Nitrogen-doped coal-based porous carbon: A one-step synthesis approach for superior anode performance in lithium-ion batteries

Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating...

Full description

Saved in:
Bibliographic Details
Published inDiamond and related materials Vol. 157; p. 112531
Main Authors Jiang, Dongwei, Li, Songquan, Li, Xu, Jin, Yongzhong, Zhang, Zhengquan, Liu, Yonghong, Xu, Tao
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating chemical activation and nitrogen doping into a one-step process, high-performance anode materials for lithium-ion batteries have been successfully developed. This approach not only leverages the advantages of anthracite's low cost and abundant availability but also significantly enhances the electrochemical performance of the material through nitrogen doping and porous structure design. Specifically, the NPC anode material exhibits remarkable cycling stability, maintaining a discharge specific capacity of 488.5 mAh/g after 500 cycles at a high current density of 1 A/g. Additionally, the NPC anode exhibits outstanding rate capability, with 397.4 mAh/g at 1.0 A/g and 285.7 mAh/g at 2.0 A/g. These superior performances are not only related to the pore structure that can provide efficient channels for lithium ion transport, but also to the nitrogen doping that can enhance the conductivity of the material. This study offers an innovative and effective strategy for the design of high-performance anode materials for lithium-ion batteries, particularly in the context of utilizing low-cost and abundant raw materials to produce high-performance energy storage materials. [Display omitted] •The preparation process is very simple.•This approach leverages the advantages of anthracite’s low cost and abundant availability.•In this study, anthracite coal is used as raw material to produce porous carbon anode materials, which effectively reduces the damage caused by coal burning to the environment.
AbstractList Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant availability. In this study, we report a synthesis method for nitrogen-doped coal-based porous carbon material (NPC) based on anthracite. By integrating chemical activation and nitrogen doping into a one-step process, high-performance anode materials for lithium-ion batteries have been successfully developed. This approach not only leverages the advantages of anthracite's low cost and abundant availability but also significantly enhances the electrochemical performance of the material through nitrogen doping and porous structure design. Specifically, the NPC anode material exhibits remarkable cycling stability, maintaining a discharge specific capacity of 488.5 mAh/g after 500 cycles at a high current density of 1 A/g. Additionally, the NPC anode exhibits outstanding rate capability, with 397.4 mAh/g at 1.0 A/g and 285.7 mAh/g at 2.0 A/g. These superior performances are not only related to the pore structure that can provide efficient channels for lithium ion transport, but also to the nitrogen doping that can enhance the conductivity of the material. This study offers an innovative and effective strategy for the design of high-performance anode materials for lithium-ion batteries, particularly in the context of utilizing low-cost and abundant raw materials to produce high-performance energy storage materials. [Display omitted] •The preparation process is very simple.•This approach leverages the advantages of anthracite’s low cost and abundant availability.•In this study, anthracite coal is used as raw material to produce porous carbon anode materials, which effectively reduces the damage caused by coal burning to the environment.
ArticleNumber 112531
Author Li, Xu
Li, Songquan
Xu, Tao
Liu, Yonghong
Jin, Yongzhong
Jiang, Dongwei
Zhang, Zhengquan
Author_xml – sequence: 1
  givenname: Dongwei
  surname: Jiang
  fullname: Jiang, Dongwei
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
– sequence: 2
  givenname: Songquan
  surname: Li
  fullname: Li, Songquan
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
– sequence: 3
  givenname: Xu
  surname: Li
  fullname: Li, Xu
