Strain–induced robust ferromagnetism and exchange bias effect in epitaxial LaMnO3/SrFeO2.5 bilayer

Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects...

Full description

Saved in:
Bibliographic Details
Published inJournal of alloys and compounds Vol. 1036; p. 181931
Main Authors Zhang, Jun, Zhao, Ye, Shen, Yufan, Gao, Xiaoli, Ma, Jianchun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 20.07.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects, and constructed bilayers with reversed stacking sequences. When SFO was deposited preferentially, the ferromagnetism and EB effect of the SFO/LMO bilayer were relatively weak. Conversely, when LMO was deposited preferentially, the large tensile–strain provided by the SrTiO3 (STO) substrate led to an increased presence of Mn4 + ions within the LMO layer in the LMO/SFO bilayer, in which the double exchange mechanism of the Mn3+–O–Mn4+ ions not only resulted in robust ferromagnetism but also coupled with SFO to generate a significant EB effect. Our research presents a strategy for modulating the magnetic properties and the coupling behavior at the heterogeneous interface via strain engineering, thus broadening the techniques for generating EB. •The antiferromagnetic SrFeO2.5 and antiferromagnetic LaMnO3 targets were used to prepare bilayer.•The tensile strain of the substrate causes more Mn4+ ions to be generated in the LaMnO3 layer.•There is a strong exchange bias between ferromagnetic LaMnO3 induced by tensile strain and antiferromagnetic SrFeO2.5.
AbstractList Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects, and constructed bilayers with reversed stacking sequences. When SFO was deposited preferentially, the ferromagnetism and EB effect of the SFO/LMO bilayer were relatively weak. Conversely, when LMO was deposited preferentially, the large tensile–strain provided by the SrTiO3 (STO) substrate led to an increased presence of Mn4 + ions within the LMO layer in the LMO/SFO bilayer, in which the double exchange mechanism of the Mn3+–O–Mn4+ ions not only resulted in robust ferromagnetism but also coupled with SFO to generate a significant EB effect. Our research presents a strategy for modulating the magnetic properties and the coupling behavior at the heterogeneous interface via strain engineering, thus broadening the techniques for generating EB. •The antiferromagnetic SrFeO2.5 and antiferromagnetic LaMnO3 targets were used to prepare bilayer.•The tensile strain of the substrate causes more Mn4+ ions to be generated in the LaMnO3 layer.•There is a strong exchange bias between ferromagnetic LaMnO3 induced by tensile strain and antiferromagnetic SrFeO2.5.
ArticleNumber 181931
Author Ma, Jianchun
Shen, Yufan
Zhao, Ye
Gao, Xiaoli
Zhang, Jun
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0002-2520-956X
  surname: Zhang
  fullname: Zhang, Jun
  email: zhangjunclz@126.com
  organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China
– sequence: 2
  givenname: Ye
  surname: Zhao
  fullname: Zhao, Ye
  organization: School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
– sequence: 3
  givenname: Yufan
  surname: Shen
  fullname: Shen, Yufan
  organization: School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China
– sequence: 4
  givenname: Xiaoli
  surname: Gao
  fullname: Gao, Xiaoli
  organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China
– sequence: 5
  givenname: Jianchun
  surname: Ma
  fullname: Ma, Jianchun
  organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China
BookMark eNqFkE1OwzAUhL0oEi1wBCRfIKl_4sRZIVRRQCrqorC2HPulOEqcyk5Ru-MO3JCTkKrds3qLeTOa-WZo4nsPCN1TklJC83mTNrptTd-ljDCRUklLTidoSkomEsmlvEazGBtCyEmYIrsZgnb-9_vHebs3YHHoq30ccA0h9J3eehhc7LD2FsPBfGq_BVw5HTHUNZgBO49h5wZ9cLrFK_3m13y-CUtYs1SMj60-QrhFV7VuI9xd7g36WD69L16S1fr5dfG4SgwT5ZDk1hZlIQorKsMYqyomDOM0A1rkmdA5ZZIJVnMouRUgNc11lteSSQnAs4rwGyTOuSb0MQao1S64ToejokSd8KhGXfCoEx51xjP6Hs4-GMt9OQgqGgd-pOHCuFHZ3v2T8AfDonWq
Cites_doi 10.3390/molecules29143244
10.1063/1.4960300
10.1016/j.physrep.2005.08.004
10.1038/s41467-023-37918-7
10.1002/admi.202001172
10.1103/PhysRevB.110.104424
10.3390/catal11010076
10.1002/apxr.202300129
10.1016/S0304-8853(98)00266-2
10.3390/s16071030
10.1103/PhysRevB.107.054405
10.1016/j.jmmm.2020.167303
10.1038/srep02412
10.1103/PhysRevB.101.024422
10.1103/PhysRevB.104.L100401
10.1016/j.optmat.2022.111973
10.1063/5.0028864
10.1134/1.1130735
10.1016/j.actamat.2024.120129
10.1088/0022-3727/33/23/201
10.1007/s13204-021-01870-z
10.1103/PhysRevB.109.144423
10.1063/5.0062993
10.1007/s40843-018-9387-0
10.1103/PhysRev.79.350
10.1016/j.apsusc.2022.152914
10.1088/1674-1056/18/11/065
10.1016/j.jallcom.2023.172081
10.1021/acs.nanolett.4c01031
10.1016/j.physleta.2017.01.065
10.1021/acsami.9b07639
10.1103/PhysRev.100.564
10.1103/PhysRev.102.1413
10.1021/acsami.7b11930
10.1039/D3MA00854A
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.jallcom.2025.181931
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
ExternalDocumentID 10_1016_j_jallcom_2025_181931
S0925838825034929
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFS
ACIWK
ACNCT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSM
SSZ
T5K
TWZ
XPP
ZMT
~G-
29J
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
RIG
SMS
T9H
WUQ
ID FETCH-LOGICAL-c259t-6dd79757d5bc222bb25c2314e17645a6128252f3e93d5e8a16a46f8288ee34b03
IEDL.DBID .~1
ISSN 0925-8388
IngestDate Thu Aug 14 00:00:34 EDT 2025
Sat Aug 30 17:17:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Double exchange mechanism
Exchange bias field
Magnetic anisotropy
Coercivity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-6dd79757d5bc222bb25c2314e17645a6128252f3e93d5e8a16a46f8288ee34b03
ORCID 0000-0002-2520-956X
ParticipantIDs crossref_primary_10_1016_j_jallcom_2025_181931
elsevier_sciencedirect_doi_10_1016_j_jallcom_2025_181931
PublicationCentury 2000
PublicationDate 2025-07-20
PublicationDateYYYYMMDD 2025-07-20
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-20
  day: 20
PublicationDecade 2020
PublicationTitle Journal of alloys and compounds
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Nogués, Schuller (bib12) 1999; 192
Hu, Cui, Yue, Wang, Ohnishi, Wu, Su, Sato, Yamada, Kimura (bib21) 2024; 24
Huang, Zhang, Tong, Li, Peng, Lin, Shi, Xue, Dai, Cheng, Branco, Xu, Han, Cheng, Miao, Ye (bib26) 2023; 14
Ji, Yan, Zhou, Wang, Zhang, Li, Kang, Xu (bib20) 2020; 117
Perzanowski, Chojenka, Szkudlarek, Krupinski (bib11) 2024; 276
Bansal, de h-Óra, Akram, Giri, Li, Driscoll, Maity (bib17) 2024; 3
Meiklejohn, Bean (bib1) 1956; 102
Karuppiah, Thirumalraj, Alagar, Piraman, Li, Yang (bib36) 2021; 11
Guo, Zhao, Lu, Shi, Tian, Chen, Yan, Bai, Harder (bib2) 2021; 104
