.1016/j.diamond.2025.112531_bb0195 article-title: Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b12302 – volume: 512 year: 2025 ident: 10.1016/j.diamond.2025.112531_bb0120 article-title: Nitrogen-doped corn Stover-based porous carbon by double-defect synthesis strategy for highly lithium storage properties publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2024.145512 – volume: 9 start-page: 1058 year: 2022 ident: 10.1016/j.diamond.2025.112531_bb0080 article-title: Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries publication-title: Inorg. Chem. Front. doi: 10.1039/D1QI01105G – volume: 41 start-page: 814 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0025 article-title: Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries publication-title: Rare Metals doi: 10.1007/s12598-021-01863-5 – volume: 13 start-page: 1 year: 2021 ident: 10.1016/j.diamond.2025.112531_bb0190 article-title: MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance publication-title: Nano-Micro Lett. doi: 10.1007/s40820-021-00728-x |
SSID | ssj0012941 |
Score | 2.446608 |
Snippet | Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112531 |
SubjectTerms | Anode materials Coal-based porous carbon High performance Lithium-ion batteries Low-cost |
Title | Nitrogen-doped coal-based porous carbon: A one-step synthesis approach for superior anode performance in lithium-ion batteries |
URI | https://dx.doi.org/10.1016/j.diamond.2025.112531 |
Volume | 157 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhXf7MHrtsk23W68laJWiz34QG8h-yhGNAl9HLz4253JwweIB095sAthvtnZb8nMNwAnUlqn_LHgRnqGB6HFJTW2PkcuMnaqrW1Y_D2_HsnBfXD12HlcgH5dC0NplVXsL2N6Ea2rN63Kmq08SVq3XojUXZKcJ_XGUyS7HQRd8vLm-2eaB25nRfdKGsxp9FcVT-u5iRAg2CQYKjpUTNNp-7_vT9_2nPMNWK_IIuuV37MJCy5twEq_7tHWgLVvcoINWL4o2vS-bcH7KJlNMvQNbrPcWWay-IXThmUZ8m087DMTT3SWnrIey1LHEeqcTd9SZIPTZMpqoXGGjJZN5ySGjDdxmlnH8q9KA5akDFn8UzJ_5Qgv04VWJx69t-H-_OyuP-BVpwVu0IYz3g1DY33tK-MEGsrTvhZe6LRWjpSPQlzZVggz9vH8oqSSAQKMA2MlSEbUM-0dWEzxc3eBOefHTgoPQQ4CYYKwqyVyTOu1Y0Xccw-atX2jvBTUiOpMs-eoAiQiQKISkD1QNQrRD8-IMOj_PXX__1MPYJWeylS_Q1icTebuCOnHTB8X_nUMS73L4WBE1-HNw_ADnwncIA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEQIGBAVEeXpgNU3c1LXZqopSKHQBJLYoflSkgiTqY2Dht3POg4eEGNgix5as--zzZ_nuO4Azzo0V_phRzT1NA2lwS42NT5GLjK1oKSPz1_O7ER88BjdP7acl6FW5MC6ssvT9hU_PvXXZ0iyt2cziuHnvSaTu3Ml5utp4gi_DilOnatdgpXs9HIw-HxOYzAtYuv7UDfhK5GlOzhEFxNtphrK2y6dpt_zfj6hvx05_CzZLvki6xZS2YckmdVjrVWXa6rDxTVGwDqtXeaXetx14H8XzaYrLg5o0s4boNHqh7swyBCk33veJjqYqTS5Il6SJpYh2RmZvCRLCWTwjldY4QVJLZgunh4wfUZIaS7KvZAMSJwSJ_HO8eKWIMFG5XCfevnfhsX_50BvQstgC1WjGOe1IqY2vfKEtQ0N5ylfMk1YpYZ34kcTNbRjTYx-vMIILHiDG2DESzCmJerq1B7UEp7sPxFo_spx5iHMQMB3IjuJIM43XioSjnw04r-wbZoWmRlgFm03CEpDQARIWgDRAVCiEPxZHiH7_76EH_x96CmuDh7vb8PZ6NDyEdfeniPw7gtp8urDHyEbm6qRcbR9NNt0u |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen-doped+coal-based+porous+carbon%3A+A+one-step+synthesis+approach+for+superior+anode+performance+in+lithium-ion+batteries&rft.jtitle=Diamond+and+related+materials&rft.au=Jiang%2C+Dongwei&rft.au=Li%2C+Songquan&rft.au=Li%2C+Xu&rft.au=Jin%2C+Yongzhong&rft.date=2025-08-01&rft.issn=0925-9635&rft.volume=157&rft.spage=112531&rft_id=info:doi/10.1016%2Fj.diamond.2025.112531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diamond_2025_112531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9635&client=summon |