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
– sequence: 4
  givenname: Yongzhong
  surname: Jin
  fullname: Jin, Yongzhong
  email: jyzcd@163.com
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
– sequence: 5
  givenname: Zhengquan
  surname: Zhang
  fullname: Zhang, Zhengquan
  organization: Bazhong Yike Carbon Co. Ltd, Bazhong 636000, China
– sequence: 6
  givenname: Yonghong
  surname: Liu
  fullname: Liu, Yonghong
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
– sequence: 7
  givenname: Tao
  surname: Xu
  fullname: Xu, Tao
  organization: School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
BookMark eNqFUMtOQyEUZFET2-onmPADVOA-Cm5M0_hKGt3omnDhXEvTCzdATbrx26Vp967OIzNzzswMTXzwgNAdowtGWXu_W1inh-DtglPeLBjjTcUmaEolb4hsq-YazVLaUcq4rNkU_b67HMM3eGLDCBaboPek06m0Y4jhkLDRsQv-Aa9wuURShhGno89bSC5hPY4xaLPFfYg4HUaIrjTaBwu4DGU7aG8AO4_3Lm_dYSAueNzpnAsU0g266vU-we2lztHX89Pn-pVsPl7e1qsNMbyRmSylNJZ1TBjgxQjtWMephK4TUC0rIWnNLeemZ2xZi1a0tQVRgFpwVgtOTTVHzVnXxJBShF6N0Q06HhWj6hSc2qlLcOoUnDoHV3iPZx6U534cRJWMg-LIuggmKxvcPwp_t1d_Jg
Cites_doi 10.1039/C8RA01729H
10.1002/chem.201605019
10.1007/s11581-024-06030-1
10.1016/j.electacta.2019.134698
10.1016/j.ijhydene.2023.12.248
10.1016/j.apsusc.2018.04.251
10.3390/ijms24010284
10.1016/j.powtec.2018.11.100
10.1039/D1TA07782A
10.1016/j.cej.2017.03.092
10.1007/s12274-023-6006-2
10.1016/j.jpowsour.2016.05.084
10.1007/s10854-023-10356-3
10.1016/j.ijhydene.2024.04.363
10.1007/s42823-024-00816-z
10.1039/D0NR01126F
10.1016/j.jallcom.2023.171917
10.1016/j.jallcom.2020.156881
10.1016/j.est.2023.109013
10.1002/ente.202400094
10.1016/j.jechem.2018.01.013
10.1039/D0TA04784H
10.1021/acs.nanolett.9b04395
10.1002/adma.201600164
10.1021/acs.inorgchem.8b01156
10.1016/j.jpowsour.2024.235858
10.1016/j.colsurfa.2021.126402
10.1039/D1DT00797A
10.1016/j.diamond.2023.109696
10.1039/C5RA08148C
10.1016/j.jcis.2023.09.150
10.1016/j.ensm.2019.04.037
10.1007/s11581-020-03464-1
10.1002/ejic.201800853
10.1016/j.carbon.2023.118447
10.1021/acsaem.2c01898
10.1016/j.diamond.2018.04.019
10.1002/er.7676
10.1016/j.electacta.2023.142431
10.1016/j.micromeso.2021.111565
10.1016/j.matlet.2018.11.084
10.1016/j.jcis.2020.11.019
10.1021/acsami.8b12302
10.1016/j.electacta.2024.145512
10.1039/D1QI01105G
10.1007/s12598-021-01863-5
10.1007/s40820-021-00728-x
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.diamond.2025.112531
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
Chemistry
ExternalDocumentID 10_1016_j_diamond_2025_112531
S0925963525005886
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29G
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SSM
SST
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
AAYXX
AFXIZ
AGRNS
BNPGV
CITATION
RIG
ID FETCH-LOGICAL-c259t-799cd1b18ce29250b1b209ebb8e37389042d22cf117486864de8292a8214820c3
IEDL.DBID .~1
ISSN 0925-9635
IngestDate Thu Jul 31 00:23:18 EDT 2025
Sat Aug 30 17:17:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Low-cost
High performance
Coal-based porous carbon
Anode materials
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-799cd1b18ce29250b1b209ebb8e37389042d22cf117486864de8292a8214820c3
ParticipantIDs crossref_primary_10_1016_j_diamond_2025_112531
elsevier_sciencedirect_doi_10_1016_j_diamond_2025_112531
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Diamond and related materials
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhu, Huang, Chen, Wang, Liu (bb0105) 2019; 321
Gan, Wu, Chen, Li, Liu (bb0175) 2020; 8
Mondal, Kretschmer, Zhao, Liu, Wang, Sun, Wang (bb0095) 2017; 23
Qu, Zhao, Song, Wang, Kong, Gan, Ma, Dong, Han, Niu (bb0090) 2021; 9
Shao, Ma, Wu, Dai, Geng, Song, Wan (bb0145) 2017; 321
Gulavani, Kanade, Lokhande, Thotiyl, John, Yengantiwar (bb0065) 2024; 12
Zhang, Yu, Li, Shen, Yu, Yu (bb0075) 2024; 21
Yasin, Arif, Ma, Ibraheem, Yu, Zhang, Liu, Dai (bb0080) 2022; 9
Li, Deng, Li, Chen, Zhang, Li, Song, Duan (bb0170) 2024; 56
Wang, Yang, Li, Liu, Liang, Wang, Li, Sun, An (bb0180) 2024; 68
Rao, Saisrinu, Khatua, Bharathi, Patro (bb0165) 2023; 968
Singh, Haskin, Dastgheib (bb0055) 2023; 215
Huo, An, Fu, Gao, Wang, Peng, Cheng, Chu (bb0160) 2016; 324
Zhang, He, Xu, Ma, Liang, Wang, Zhu (bb0025) 2021; 41