Elphick, Fernandez, Klemmer, Thiele, Grady (bib9) 2016; 109
Zhang, Su, Ma (bib5) 2024; 29
Anderson (bib38) 1950; 79
Zhang, Zhou, Yan, Ji, Li, Quan, Bai, Xu (bib27) 2019; 11
Zhang, Xie, Zhan, Hu (bib6) 2021; 103
Nogués, Sort, Langlais, Skumryev, Suriñach, Muñoz, Baró (bib14) 2005; 422
Pirogov, Teplykh, Voronin, Kar'kin, Balagurov, Pomyakushin, Sikolenko, Petrov, Cherepanov, Filonova (bib29) 1999; 41
Wu, Deng, Tan, Xiao, Hu, Li (bib30) 2009; 18
Goyat, Behera, Barwal, Siwach, Goyat, Gupta, Pandey, Kumar, Hait, Chaudhary (bib7) 2022; 588
Kohn, Kovács, Fan, McIntyre, Ward, Goff (bib25) 2013; 3
Yang, Zhou, Sun, Liu (bib10) 2017; 381
Zhou, Ji, Bai, Quan, Xu (bib28) 2019; 62
Goodenough (bib31) 1955; 100
Zhang (bib37) 2024; 5
Palai, Kumar, Tahir, Gupta, Sarangi, Bedanta, Tripathy, Mukhopadhyay, Hossain, Samal (bib3) 2024; 109
Zhou, Ji, Lin, Zhang, Bai, Chen, Wu, Xu (bib34) 2020; 101
Bandyopadhyay, Atulasimha, Barman (bib24) 2021; 8
Sharma, Albisetti, Monticelli, Bertacco, Petti (bib8) 2016; 16
Stamps (bib13) 2000; 33
Bhatt, Kumar, Kakkar, Kinane, Caruana, Langridge, Bera, Gupta, Reddy, Singh (bib23) 2024; 110
Niu, Liu, Gu, Chen, Zhang, Zhang, Chen, Wang, Du, Song, Pan, Pryds, Wang, Wang, Xu, Chen, Zhang (bib35) 2018; 4
Chen, Luo, Chen, Abrudan, Koster, Mishra, Radu (bib19) 2020; 4
Wahba, Sharmoukh, Yakout, Khalil (bib33) 2022; 124
Bhatt, Kumar, Prajapat, Kinane, Caruana, Langridge, Basu, Singh (bib18) 2020; 7
Sharma, Suresh, Alam (bib16) 2023; 107
Kumari, Kumar, Lee, Koo (bib15) 2023; 13
Sahoo, Padhan, Prellier (bib22) 2017; 9
Zhou, Wang, Ji, Zhang, Kang, Li, Xu (bib32) 2020; 515
Chang, Liu, Lin, Hu, Kimura, Lo, Lin (bib4) 2023; 968
Bhatt (10.1016/j.jallcom.2025.181931_bib23) 2024; 110
Kumari (10.1016/j.jallcom.2025.181931_bib15) 2023; 13
Bandyopadhyay (10.1016/j.jallcom.2025.181931_bib24) 2021; 8
Palai (10.1016/j.jallcom.2025.181931_bib3) 2024; 109
Sharma (10.1016/j.jallcom.2025.181931_bib8) 2016; 16
Niu (10.1016/j.jallcom.2025.181931_bib35) 2018; 4
Hu (10.1016/j.jallcom.2025.181931_bib21) 2024; 24
Bansal (10.1016/j.jallcom.2025.181931_bib17) 2024; 3
Wahba (10.1016/j.jallcom.2025.181931_bib33) 2022; 124
Guo (10.1016/j.jallcom.2025.181931_bib2) 2021; 104
Sharma (10.1016/j.jallcom.2025.181931_bib16) 2023; 107
Ji (10.1016/j.jallcom.2025.181931_bib20) 2020; 117
Nogués (10.1016/j.jallcom.2025.181931_bib12) 1999; 192
Kohn (10.1016/j.jallcom.2025.181931_bib25) 2013; 3
Perzanowski (10.1016/j.jallcom.2025.181931_bib11) 2024; 276
Zhang (10.1016/j.jallcom.2025.181931_bib5) 2024; 29
Yang (10.1016/j.jallcom.2025.181931_bib10) 2017; 381
Pirogov (10.1016/j.jallcom.2025.181931_bib29) 1999; 41
Anderson (10.1016/j.jallcom.2025.181931_bib38) 1950; 79
Zhang (10.1016/j.jallcom.2025.181931_bib37) 2024; 5
Zhou (10.1016/j.jallcom.2025.181931_bib28) 2019; 62
Zhou (10.1016/j.jallcom.2025.181931_bib32) 2020; 515
Elphick (10.1016/j.jallcom.2025.181931_bib9) 2016; 109
Wu (10.1016/j.jallcom.2025.181931_bib30) 2009; 18
Meiklejohn (10.1016/j.jallcom.2025.181931_bib1) 1956; 102
Karuppiah (10.1016/j.jallcom.2025.181931_bib36) 2021; 11
Stamps (10.1016/j.jallcom.2025.181931_bib13) 2000; 33
Sahoo (10.1016/j.jallcom.2025.181931_bib22) 2017; 9
Zhang (10.1016/j.jallcom.2025.181931_bib6) 2021; 103
Goyat (10.1016/j.jallcom.2025.181931_bib7) 2022; 588
Zhang (10.1016/j.jallcom.2025.181931_bib27) 2019; 11
Zhou (10.1016/j.jallcom.2025.181931_bib34) 2020; 101
Nogués (10.1016/j.jallcom.2025.181931_bib14) 2005; 422
Chen (10.1016/j.jallcom.2025.181931_bib19) 2020; 4
Bhatt (10.1016/j.jallcom.2025.181931_bib18) 2020; 7
Goodenough (10.1016/j.jallcom.2025.181931_bib31) 1955; 100
Huang (10.1016/j.jallcom.2025.181931_bib26) 2023; 14
Chang (10.1016/j.jallcom.2025.181931_bib4) 2023; 968
References_xml – volume: 968
  year: 2023
  ident: bib4
  article-title: Field and temperature–controlled positive and negative exchange biases in CoO/YIG bilayers on GGG(111)
  publication-title: J. Alloy. Compd.
– volume: 62
  start-page: 1046
  year: 2019
  end-page: 1052
  ident: bib28
  article-title: Intrinsic exchange bias effect in strain–engineered single antiferromagnetic LaMnO
  publication-title: Sci. China Mater.
– volume: 29
  start-page: 3244
  year: 2024
  ident: bib5
  article-title: Strain–induced robust exchange bias effect in epitaxial La
  publication-title: Molecules
– volume: 110
  year: 2024
  ident: bib23
  article-title: Strain–driven exchange interaction and interface magnetism in LaNiO
  publication-title: Phys. Rev. B
– volume: 13
  start-page: 613
  year: 2023
  end-page: 621
  ident: bib15
  article-title: Investigating the origin of exchange bias effect in ferromagnetic FeNi nanoparticles prepared via controlled synthesis
  publication-title: Appl. Nanosci.
– volume: 79
  start-page: 350
  year: 1950
  ident: bib38
  article-title: Antiferromagnetism. Theory of superexchange interaction
  publication-title: Phys. Rev.
– volume: 102
  start-page: 1413
  year: 1956
  end-page: 1414
  ident: bib1
  article-title: New magnetic anisotropy
  publication-title: Phys. Rev.
– volume: 11
  start-page: 26460
  year: 2019
  end-page: 26466
  ident: bib27
  article-title: Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 100
  start-page: 564
  year: 1955
  ident: bib31
  article-title: Theory of the role of covalence in the perovskite-type manganites [La,
  publication-title: Phys. Rev.
– volume: 117
  year: 2020
  ident: bib20
  article-title: Polarity and charge redistribution induced emergent interfacial ferromagnetism in non–magnetic LaNiO
  publication-title: Appl. Phys. Lett.
– volume: 107
  year: 2023
  ident: bib16
  article-title: Large exchange bias in Mn–Ni–Sn Heusler alloys: Role of cluster spin glass state
  publication-title: Phys. Rev. B
– volume: 276
  year: 2024
  ident: bib11
  article-title: Magnetization reversal process in flat and patterned exchange–biased CoO/[Co/Pd] thin films
  publication-title: Acta Mater.
– volume: 8
  year: 2021
  ident: bib24
  article-title: Magnetic straintronics: manipulating the magnetization of magnetostrictive nanomagnets with strain for energy−efficient applications
  publication-title: Appl. Phys. Rev.
– volume: 588
  year: 2022
  ident: bib7
  article-title: Large exchange bias and spin pumping in ultrathin IrMn/Co system for spintronic device applications
  publication-title: Appl. Surf. Sci.
– volume: 104
  year: 2021
  ident: bib2
  article-title: High exchange–bias blocking temperature in an ultrathin amorphous antiferromagnet system
  publication-title: Phys. Rev. B
– volume: 4
  year: 2018
  ident: bib35
  article-title: Direct demonstration of the emergent magnetism resulting from the multivalence Mn in a LaMnO
  publication-title: Adv. Electron. Mater.