Xu, van der Watt, Laudal, Zhang, Ahmed, Hou (bb0050) 2025; 628
Chen, Yan, Luo, Guo (bb0015) 2016; 28
Ouyang, Luo, Mao, Liu, Chen, Du, Zhang, Wang, Chen, Yuan, Dong, Lu, Chen, Li, Zhang (bb0120) 2025; 512
Wang, Wu, Huang, Zhao, Liu, Chen, Liu, Zhang (bb0250) 2018; 57
Bugday, Altin, Bulut, Altin, Yaşar (bb0205) 2022; 46
Shen, Li, Xu, Chen, Katiyar, Zhu, Xie, Han, Qiu, Wu, Cao (bb0210) 2024; 653
Kwon, Hwang, Shin, Jeong, Chung, Sun, Jung (bb0215) 2019; 20
Zhu, Zuo, Li, Tu, Bai, Jiao (bb0060) 2020; 26
Katchala, E, Bulusu, V, U.V, Tata, Srinivasan (bb0130) 2019; 237
Vu, Le, Hoang, Dao, Huu, Jun, Im (bb0240) 2021; 851
Li, Luo, He, Lu, Du, Tao, Cheng, Wang (bb0200) 2022; 24
Fu, Wei, Zhang, Sun (bb0010) 2018; 8
Li, Zhang, Sun, Zhang, Wang, Liang, Si, Ci (bb0225) 2019; 23
Divya, Natarajan, Aravindan (bb0035) 2022; 5
Muchuweni, Mombeshora, Muiva, Sathiaraj (bb0005) 2023; 73
Zhang, Wang, Xu, Lian, Bao, Zhao, Qiu, Li (bb0115) 2018; 451
Shi, Wang, Wan, Tang, Zhao, Deng, Chai, Wei, Wang (bb0245) 2021; 587
Ma, Deng, Liao, He, Ma, Xiong (bb0195) 2018; 10
Zhang, Yuan, Zhang, Shi, Wang, Ding, He (bb0040) 2024; 34
Li, Li, Guo, Zhang (bb0030) 2018; 2018
Wang, Yuan, Li, Li, Ju (bb0085) 2022; 5
Chen, Shi, Li, Dong, Yuan, Huang, Yang, Wei, Zhuang, Ju, Song (bb0140) 2020; 12
Wan, Chen, Kong, Qi, Zhang, Li, Xu, Zhuang, Du (bb0135) 2021; 619
Sun, Liu, Liu, Wang, Wang, Li (bb0100) 2018; 8
Nwanno, Li (bb0045) 2023; 16
Cao, Liu, Zhang, Zhang, Zhu, Du, Wang, Zhang, Xu (bb0190) 2021; 13
Wang, Bai, Gong, Shahzad, Shi, Cao, Zhu (bb0155) 2023; 455
Kietisirirojana, Tunkasiri, Pengpat, Khamman, Intatha, Eitssayeam (bb0220) 2022; 331
Liu, Wang, Liu, Wei, Ma, Xue, Zhang, Li (bb0070) 2021; 50
Ou, Deng, Li, Li, Li (bb0235) 2023; 133
Wang, Yang, Pan, Zhong, Liu, Gu, Yu (bb0110) 2015; 5
Yang, Guo, Li, Li, Wang, Cui, Wang (bb0230) 2018; 27
Ou, Yang, Zhang (bb0150) 2019; 344
Cui, Wang, Sha, Li, Zhuo, Hu (bb0125) 2023; 34
Gopalakrishnan, Suntharam, Bashir, Vengadaesvaran, Rahim, Gunasekaran, Ramesh, Ramesh, Uttran (bb0020) 2024; 31
Yu, Li, Qi, Liang (bb0185) 2018; 86
Muchuweni (10.1016/j.diamond.2025.112531_bb0005) 2023; 73
Zhang (10.1016/j.diamond.2025.112531_bb0040) 2024; 34
Kietisirirojana (10.1016/j.diamond.2025.112531_bb0220) 2022; 331
Wang (10.1016/j.diamond.2025.112531_bb0085) 2022; 5
Ou (10.1016/j.diamond.2025.112531_bb0150) 2019; 344
Li (10.1016/j.diamond.2025.112531_bb0030) 2018; 2018
Cui (10.1016/j.diamond.2025.112531_bb0125) 2023; 34
Yang (10.1016/j.diamond.2025.112531_bb0230) 2018; 27
Gulavani (10.1016/j.diamond.2025.112531_bb0065) 2024; 12
Sun (10.1016/j.diamond.2025.112531_bb0100) 2018; 8
Mondal (10.1016/j.diamond.2025.112531_bb0095) 2017; 23
Nwanno (10.1016/j.diamond.2025.112531_bb0045) 2023; 16
Gopalakrishnan (10.1016/j.diamond.2025.112531_bb0020) 2024; 31
Wang (10.1016/j.diamond.2025.112531_bb0180) 2024; 68
Shi (10.1016/j.diamond.2025.112531_bb0245) 2021; 587
Divya (10.1016/j.diamond.2025.112531_bb0035) 2022; 5
Katchala (10.1016/j.diamond.2025.112531_bb0130) 2019; 237
Wan (10.1016/j.diamond.2025.112531_bb0135) 2021; 619
Wang (10.1016/j.diamond.2025.112531_bb0110) 2015; 5
Li (10.1016/j.diamond.2025.112531_bb0170) 2024; 56
Chen (10.1016/j.diamond.2025.112531_bb0015) 2016; 28
Xu (10.1016/j.diamond.2025.112531_bb0050) 2025; 628
Wang (10.1016/j.diamond.2025.112531_bb0250) 2018; 57
Liu (10.1016/j.diamond.2025.112531_bb0070) 2021; 50
Vu (10.1016/j.diamond.2025.112531_bb0240) 2021; 851
Bugday (10.1016/j.diamond.2025.112531_bb0205) 2022; 46
Wang (10.1016/j.diamond.2025.112531_bb0155) 2023; 455
Zhu (10.1016/j.diamond.2025.112531_bb0060) 2020; 26
Huo (10.1016/j.diamond.2025.112531_bb0160) 2016; 324
Cao (10.1016/j.diamond.2025.112531_bb0190) 2021; 13
Zhang (10.1016/j.diamond.2025.112531_bb0025) 2021; 41
Li (10.1016/j.diamond.2025.112531_bb0200) 2022; 24
Fu (10.1016/j.diamond.2025.112531_bb0010) 2018; 8
Shao (10.1016/j.diamond.2025.112531_bb0145) 2017; 321
Li (10.1016/j.diamond.2025.112531_bb0225) 2019; 23
Zhu (10.1016/j.diamond.2025.112531_bb0105) 2019; 321
Singh (10.1016/j.diamond.2025.112531_bb0055) 2023; 215
Gan (10.1016/j.diamond.2025.112531_bb0175) 2020; 8
Zhang (10.1016/j.diamond.2025.112531_bb0115) 2018; 451
Rao (10.1016/j.diamond.2025.112531_bb0165) 2023; 968
Qu (10.1016/j.diamond.2025.112531_bb0090) 2021; 9
Yasin (10.1016/j.diamond.2025.112531_bb0080) 2022; 9
Ma (10.1016/j.diamond.2025.112531_bb0195) 2018; 10
Ou (10.1016/j.diamond.2025.112531_bb0235) 2023; 133
Kwon (10.1016/j.diamond.2025.112531_bb0215) 2019; 20
Yu (10.1016/j.diamond.2025.112531_bb0185) 2018; 86
Chen (10.1016/j.diamond.2025.112531_bb0140) 2020; 12
Shen (10.1016/j.diamond.2025.112531_bb0210) 2024; 653
Ouyang (10.1016/j.diamond.2025.112531_bb0120) 2025; 512
Zhang (10.1016/j.diamond.2025.112531_bb0075) 2024; 21
References_xml – volume: 9
  start-page: 25094
  year: 2021
  end-page: 25103
  ident: bb0090
  article-title: Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries
  publication-title: J. Mater. Chem. A
– volume: 619
  year: 2021
  ident: bb0135
  article-title: N-doped egg-box-like porous carbons with superior rate capacities for lithium/sodium ions storage
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 86
  start-page: 139
  year: 2018
  end-page: 145
  ident: bb0185
  article-title: High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method
  publication-title: Diamond Relat. Mater.
– volume: 34
  start-page: 2055
  year: 2024
  end-page: 2079
  ident: bb0040
  article-title: Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review
  publication-title: Carbon Lett.
– volume: 31
  start-page: 1153
  year: 2024
  end-page: 1180
  ident: bb0020
  article-title: Advancements in cathode materials for lithium-ion batteries: an overview of future prospects
  publication-title: Ionics
– volume: 331
  year: 2022
  ident: bb0220
  article-title: Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries
  publication-title: Microporous Mesoporous Mater.
– volume: 28
  start-page: 7580
  year: 2016
  end-page: 7602
  ident: bb0015
  article-title: Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage
  publication-title: Adv. Mater.
– volume: 56
  start-page: 828
  year: 2024
  end-page: 836
  ident: bb0170
  article-title: Biomass-derived N–P double-doped porous carbon spheres and their lithium storage mechanism
  publication-title: Int. J. Hydrogen Energy
– volume: 8
  start-page: 13480
  year: 2020
  end-page: 13489
  ident: bb0175
  article-title: Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes
  publication-title: J. Mater. Chem. A
– volume: 27
  start-page: 1390
  year: 2018
  end-page: 1396
  ident: bb0230
  article-title: Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon
  publication-title: J. Energy Chem.
– volume: 5
  year: 2022
  ident: bb0035
  article-title: Graphene from spent lithium-ion batteries
  publication-title: Batter. Supercaps.
– volume: 26
  start-page: 3351
  year: 2020
  end-page: 3358
  ident: bb0060
  article-title: Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries
  publication-title: Ionics
– volume: 5
  start-page: 11462
  year: 2022
  end-page: 11471
  ident: bb0085
  article-title: Freestanding porous silicon@heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries
  publication-title: ACS Appl. Energy Mater.
– volume: 23
  start-page: 3683
  year: 2017
  end-page: 3690
  ident: bb0095
  article-title: Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries
  publication-title: Chem. Eur. J.
– volume: 68
  start-page: 1229
  year: 2024
  end-page: 1239
  ident: bb0180
  article-title: A hierarchical porous structure and nitrogen-doping jointly enhance the lithium-ion storage capacity of biomass-derived carbon materials
  publication-title: Int. J. Hydrogen Energy
– volume: 23
  start-page: 367
  year: 2019
  end-page: 374
  ident: bb0225
  article-title: Hierarchically porous carbon supported Sn
  publication-title: Energy Storage Mater.
– volume: 215
  year: 2023
  ident: bb0055
  article-title: Coal-based graphene oxide-like materials: a comprehensive review
  publication-title: Carbon
– volume: 2018
  start-page: 4508
  year: 2018
  end-page: 4521
  ident: bb0030
  article-title: Recent progress and challenges of micro−/nanostructured transition metal carbonate anodes for lithium ion batteries
  publication-title: Eur. J. Inorg. Chem.