– volume: 515
  year: 2020
  ident: bib32
  article-title: The strain induced magnetic and anisotropic variations of LaCoO
  publication-title: J. Magn. Magn. Mater.
– volume: 14
  start-page: 2190
  year: 2023
  ident: bib26
  article-title: Manipulating exchange bias in 2D magnetic heterojunction for high−performance robust memory applications
  publication-title: Nat. Commun.
– volume: 109
  year: 2024
  ident: bib3
  article-title: Magnetic coupling at the interface between ultrathin tetragonal CuO and La
  publication-title: Phys. Rev. B
– volume: 101
  year: 2020
  ident: bib34
  article-title: Orbital reconstruction mediated giant vertical magnetization shift and insulator–to–metal transition in superlattices based on antiferromagnetic manganites
  publication-title: Phys. Rev. B
– volume: 41
  start-page: 91
  year: 1999
  end-page: 96
  ident: bib29
  article-title: Ferro–and antiferromagnetic ordering in LaMnO
  publication-title: Phys. Solid State
– volume: 9
  start-page: 36423
  year: 2017
  end-page: 36430
  ident: bib22
  article-title: Interfacial antiferromagnetic coupling and dual–exchange bias in tetragonal SrRuO
  publication-title: ACS Appl. Mater. Interfaces
– volume: 11
  start-page: 76
  year: 2021
  ident: bib36
  article-title: Solid-state ball–milling of Co
  publication-title: Catalysts
– volume: 422
  start-page: 65
  year: 2005
  end-page: 117
  ident: bib14
  article-title: Exchange bias in nanostructures
  publication-title: Phys. Rep.
– volume: 3
  start-page: 2412
  year: 2013
  ident: bib25
  article-title: The antiferromagnetic structures of IrMn
  publication-title: Sci. Rep.
– volume: 124
  year: 2022
  ident: bib33
  article-title: Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO
  publication-title: Opt. Mater.
– volume: 103
  year: 2021
  ident: bib6
  article-title: Anisotropic coercivity and the effects of interlayer exchange coupling in CoFeB/FeRh bilayers
  publication-title: Phys. Rev. B
– volume: 3
  start-page: 2300129
  year: 2024
  ident: bib17
  article-title: Tuneable vertical hysteresis loop shift in exchange coupled La
  publication-title: Adv. Phys. Res.
– volume: 24
  start-page: 6924
  year: 2024
  end-page: 6930
  ident: bib21
  article-title: Exchange bias induced by the spin–glass–like state in a Te–rich FeGeTe van der Waals ferromagnet
  publication-title: Nano Lett.
– volume: 18
  start-page: 5008
  year: 2009
  ident: bib30
  article-title: The structural, electronic, and magnetic properties of SrFeO
  publication-title: Chin. Phys. B
– volume: 16
  start-page: 1030
  year: 2016
  ident: bib8
  article-title: Exchange bias tuning for magnetoresistive sensors by inclusion of non–magnetic impurities
  publication-title: Sensors
– volume: 33
  start-page: R247
  year: 2000
  ident: bib13
  article-title: Mechanisms for exchange bias
  publication-title: J. Phys. D Appl. Phys.
– volume: 4
  year: 2020
  ident: bib19
  article-title: Charge–transfer–induced interfacial ferromagnetism in La
  publication-title: Phys. Rev. Mater.
– volume: 381
  start-page: 1213
  year: 2017
  end-page: 1222
  ident: bib10
  article-title: Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures
  publication-title: Phys. Lett. A
– volume: 192
  start-page: 203
  year: 1999
  end-page: 232
  ident: bib12
  article-title: Exchange bias
  publication-title: J. Magn. Magn. Mater.
– volume: 5
  start-page: 1340
  year: 2024
  ident: bib37
  article-title: Unlocking OER catalytic potential and chiral Fe
  publication-title: Mater. Adv.