– volume: 8
  year: 2018
  ident: bb0010
  article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives
  publication-title: Adv. Energy Mater.
– volume: 41
  start-page: 814
  year: 2021
  end-page: 821
  ident: bb0025
  article-title: Nb
  publication-title: Rare Metals
– volume: 34
  start-page: 987
  year: 2023
  ident: bb0125
  article-title: Vesicular mesoporous copper oxide as anode for high lithium storage
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 5
  start-page: 55136
  year: 2015
  end-page: 55142
  ident: bb0110
  article-title: Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries†
  publication-title: RSC Adv.
– volume: 587
  start-page: 622
  year: 2021
  end-page: 632
  ident: bb0245
  article-title: Titanium niobate (Ti
  publication-title: J. Colloid Interface Sci.
– volume: 324
  start-page: 233
  year: 2016
  end-page: 238
  ident: bb0160
  article-title: Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
  publication-title: J. Power Sources
– volume: 20
  start-page: 625
  year: 2019
  end-page: 635
  ident: bb0215
  article-title: Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries
  publication-title: Nano Lett.
– volume: 344
  start-page: 89
  year: 2019
  end-page: 95
  ident: bb0150
  article-title: Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries
  publication-title: Powder Technol.
– volume: 512
  year: 2025
  ident: bb0120
  article-title: Nitrogen-doped corn Stover-based porous carbon by double-defect synthesis strategy for highly lithium storage properties
  publication-title: Electrochim. Acta
– volume: 851
  year: 2021
  ident: bb0240
  article-title: Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries
  publication-title: J. Alloys Compd.
– volume: 10
  start-page: 36969
  year: 2018
  end-page: 36975
  ident: bb0195
  article-title: Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 7622
  year: 2020
  end-page: 7630
  ident: bb0140
  article-title: Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage
  publication-title: Nanoscale
– volume: 50
  start-page: 13476
  year: 2021
  end-page: 13482
  ident: bb0070
  article-title: Scalable synthesis of 3D porous germanium encapsulated in nitrogen-doped carbon matrix as an ultra-long-cycle life anode for lithium-ion batteries
  publication-title: Dalton Trans.
– volume: 653
  start-page: 1588
  year: 2024
  end-page: 1599
  ident: bb0210
  article-title: Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries
  publication-title: J. Colloid Interface Sci.
– volume: 133
  year: 2023
  ident: bb0235
  article-title: High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries
  publication-title: Diamond Relat. Mater.
– volume: 9
  start-page: 1058
  year: 2022
  end-page: 1069
  ident: bb0080
  article-title: Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries
  publication-title: Inorg. Chem. Front.
– volume: 451
  start-page: 298
  year: 2018
  end-page: 305
  ident: bb0115
  article-title: Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries
  publication-title: Appl. Surf. Sci.
– volume: 13
  start-page: 1
  year: 2021
  end-page: 17
  ident: bb0190
  article-title: MOF-derived ZnS nanodots/Ti
  publication-title: Nano-Micro Lett.
– volume: 57
  start-page: 7993
  year: 2018
  end-page: 8001
  ident: bb0250
  article-title: Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage
  publication-title: Inorg. Chem.
– volume: 628
  year: 2025
  ident: bb0050
  article-title: Coal-derived carbon anodes for lithium-ion batteries: development, challenges, and prospects
  publication-title: J. Power Sources
– volume: 321
  start-page: 301
  year: 2017
  end-page: 313
  ident: bb0145
  article-title: In-situ MgO (CaCO
  publication-title: Chem. Eng. J.
– volume: 237
  start-page: 156
  year: 2019
  end-page: 160
  ident: bb0130
  article-title: One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery
  publication-title: Mater. Lett.
– volume: 12
  year: 2024
  ident: bb0065
  article-title: Core shell structured silica/porous carbon composite as an efficient anode for lithium ion batteries
  publication-title: Energ. Technol.
– volume: 968
  year: 2023
  ident: bb0165
  article-title: Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for Na-ion batteries
  publication-title: J. Alloys Compd.
– volume: 8
  start-page: 19964
  year: 2018
  end-page: 19970
  ident: bb0100
  article-title: Sulfur-doped mesoporous carbon via thermal reduction of CS
  publication-title: RSC Adv.
– volume: 16
  start-page: 12384
  year: 2023
  end-page: 12410
  ident: bb0045
  article-title: Aligned carbon nanotubes for lithium-ion batteries: a review
  publication-title: Nano Res.
– volume: 24
  year: 2022
  ident: bb0200
  article-title: A lignin-based carbon anode with long-cycle stability for Li-ion batteries
  publication-title: Int. J. Mol. Sci.
– volume: 46
  start-page: 7732
  year: 2022
  end-page: 7748
  ident: bb0205
  article-title: Boron-doped porous carbon material derived from ZIF-11: investigation of cotton fabric supercapacitor and Li-ion battery performances
  publication-title: Int. J. Energy Res.