– volume: 7
  year: 2020
  ident: bib18
  article-title: Emergent interfacial ferromagnetism and exchange bias effect in paramagnetic/ferromagnetic oxide heterostructures
  publication-title: Adv. Mater. Interfaces
– volume: 109
  year: 2016
  ident: bib9
  article-title: HAMR media based on exchange bias
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 3244
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib5
  article-title: Strain–induced robust exchange bias effect in epitaxial La0.7Sr0.3MnO3/LaFeO3 bilayers
  publication-title: Molecules
  doi: 10.3390/molecules29143244
– volume: 109
  year: 2016
  ident: 10.1016/j.jallcom.2025.181931_bib9
  article-title: HAMR media based on exchange bias
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4960300
– volume: 422
  start-page: 65
  year: 2005
  ident: 10.1016/j.jallcom.2025.181931_bib14
  article-title: Exchange bias in nanostructures
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.08.004
– volume: 14
  start-page: 2190
  year: 2023
  ident: 10.1016/j.jallcom.2025.181931_bib26
  article-title: Manipulating exchange bias in 2D magnetic heterojunction for high−performance robust memory applications
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-37918-7
– volume: 7
  year: 2020
  ident: 10.1016/j.jallcom.2025.181931_bib18
  article-title: Emergent interfacial ferromagnetism and exchange bias effect in paramagnetic/ferromagnetic oxide heterostructures
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.202001172
– volume: 110
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib23
  article-title: Strain–driven exchange interaction and interface magnetism in LaNiO3/La0.67Sr0.33MnO3 heterostructures
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.104424
– volume: 4
  year: 2018
  ident: 10.1016/j.jallcom.2025.181931_bib35
  article-title: Direct demonstration of the emergent magnetism resulting from the multivalence Mn in a LaMnO3 epitaxial thin film system
  publication-title: Adv. Electron. Mater.
– volume: 11
  start-page: 76
  year: 2021
  ident: 10.1016/j.jallcom.2025.181931_bib36
  article-title: Solid-state ball–milling of Co3O4 nano/microspheres and carbon black endorsed LaMnO3 perovskite catalyst for bifunctional oxygen electrocatalysis
  publication-title: Catalysts
  doi: 10.3390/catal11010076
– volume: 3
  start-page: 2300129
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib17
  article-title: Tuneable vertical hysteresis loop shift in exchange coupled La0.67Sr0.33MnO3–SrRuO3 bilayer
  publication-title: Adv. Phys. Res.
  doi: 10.1002/apxr.202300129
– volume: 192
  start-page: 203
  year: 1999
  ident: 10.1016/j.jallcom.2025.181931_bib12
  article-title: Exchange bias
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/S0304-8853(98)00266-2
– volume: 16
  start-page: 1030
  year: 2016
  ident: 10.1016/j.jallcom.2025.181931_bib8
  article-title: Exchange bias tuning for magnetoresistive sensors by inclusion of non–magnetic impurities
  publication-title: Sensors
  doi: 10.3390/s16071030
– volume: 107
  year: 2023
  ident: 10.1016/j.jallcom.2025.181931_bib16
  article-title: Large exchange bias in Mn–Ni–Sn Heusler alloys: Role of cluster spin glass state
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.054405
– volume: 515
  year: 2020
  ident: 10.1016/j.jallcom.2025.181931_bib32
  article-title: The strain induced magnetic and anisotropic variations of LaCoO3 thin films
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2020.167303
– volume: 3
  start-page: 2412
  year: 2013
  ident: 10.1016/j.jallcom.2025.181931_bib25
  article-title: The antiferromagnetic structures of IrMn3 and their influence on exchange−bias
  publication-title: Sci. Rep.