– volume: 21
  year: 2024
  ident: bb0075
  article-title: Hierarchical porous structured Si/C anode material for lithium-ion batteries by dual encapsulating layers for enhanced lithium-ion and electron transports rates
  publication-title: Small
– volume: 455
  year: 2023
  ident: bb0155
  article-title: Regulating surface condition of cotton-derived carbon towards enhanced lithium ion storage behavior
  publication-title: Electrochim. Acta
– volume: 73
  year: 2023
  ident: bb0005
  article-title: Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials
  publication-title: J. Energy Storage.
– volume: 321
  year: 2019
  ident: bb0105
  article-title: Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage
  publication-title: Electrochim. Acta
– volume: 8
  start-page: 19964
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0100
  article-title: Sulfur-doped mesoporous carbon via thermal reduction of CS2 by Mg for high-performance supercapacitor electrodes and Li-ion battery anodes†
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01729H
– volume: 23
  start-page: 3683
  year: 2017
  ident: 10.1016/j.diamond.2025.112531_bb0095
  article-title: Nitrogen-doped porous carbon nanosheets from eco-friendly eucalyptus leaves as high performance electrode materials for supercapacitors and lithium ion batteries
  publication-title: Chem. Eur. J.
  doi: 10.1002/chem.201605019
– volume: 31
  start-page: 1153
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0020
  article-title: Advancements in cathode materials for lithium-ion batteries: an overview of future prospects
  publication-title: Ionics
  doi: 10.1007/s11581-024-06030-1
– volume: 321
  year: 2019
  ident: 10.1016/j.diamond.2025.112531_bb0105
  article-title: Phosphorus-doped porous biomass carbon with ultra-stable performance in sodium storage and lithium storage
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2019.134698
– volume: 56
  start-page: 828
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0170
  article-title: Biomass-derived N–P double-doped porous carbon spheres and their lithium storage mechanism
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2023.12.248
– volume: 8
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0010
  article-title: Advanced phosphorus-based materials for lithium/sodium-ion batteries: recent developments and future perspectives
  publication-title: Adv. Energy Mater.
– volume: 451
  start-page: 298
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0115
  article-title: Defect-rich N-doped porous carbon derived from soybean for high rate lithium-ion batteries
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.04.251
– volume: 24
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0200
  article-title: A lignin-based carbon anode with long-cycle stability for Li-ion batteries
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms24010284
– volume: 344
  start-page: 89
  year: 2019
  ident: 10.1016/j.diamond.2025.112531_bb0150
  article-title: Chrysanthemum derived hierarchically porous nitrogen-doped carbon as high performance anode material for lithium/sodium ion batteries
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2018.11.100
– volume: 9
  start-page: 25094
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0090
  article-title: Two-dimensional N/O co-doped porous turbostratic carbon nanomeshes with expanded interlayer spacing as host material for potassium/lithium half/full batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA07782A
– volume: 321
  start-page: 301
  year: 2017
  ident: 10.1016/j.diamond.2025.112531_bb0145
  article-title: In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.03.092
– volume: 16
  start-page: 12384
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0045
  article-title: Aligned carbon nanotubes for lithium-ion batteries: a review
  publication-title: Nano Res.
  doi: 10.1007/s12274-023-6006-2
– volume: 324
  start-page: 233
  year: 2016
  ident: 10.1016/j.diamond.2025.112531_bb0160
  article-title: Mesoporous nitrogen-doped carbon hollow spheres as high-performance anodes for lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.05.084
– volume: 34
  start-page: 987
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0125
  article-title: Vesicular mesoporous copper oxide as anode for high lithium storage
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-023-10356-3
– volume: 68
  start-page: 1229
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0180
  article-title: A hierarchical porous structure and nitrogen-doping jointly enhance the lithium-ion storage capacity of biomass-derived carbon materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2024.04.363
– volume: 34
  start-page: 2055
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0040
  article-title: Research progress of carbon nanotubes as anode materials for lithium-ion batteries: a mini review
  publication-title: Carbon Lett.
  doi: 10.1007/s42823-024-00816-z
– volume: 12
  start-page: 7622
  year: 2020
  ident: 10.1016/j.diamond.2025.112531_bb0140
  article-title: Undercooling-directed NaCl crystallization: an approach towards nanocavity-linked graphene networks for fast lithium and sodium storage
  publication-title: Nanoscale
  doi: 10.1039/D0NR01126F
– volume: 968
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0165
  article-title: Nitrogen doped soap-nut seeds derived hard carbon as an efficient anode material for Na-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171917
– volume: 851
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0240
  article-title: Highly N-doped, H-containing mesoporous carbon with modulated physicochemical properties as high-performance anode materials for Li-ion and Na-ion batteries
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2020.156881
– volume: 73
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0005
  article-title: Lithium-ion batteries: recent progress in improving the cycling and rate performances of transition metal oxide anodes by incorporating graphene-based materials
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2023.109013
– volume: 12
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0065
  article-title: Core shell structured silica/porous carbon composite as an efficient anode for lithium ion batteries
  publication-title: Energ. Technol.