  doi: 10.1038/srep02412
– volume: 101
  year: 2020
  ident: 10.1016/j.jallcom.2025.181931_bib34
  article-title: Orbital reconstruction mediated giant vertical magnetization shift and insulator–to–metal transition in superlattices based on antiferromagnetic manganites
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.024422
– volume: 104
  year: 2021
  ident: 10.1016/j.jallcom.2025.181931_bib2
  article-title: High exchange–bias blocking temperature in an ultrathin amorphous antiferromagnet system
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.104.L100401
– volume: 124
  year: 2022
  ident: 10.1016/j.jallcom.2025.181931_bib33
  article-title: Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO3
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2022.111973
– volume: 117
  year: 2020
  ident: 10.1016/j.jallcom.2025.181931_bib20
  article-title: Polarity and charge redistribution induced emergent interfacial ferromagnetism in non–magnetic LaNiO3/SrMnO3 superlattices
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0028864
– volume: 41
  start-page: 91
  year: 1999
  ident: 10.1016/j.jallcom.2025.181931_bib29
  article-title: Ferro–and antiferromagnetic ordering in LaMnO3+δ
  publication-title: Phys. Solid State
  doi: 10.1134/1.1130735
– volume: 276
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib11
  article-title: Magnetization reversal process in flat and patterned exchange–biased CoO/[Co/Pd] thin films
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2024.120129
– volume: 33
  start-page: R247
  year: 2000
  ident: 10.1016/j.jallcom.2025.181931_bib13
  article-title: Mechanisms for exchange bias
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/33/23/201
– volume: 13
  start-page: 613
  year: 2023
  ident: 10.1016/j.jallcom.2025.181931_bib15
  article-title: Investigating the origin of exchange bias effect in ferromagnetic FeNi nanoparticles prepared via controlled synthesis
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-021-01870-z
– volume: 109
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib3
  article-title: Magnetic coupling at the interface between ultrathin tetragonal CuO and La0.7Sr0.3MnO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.144423
– volume: 8
  year: 2021
  ident: 10.1016/j.jallcom.2025.181931_bib24
  article-title: Magnetic straintronics: manipulating the magnetization of magnetostrictive nanomagnets with strain for energy−efficient applications
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/5.0062993
– volume: 62
  start-page: 1046
  year: 2019
  ident: 10.1016/j.jallcom.2025.181931_bib28
  article-title: Intrinsic exchange bias effect in strain–engineered single antiferromagnetic LaMnO3 films
  publication-title: Sci. China Mater.
  doi: 10.1007/s40843-018-9387-0
– volume: 79
  start-page: 350
  year: 1950
  ident: 10.1016/j.jallcom.2025.181931_bib38
  article-title: Antiferromagnetism. Theory of superexchange interaction
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.79.350
– volume: 103
  year: 2021
  ident: 10.1016/j.jallcom.2025.181931_bib6
  article-title: Anisotropic coercivity and the effects of interlayer exchange coupling in CoFeB/FeRh bilayers
  publication-title: Phys. Rev. B
– volume: 588
  year: 2022
  ident: 10.1016/j.jallcom.2025.181931_bib7
  article-title: Large exchange bias and spin pumping in ultrathin IrMn/Co system for spintronic device applications
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2022.152914
– volume: 18
  start-page: 5008
  year: 2009
  ident: 10.1016/j.jallcom.2025.181931_bib30
  article-title: The structural, electronic, and magnetic properties of SrFeOn (n = 2 and 2.5): a GGA+U study
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/18/11/065
– volume: 968
  year: 2023
  ident: 10.1016/j.jallcom.2025.181931_bib4
  article-title: Field and temperature–controlled positive and negative exchange biases in CoO/YIG bilayers on GGG(111)
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2023.172081
– volume: 24
  start-page: 6924
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib21
  article-title: Exchange bias induced by the spin–glass–like state in a Te–rich FeGeTe van der Waals ferromagnet
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.4c01031
– volume: 381
  start-page: 1213
  year: 2017
  ident: 10.1016/j.jallcom.2025.181931_bib10
  article-title: Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2017.01.065
– volume: 11
  start-page: 26460
  year: 2019
  ident: 10.1016/j.jallcom.2025.181931_bib27
  article-title: Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO3-x/La0.7Sr0.3MnO3 bilayers
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b07639
– volume: 100
  start-page: 564
  year: 1955
  ident: 10.1016/j.jallcom.2025.181931_bib31
  article-title: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.100.564
– volume: 102
  start-page: 1413
  year: 1956
  ident: 10.1016/j.jallcom.2025.181931_bib1
  article-title: New magnetic anisotropy
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.102.1413
– volume: 9
  start-page: 36423
  year: 2017
  ident: 10.1016/j.jallcom.2025.181931_bib22
  article-title: Interfacial antiferromagnetic coupling and dual–exchange bias in tetragonal SrRuO3−PrMnO3 superlattices
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11930
– volume: 4
  year: 2020
  ident: 10.1016/j.jallcom.2025.181931_bib19
  article-title: Charge–transfer–induced interfacial ferromagnetism in La0.7Sr0.3MnO3/NdNiO3
  publication-title: Phys. Rev. Mater.