  doi: 10.1002/ente.202400094
– volume: 27
  start-page: 1390
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0230
  article-title: Cooperation of nitrogen-doping and catalysis to improve the Li-ion storage performance of lignin-based hard carbon
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2018.01.013
– volume: 8
  start-page: 13480
  year: 2020
  ident: 10.1016/j.diamond.2025.112531_bb0175
  article-title: Guiding lithium deposition in tent-like nitrogen-doped porous carbon microcavities for stable lithium metal anodes
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA04784H
– volume: 20
  start-page: 625
  year: 2019
  ident: 10.1016/j.diamond.2025.112531_bb0215
  article-title: Nano/microstructured silicon-carbon hybrid composite particles fabricated with corn starch biowaste as anode materials for Li-ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b04395
– volume: 28
  start-page: 7580
  year: 2016
  ident: 10.1016/j.diamond.2025.112531_bb0015
  article-title: Nanoscale engineering of heterostructured anode materials for boosting lithium-ion storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600164
– volume: 57
  start-page: 7993
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0250
  article-title: Hierarchically porous N,S-codoped carbon-embedded dual phase MnO/MnS nanoparticles for efficient lithium ion storage
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01156
– volume: 628
  year: 2025
  ident: 10.1016/j.diamond.2025.112531_bb0050
  article-title: Coal-derived carbon anodes for lithium-ion batteries: development, challenges, and prospects
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2024.235858
– volume: 619
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0135
  article-title: N-doped egg-box-like porous carbons with superior rate capacities for lithium/sodium ions storage
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2021.126402
– volume: 50
  start-page: 13476
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0070
  article-title: Scalable synthesis of 3D porous germanium encapsulated in nitrogen-doped carbon matrix as an ultra-long-cycle life anode for lithium-ion batteries
  publication-title: Dalton Trans.
  doi: 10.1039/D1DT00797A
– volume: 133
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0235
  article-title: High content of nitrogen doped porous carbon prepared by one-step calcination for enviable rate lithium ion batteries
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2023.109696
– volume: 21
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0075
  article-title: Hierarchical porous structured Si/C anode material for lithium-ion batteries by dual encapsulating layers for enhanced lithium-ion and electron transports rates
  publication-title: Small
– volume: 5
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0035
  article-title: Graphene from spent lithium-ion batteries
  publication-title: Batter. Supercaps.
– volume: 5
  start-page: 55136
  year: 2015
  ident: 10.1016/j.diamond.2025.112531_bb0110
  article-title: Phosphorus-doped porous carbon derived from rice husk as anode for lithium ion batteries†
  publication-title: RSC Adv.
  doi: 10.1039/C5RA08148C
– volume: 653
  start-page: 1588
  year: 2024
  ident: 10.1016/j.diamond.2025.112531_bb0210
  article-title: Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2023.09.150
– volume: 23
  start-page: 367
  year: 2019
  ident: 10.1016/j.diamond.2025.112531_bb0225
  article-title: Hierarchically porous carbon supported Sn4P3 as a superior anode material for potassium-ion batteries
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.04.037
– volume: 26
  start-page: 3351
  year: 2020
  ident: 10.1016/j.diamond.2025.112531_bb0060
  article-title: Preparation of petaloid graphite nanoflakes in molten salt for high-performance lithium-ion batteries
  publication-title: Ionics
  doi: 10.1007/s11581-020-03464-1
– volume: 2018
  start-page: 4508
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0030
  article-title: Recent progress and challenges of micro−/nanostructured transition metal carbonate anodes for lithium ion batteries
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201800853
– volume: 215
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0055
  article-title: Coal-based graphene oxide-like materials: a comprehensive review
  publication-title: Carbon
  doi: 10.1016/j.carbon.2023.118447
– volume: 5
  start-page: 11462
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0085
  article-title: Freestanding porous silicon@heteroatom-doped porous carbon fiber anodes for high-performance lithium-ion batteries
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.2c01898
– volume: 86
  start-page: 139
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0185
  article-title: High-capacity activated carbon anode material for lithium-ion batteries prepared from rice husk by a facile method
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2018.04.019
– volume: 46
  start-page: 7732
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0205
  article-title: Boron-doped porous carbon material derived from ZIF-11: investigation of cotton fabric supercapacitor and Li-ion battery performances
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7676
– volume: 455
  year: 2023
  ident: 10.1016/j.diamond.2025.112531_bb0155
  article-title: Regulating surface condition of cotton-derived carbon towards enhanced lithium ion storage behavior
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2023.142431
– volume: 331
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0220
  article-title: Synthesis of mesoporous carbon powder from gold beard grass pollen for use as an anode for lithium-ion batteries
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2021.111565
– volume: 237
  start-page: 156
  year: 2019
  ident: 10.1016/j.diamond.2025.112531_bb0130
  article-title: One step synthesized hierarchical spherical porous carbon as an efficient electrode material for lithium ion battery
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.11.084
– volume: 587
  start-page: 622
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0245
  article-title: Titanium niobate (Ti2Nb10O29) anchored on nitrogen-doped carbon foams as flexible and self-supported anode for high-performance lithium ion batteries
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2020.11.019
– volume: 10
  start-page: 36969
  year: 2018
  ident: 10.1016/j.diamond.2025.112531_bb0195
  article-title: Nitrogen and phosphorus codoped porous carbon framework as anode material for high rate lithium-ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b12302
– volume: 512
  year: 2025
  ident: 10.1016/j.diamond.2025.112531_bb0120
  article-title: Nitrogen-doped corn Stover-based porous carbon by double-defect synthesis strategy for highly lithium storage properties
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2024.145512
– volume: 9
  start-page: 1058
  year: 2022
  ident: 10.1016/j.diamond.2025.112531_bb0080
  article-title: Self-templating synthesis of heteroatom-doped large-scalable carbon anodes for high-performance lithium-ion batteries
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/D1QI01105G
– volume: 41
  start-page: 814
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0025
  article-title: Nb2O5 nanoparticles embedding in graphite hybrid as a high-rate and long-cycle anode for lithium-ion batteries
  publication-title: Rare Metals
  doi: 10.1007/s12598-021-01863-5
– volume: 13
  start-page: 1
  year: 2021
  ident: 10.1016/j.diamond.2025.112531_bb0190
  article-title: MOF-derived ZnS nanodots/Ti3C2Tx MXene hybrids boosting superior lithium storage performance
  publication-title: Nano-Micro Lett.
  doi: 10.1007/s40820-021-00728-x
SSID ssj0012941
Score 2.446608
Snippet Coal is considered as an ideal raw material for fabricating anode materials used in lithium-ion batteries (LIBs), due to its low cost and abundant...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112531
SubjectTerms Anode materials
Coal-based porous carbon
High performance
Lithium-ion batteries
Low-cost
Title Nitrogen-doped coal-based porous carbon: A one-step synthesis approach for superior anode performance in lithium-ion batteries
URI https://dx.doi.org/10.1016/j.diamond.2025.112531
Volume 157
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhXf7MHrtsk23W68laJWiz34QG8h-yhGNAl9HLz4253JwweIB095sAthvtnZb8nMNwAnUlqn_LHgRnqGB6HFJTW2PkcuMnaqrW1Y_D2_HsnBfXD12HlcgH5dC0NplVXsL2N6Ea2rN63Kmq08SVq3XojUXZKcJ_XGUyS7HQRd8vLm-2eaB25nRfdKGsxp9FcVT-u5iRAg2CQYKjpUTNNp-7_vT9_2nPMNWK_IIuuV37MJCy5twEq_7tHWgLVvcoINWL4o2vS-bcH7KJlNMvQNbrPcWWay-IXThmUZ8m087DMTT3SWnrIey1LHEeqcTd9SZIPTZMpqoXGGjJZN5ySGjDdxmlnH8q9KA5akDFn8UzJ_5Qgv04VWJx69t-H-_OyuP-BVpwVu0IYz3g1DY33tK-MEGsrTvhZe6LRWjpSPQlzZVggz9vH8oqSSAQKMA2MlSEbUM-0dWEzxc3eBOefHTgoPQQ4CYYKwqyVyTOu1Y0Xccw-atX2jvBTUiOpMs-eoAiQiQKISkD1QNQrRD8-IMOj_PXX__1MPYJWeylS_Q1icTebuCOnHTB8X_nUMS73L4WBE1-HNw_ADnwncIA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BEQIGBAVEeXpgNU3c1LXZqopSKHQBJLYoflSkgiTqY2Dht3POg4eEGNgix5as--zzZ_nuO4Azzo0V_phRzT1NA2lwS42NT5GLjK1oKSPz1_O7ER88BjdP7acl6FW5MC6ssvT9hU_PvXXZ0iyt2cziuHnvSaTu3Ml5utp4gi_DilOnatdgpXs9HIw-HxOYzAtYuv7UDfhK5GlOzhEFxNtphrK2y6dpt_zfj6hvx05_CzZLvki6xZS2YckmdVjrVWXa6rDxTVGwDqtXeaXetx14H8XzaYrLg5o0s4boNHqh7swyBCk33veJjqYqTS5Il6SJpYh2RmZvCRLCWTwjldY4QVJLZgunh4wfUZIaS7KvZAMSJwSJ_HO8eKWIMFG5XCfevnfhsX_50BvQstgC1WjGOe1IqY2vfKEtQ0N5ylfMk1YpYZ34kcTNbRjTYx-vMIILHiDG2DESzCmJerq1B7UEp7sPxFo_spx5iHMQMB3IjuJIM43XioSjnw04r-wbZoWmRlgFm03CEpDQARIWgDRAVCiEPxZHiH7_76EH_x96CmuDh7vb8PZ6NDyEdfeniPw7gtp8urDHyEbm6qRcbR9NNt0u
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen-doped+coal-based+porous+carbon%3A+A+one-step+synthesis+approach+for+superior+anode+performance+in+lithium-ion+batteries&rft.jtitle=Diamond+and+related+materials&rft.au=Jiang%2C+Dongwei&rft.au=Li%2C+Songquan&rft.au=Li%2C+Xu&rft.au=Jin%2C+Yongzhong&rft.date=2025-08-01&rft.issn=0925-9635&rft.volume=157&rft.spage=112531&rft_id=info:doi/10.1016%2Fj.diamond.2025.112531&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_diamond_2025_112531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-9635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-9635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-9635&client=summon