– volume: 5
  start-page: 1340
  year: 2024
  ident: 10.1016/j.jallcom.2025.181931_bib37
  article-title: Unlocking OER catalytic potential and chiral Fe3O4 film as a game–changer for electrochemical water oxidation pathway and by–product control
  publication-title: Mater. Adv.
  doi: 10.1039/D3MA00854A
SSID ssj0001931
Score 2.466364
Snippet Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 181931
SubjectTerms Coercivity
Double exchange mechanism
Exchange bias field
Magnetic anisotropy
Title Strain–induced robust ferromagnetism and exchange bias effect in epitaxial LaMnO3/SrFeO2.5 bilayer
URI https://dx.doi.org/10.1016/j.jallcom.2025.181931
Volume 1036
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhXf7MFrkjbZZJNjKZb6PlTBW9jsTiWlTSWN4En8D_5Df4mzeVAF8eAxyyws305mvknmAXCmtZKJCtFCLtDiAb2KklYsGVB8IRSKsGy7eHMbDB745aP_uAS9phbGpFXWtr-y6aW1rlecGk3nOU2dYTtyzT8_CnFMjxXXFPFxLoyW22-LNA8iKOXUPBK2jPSiiscZ22M5mZikEZc8v02-LvI6v_unbz6nvwWbNVlk3eo827CEWQvWes2MthZsfGsn2ILVMp1TzXdAD8vRD5_vHxRy0-Vpls-Sl3nBRpjns6l8yrBI51MmM83wtSr-ZUkq56zK72BpxtDME3kl9WTX8ia785xh3sc71_ZJcCKJqe_CQ__8vjew6nkKlqIgp7ACrUUkfKH9RBEtSBLXV0TvOHZEwH1JXIewdEceRp72MZSdQPJgRCFZiOjxpO3twXI2y3Af6LQog5C4m-Ajrjwd-kjOVqNEFWkKKg_AblCMn6u2GXGTTzaOa9hjA3tcwX4AYYN1_OP-YzLtf289_P_WI1g3T-Zbrds-huUif8ETIhlFclpq0SmsdC-uBrdfkrLTOQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswEB1BEQIWCAqIN16wTdMmdh5LVFEVaMuiILGLHHuKUrUpSoPE8v7D_cP7JXecBw8JsWDreCTrZDxzJpkHwKXWSsYqQAu5jxb36CpKWrGkR_GFr9APiraLw5HXf-S3T-JpBbp1LYxJq6xsf2nTC2tdrdgVmvZLktjjduiYf34U4pgeK064CmumO5VowNrVzV1_9G6QiaMUg_Nov2UEPgp57GlrKmczkzfikPNvkbsL3c73LuqT2-ntwHbFF9lVeaRdWMG0CRvdekxbE7Y-dRRswnqR0amWe6DHxfSHf3_-UtRN70-zbBG_LnM2wSxbzOVzinmynDOZaoZvZf0vixO5ZGWKB0tShmakyBtpKBvIYXrv2uOsh_dOS9DGmSSyvg-PveuHbt-qRipYiuKc3PK09kNf-FrEiphBHDtCEcPj2PE9LiTRHYLTmbgYulpgIDue5N6EorIA0eVx2z2ARrpI8RDotCi9gOibzydcuToQSP5Wo0QVaoorj6BVoxi9lJ0zojqlbBpVsEcG9qiE_QiCGuvoiwpEZN1_Fj3-vegFbPQfhoNocDO6O4FN88R8unXap9DIs1c8I86Rx-eVTv0H3LrV6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain%E2%80%93induced+robust+ferromagnetism+and+exchange+bias+effect+in+epitaxial+LaMnO3%2FSrFeO2.5+bilayer&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhang%2C+Jun&rft.au=Zhao%2C+Ye&rft.au=Shen%2C+Yufan&rft.au=Gao%2C+Xiaoli&rft.date=2025-07-20&rft.issn=0925-8388&rft.volume=1036&rft.spage=181931&rft_id=info:doi/10.1016%2Fj.jallcom.2025.181931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2025_181931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon