Strain–induced robust ferromagnetism and exchange bias effect in epitaxial LaMnO3/SrFeO2.5 bilayer
Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects...
Saved in:
Published in | Journal of alloys and compounds Vol. 1036; p. 181931 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
20.07.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects, and constructed bilayers with reversed stacking sequences. When SFO was deposited preferentially, the ferromagnetism and EB effect of the SFO/LMO bilayer were relatively weak. Conversely, when LMO was deposited preferentially, the large tensile–strain provided by the SrTiO3 (STO) substrate led to an increased presence of Mn4 + ions within the LMO layer in the LMO/SFO bilayer, in which the double exchange mechanism of the Mn3+–O–Mn4+ ions not only resulted in robust ferromagnetism but also coupled with SFO to generate a significant EB effect. Our research presents a strategy for modulating the magnetic properties and the coupling behavior at the heterogeneous interface via strain engineering, thus broadening the techniques for generating EB.
•The antiferromagnetic SrFeO2.5 and antiferromagnetic LaMnO3 targets were used to prepare bilayer.•The tensile strain of the substrate causes more Mn4+ ions to be generated in the LaMnO3 layer.•There is a strong exchange bias between ferromagnetic LaMnO3 induced by tensile strain and antiferromagnetic SrFeO2.5. |
---|---|
AbstractList | Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance of magnetic memory devices. Here, we employed A–type AFM LaMnO3 (LMO) and G–type AFM SrFeO2.5 (SFO) native materials as the research subjects, and constructed bilayers with reversed stacking sequences. When SFO was deposited preferentially, the ferromagnetism and EB effect of the SFO/LMO bilayer were relatively weak. Conversely, when LMO was deposited preferentially, the large tensile–strain provided by the SrTiO3 (STO) substrate led to an increased presence of Mn4 + ions within the LMO layer in the LMO/SFO bilayer, in which the double exchange mechanism of the Mn3+–O–Mn4+ ions not only resulted in robust ferromagnetism but also coupled with SFO to generate a significant EB effect. Our research presents a strategy for modulating the magnetic properties and the coupling behavior at the heterogeneous interface via strain engineering, thus broadening the techniques for generating EB.
•The antiferromagnetic SrFeO2.5 and antiferromagnetic LaMnO3 targets were used to prepare bilayer.•The tensile strain of the substrate causes more Mn4+ ions to be generated in the LaMnO3 layer.•There is a strong exchange bias between ferromagnetic LaMnO3 induced by tensile strain and antiferromagnetic SrFeO2.5. |
ArticleNumber | 181931 |
Author | Ma, Jianchun Shen, Yufan Zhao, Ye Gao, Xiaoli Zhang, Jun |
Author_xml | – sequence: 1 givenname: Jun orcidid: 0000-0002-2520-956X surname: Zhang fullname: Zhang, Jun email: zhangjunclz@126.com organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China – sequence: 2 givenname: Ye surname: Zhao fullname: Zhao, Ye organization: School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China – sequence: 3 givenname: Yufan surname: Shen fullname: Shen, Yufan organization: School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030031, China – sequence: 4 givenname: Xiaoli surname: Gao fullname: Gao, Xiaoli organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China – sequence: 5 givenname: Jianchun surname: Ma fullname: Ma, Jianchun organization: Department of Chemistry & Material Engineering, Lyuliang University, Lyuliang 033001, China |
BookMark | eNqFkE1OwzAUhL0oEi1wBCRfIKl_4sRZIVRRQCrqorC2HPulOEqcyk5Ru-MO3JCTkKrds3qLeTOa-WZo4nsPCN1TklJC83mTNrptTd-ljDCRUklLTidoSkomEsmlvEazGBtCyEmYIrsZgnb-9_vHebs3YHHoq30ccA0h9J3eehhc7LD2FsPBfGq_BVw5HTHUNZgBO49h5wZ9cLrFK_3m13y-CUtYs1SMj60-QrhFV7VuI9xd7g36WD69L16S1fr5dfG4SgwT5ZDk1hZlIQorKsMYqyomDOM0A1rkmdA5ZZIJVnMouRUgNc11lteSSQnAs4rwGyTOuSb0MQao1S64ToejokSd8KhGXfCoEx51xjP6Hs4-GMt9OQgqGgd-pOHCuFHZ3v2T8AfDonWq |
Cites_doi | 10.3390/molecules29143244 10.1063/1.4960300 10.1016/j.physrep.2005.08.004 10.1038/s41467-023-37918-7 10.1002/admi.202001172 10.1103/PhysRevB.110.104424 10.3390/catal11010076 10.1002/apxr.202300129 10.1016/S0304-8853(98)00266-2 10.3390/s16071030 10.1103/PhysRevB.107.054405 10.1016/j.jmmm.2020.167303 10.1038/srep02412 10.1103/PhysRevB.101.024422 10.1103/PhysRevB.104.L100401 10.1016/j.optmat.2022.111973 10.1063/5.0028864 10.1134/1.1130735 10.1016/j.actamat.2024.120129 10.1088/0022-3727/33/23/201 10.1007/s13204-021-01870-z 10.1103/PhysRevB.109.144423 10.1063/5.0062993 10.1007/s40843-018-9387-0 10.1103/PhysRev.79.350 10.1016/j.apsusc.2022.152914 10.1088/1674-1056/18/11/065 10.1016/j.jallcom.2023.172081 10.1021/acs.nanolett.4c01031 10.1016/j.physleta.2017.01.065 10.1021/acsami.9b07639 10.1103/PhysRev.100.564 10.1103/PhysRev.102.1413 10.1021/acsami.7b11930 10.1039/D3MA00854A |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. |
Copyright_xml | – notice: 2025 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jallcom.2025.181931 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Physics |
ExternalDocumentID | 10_1016_j_jallcom_2025_181931 S0925838825034929 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABXRA ACDAQ ACGFS ACIWK ACNCT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSM SSZ T5K TWZ XPP ZMT ~G- 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SMS T9H WUQ |
ID | FETCH-LOGICAL-c259t-6dd79757d5bc222bb25c2314e17645a6128252f3e93d5e8a16a46f8288ee34b03 |
IEDL.DBID | .~1 |
ISSN | 0925-8388 |
IngestDate | Thu Aug 14 00:00:34 EDT 2025 Sat Aug 30 17:17:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Double exchange mechanism Exchange bias field Magnetic anisotropy Coercivity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-6dd79757d5bc222bb25c2314e17645a6128252f3e93d5e8a16a46f8288ee34b03 |
ORCID | 0000-0002-2520-956X |
ParticipantIDs | crossref_primary_10_1016_j_jallcom_2025_181931 elsevier_sciencedirect_doi_10_1016_j_jallcom_2025_181931 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-20 |
PublicationDateYYYYMMDD | 2025-07-20 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Journal of alloys and compounds |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Nogués, Schuller (bib12) 1999; 192 Hu, Cui, Yue, Wang, Ohnishi, Wu, Su, Sato, Yamada, Kimura (bib21) 2024; 24 Huang, Zhang, Tong, Li, Peng, Lin, Shi, Xue, Dai, Cheng, Branco, Xu, Han, Cheng, Miao, Ye (bib26) 2023; 14 Ji, Yan, Zhou, Wang, Zhang, Li, Kang, Xu (bib20) 2020; 117 Perzanowski, Chojenka, Szkudlarek, Krupinski (bib11) 2024; 276 Bansal, de h-Óra, Akram, Giri, Li, Driscoll, Maity (bib17) 2024; 3 Meiklejohn, Bean (bib1) 1956; 102 Karuppiah, Thirumalraj, Alagar, Piraman, Li, Yang (bib36) 2021; 11 Guo, Zhao, Lu, Shi, Tian, Chen, Yan, Bai, Harder (bib2) 2021; 104 Elphick, Fernandez, Klemmer, Thiele, Grady (bib9) 2016; 109 Zhang, Su, Ma (bib5) 2024; 29 Anderson (bib38) 1950; 79 Zhang, Zhou, Yan, Ji, Li, Quan, Bai, Xu (bib27) 2019; 11 Zhang, Xie, Zhan, Hu (bib6) 2021; 103 Nogués, Sort, Langlais, Skumryev, Suriñach, Muñoz, Baró (bib14) 2005; 422 Pirogov, Teplykh, Voronin, Kar'kin, Balagurov, Pomyakushin, Sikolenko, Petrov, Cherepanov, Filonova (bib29) 1999; 41 Wu, Deng, Tan, Xiao, Hu, Li (bib30) 2009; 18 Goyat, Behera, Barwal, Siwach, Goyat, Gupta, Pandey, Kumar, Hait, Chaudhary (bib7) 2022; 588 Kohn, Kovács, Fan, McIntyre, Ward, Goff (bib25) 2013; 3 Yang, Zhou, Sun, Liu (bib10) 2017; 381 Zhou, Ji, Bai, Quan, Xu (bib28) 2019; 62 Goodenough (bib31) 1955; 100 Zhang (bib37) 2024; 5 Palai, Kumar, Tahir, Gupta, Sarangi, Bedanta, Tripathy, Mukhopadhyay, Hossain, Samal (bib3) 2024; 109 Zhou, Ji, Lin, Zhang, Bai, Chen, Wu, Xu (bib34) 2020; 101 Bandyopadhyay, Atulasimha, Barman (bib24) 2021; 8 Sharma, Albisetti, Monticelli, Bertacco, Petti (bib8) 2016; 16 Stamps (bib13) 2000; 33 Bhatt, Kumar, Kakkar, Kinane, Caruana, Langridge, Bera, Gupta, Reddy, Singh (bib23) 2024; 110 Niu, Liu, Gu, Chen, Zhang, Zhang, Chen, Wang, Du, Song, Pan, Pryds, Wang, Wang, Xu, Chen, Zhang (bib35) 2018; 4 Chen, Luo, Chen, Abrudan, Koster, Mishra, Radu (bib19) 2020; 4 Wahba, Sharmoukh, Yakout, Khalil (bib33) 2022; 124 Bhatt, Kumar, Prajapat, Kinane, Caruana, Langridge, Basu, Singh (bib18) 2020; 7 Sharma, Suresh, Alam (bib16) 2023; 107 Kumari, Kumar, Lee, Koo (bib15) 2023; 13 Sahoo, Padhan, Prellier (bib22) 2017; 9 Zhou, Wang, Ji, Zhang, Kang, Li, Xu (bib32) 2020; 515 Chang, Liu, Lin, Hu, Kimura, Lo, Lin (bib4) 2023; 968 Bhatt (10.1016/j.jallcom.2025.181931_bib23) 2024; 110 Kumari (10.1016/j.jallcom.2025.181931_bib15) 2023; 13 Bandyopadhyay (10.1016/j.jallcom.2025.181931_bib24) 2021; 8 Palai (10.1016/j.jallcom.2025.181931_bib3) 2024; 109 Sharma (10.1016/j.jallcom.2025.181931_bib8) 2016; 16 Niu (10.1016/j.jallcom.2025.181931_bib35) 2018; 4 Hu (10.1016/j.jallcom.2025.181931_bib21) 2024; 24 Bansal (10.1016/j.jallcom.2025.181931_bib17) 2024; 3 Wahba (10.1016/j.jallcom.2025.181931_bib33) 2022; 124 Guo (10.1016/j.jallcom.2025.181931_bib2) 2021; 104 Sharma (10.1016/j.jallcom.2025.181931_bib16) 2023; 107 Ji (10.1016/j.jallcom.2025.181931_bib20) 2020; 117 Nogués (10.1016/j.jallcom.2025.181931_bib12) 1999; 192 Kohn (10.1016/j.jallcom.2025.181931_bib25) 2013; 3 Perzanowski (10.1016/j.jallcom.2025.181931_bib11) 2024; 276 Zhang (10.1016/j.jallcom.2025.181931_bib5) 2024; 29 Yang (10.1016/j.jallcom.2025.181931_bib10) 2017; 381 Pirogov (10.1016/j.jallcom.2025.181931_bib29) 1999; 41 Anderson (10.1016/j.jallcom.2025.181931_bib38) 1950; 79 Zhang (10.1016/j.jallcom.2025.181931_bib37) 2024; 5 Zhou (10.1016/j.jallcom.2025.181931_bib28) 2019; 62 Zhou (10.1016/j.jallcom.2025.181931_bib32) 2020; 515 Elphick (10.1016/j.jallcom.2025.181931_bib9) 2016; 109 Wu (10.1016/j.jallcom.2025.181931_bib30) 2009; 18 Meiklejohn (10.1016/j.jallcom.2025.181931_bib1) 1956; 102 Karuppiah (10.1016/j.jallcom.2025.181931_bib36) 2021; 11 Stamps (10.1016/j.jallcom.2025.181931_bib13) 2000; 33 Sahoo (10.1016/j.jallcom.2025.181931_bib22) 2017; 9 Zhang (10.1016/j.jallcom.2025.181931_bib6) 2021; 103 Goyat (10.1016/j.jallcom.2025.181931_bib7) 2022; 588 Zhang (10.1016/j.jallcom.2025.181931_bib27) 2019; 11 Zhou (10.1016/j.jallcom.2025.181931_bib34) 2020; 101 Nogués (10.1016/j.jallcom.2025.181931_bib14) 2005; 422 Chen (10.1016/j.jallcom.2025.181931_bib19) 2020; 4 Bhatt (10.1016/j.jallcom.2025.181931_bib18) 2020; 7 Goodenough (10.1016/j.jallcom.2025.181931_bib31) 1955; 100 Huang (10.1016/j.jallcom.2025.181931_bib26) 2023; 14 Chang (10.1016/j.jallcom.2025.181931_bib4) 2023; 968 |
References_xml | – volume: 968 year: 2023 ident: bib4 article-title: Field and temperature–controlled positive and negative exchange biases in CoO/YIG bilayers on GGG(111) publication-title: J. Alloy. Compd. – volume: 62 start-page: 1046 year: 2019 end-page: 1052 ident: bib28 article-title: Intrinsic exchange bias effect in strain–engineered single antiferromagnetic LaMnO publication-title: Sci. China Mater. – volume: 29 start-page: 3244 year: 2024 ident: bib5 article-title: Strain–induced robust exchange bias effect in epitaxial La publication-title: Molecules – volume: 110 year: 2024 ident: bib23 article-title: Strain–driven exchange interaction and interface magnetism in LaNiO publication-title: Phys. Rev. B – volume: 13 start-page: 613 year: 2023 end-page: 621 ident: bib15 article-title: Investigating the origin of exchange bias effect in ferromagnetic FeNi nanoparticles prepared via controlled synthesis publication-title: Appl. Nanosci. – volume: 79 start-page: 350 year: 1950 ident: bib38 article-title: Antiferromagnetism. Theory of superexchange interaction publication-title: Phys. Rev. – volume: 102 start-page: 1413 year: 1956 end-page: 1414 ident: bib1 article-title: New magnetic anisotropy publication-title: Phys. Rev. – volume: 11 start-page: 26460 year: 2019 end-page: 26466 ident: bib27 article-title: Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO publication-title: ACS Appl. Mater. Interfaces – volume: 100 start-page: 564 year: 1955 ident: bib31 article-title: Theory of the role of covalence in the perovskite-type manganites [La, publication-title: Phys. Rev. – volume: 117 year: 2020 ident: bib20 article-title: Polarity and charge redistribution induced emergent interfacial ferromagnetism in non–magnetic LaNiO publication-title: Appl. Phys. Lett. – volume: 107 year: 2023 ident: bib16 article-title: Large exchange bias in Mn–Ni–Sn Heusler alloys: Role of cluster spin glass state publication-title: Phys. Rev. B – volume: 276 year: 2024 ident: bib11 article-title: Magnetization reversal process in flat and patterned exchange–biased CoO/[Co/Pd] thin films publication-title: Acta Mater. – volume: 8 year: 2021 ident: bib24 article-title: Magnetic straintronics: manipulating the magnetization of magnetostrictive nanomagnets with strain for energy−efficient applications publication-title: Appl. Phys. Rev. – volume: 588 year: 2022 ident: bib7 article-title: Large exchange bias and spin pumping in ultrathin IrMn/Co system for spintronic device applications publication-title: Appl. Surf. Sci. – volume: 104 year: 2021 ident: bib2 article-title: High exchange–bias blocking temperature in an ultrathin amorphous antiferromagnet system publication-title: Phys. Rev. B – volume: 4 year: 2018 ident: bib35 article-title: Direct demonstration of the emergent magnetism resulting from the multivalence Mn in a LaMnO publication-title: Adv. Electron. Mater. – volume: 515 year: 2020 ident: bib32 article-title: The strain induced magnetic and anisotropic variations of LaCoO publication-title: J. Magn. Magn. Mater. – volume: 14 start-page: 2190 year: 2023 ident: bib26 article-title: Manipulating exchange bias in 2D magnetic heterojunction for high−performance robust memory applications publication-title: Nat. Commun. – volume: 109 year: 2024 ident: bib3 article-title: Magnetic coupling at the interface between ultrathin tetragonal CuO and La publication-title: Phys. Rev. B – volume: 101 year: 2020 ident: bib34 article-title: Orbital reconstruction mediated giant vertical magnetization shift and insulator–to–metal transition in superlattices based on antiferromagnetic manganites publication-title: Phys. Rev. B – volume: 41 start-page: 91 year: 1999 end-page: 96 ident: bib29 article-title: Ferro–and antiferromagnetic ordering in LaMnO publication-title: Phys. Solid State – volume: 9 start-page: 36423 year: 2017 end-page: 36430 ident: bib22 article-title: Interfacial antiferromagnetic coupling and dual–exchange bias in tetragonal SrRuO publication-title: ACS Appl. Mater. Interfaces – volume: 11 start-page: 76 year: 2021 ident: bib36 article-title: Solid-state ball–milling of Co publication-title: Catalysts – volume: 422 start-page: 65 year: 2005 end-page: 117 ident: bib14 article-title: Exchange bias in nanostructures publication-title: Phys. Rep. – volume: 3 start-page: 2412 year: 2013 ident: bib25 article-title: The antiferromagnetic structures of IrMn publication-title: Sci. Rep. – volume: 124 year: 2022 ident: bib33 article-title: Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO publication-title: Opt. Mater. – volume: 103 year: 2021 ident: bib6 article-title: Anisotropic coercivity and the effects of interlayer exchange coupling in CoFeB/FeRh bilayers publication-title: Phys. Rev. B – volume: 3 start-page: 2300129 year: 2024 ident: bib17 article-title: Tuneable vertical hysteresis loop shift in exchange coupled La publication-title: Adv. Phys. Res. – volume: 24 start-page: 6924 year: 2024 end-page: 6930 ident: bib21 article-title: Exchange bias induced by the spin–glass–like state in a Te–rich FeGeTe van der Waals ferromagnet publication-title: Nano Lett. – volume: 18 start-page: 5008 year: 2009 ident: bib30 article-title: The structural, electronic, and magnetic properties of SrFeO publication-title: Chin. Phys. B – volume: 16 start-page: 1030 year: 2016 ident: bib8 article-title: Exchange bias tuning for magnetoresistive sensors by inclusion of non–magnetic impurities publication-title: Sensors – volume: 33 start-page: R247 year: 2000 ident: bib13 article-title: Mechanisms for exchange bias publication-title: J. Phys. D Appl. Phys. – volume: 4 year: 2020 ident: bib19 article-title: Charge–transfer–induced interfacial ferromagnetism in La publication-title: Phys. Rev. Mater. – volume: 381 start-page: 1213 year: 2017 end-page: 1222 ident: bib10 article-title: Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures publication-title: Phys. Lett. A – volume: 192 start-page: 203 year: 1999 end-page: 232 ident: bib12 article-title: Exchange bias publication-title: J. Magn. Magn. Mater. – volume: 5 start-page: 1340 year: 2024 ident: bib37 article-title: Unlocking OER catalytic potential and chiral Fe publication-title: Mater. Adv. – volume: 7 year: 2020 ident: bib18 article-title: Emergent interfacial ferromagnetism and exchange bias effect in paramagnetic/ferromagnetic oxide heterostructures publication-title: Adv. Mater. Interfaces – volume: 109 year: 2016 ident: bib9 article-title: HAMR media based on exchange bias publication-title: Appl. Phys. Lett. – volume: 29 start-page: 3244 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib5 article-title: Strain–induced robust exchange bias effect in epitaxial La0.7Sr0.3MnO3/LaFeO3 bilayers publication-title: Molecules doi: 10.3390/molecules29143244 – volume: 109 year: 2016 ident: 10.1016/j.jallcom.2025.181931_bib9 article-title: HAMR media based on exchange bias publication-title: Appl. Phys. Lett. doi: 10.1063/1.4960300 – volume: 422 start-page: 65 year: 2005 ident: 10.1016/j.jallcom.2025.181931_bib14 article-title: Exchange bias in nanostructures publication-title: Phys. Rep. doi: 10.1016/j.physrep.2005.08.004 – volume: 14 start-page: 2190 year: 2023 ident: 10.1016/j.jallcom.2025.181931_bib26 article-title: Manipulating exchange bias in 2D magnetic heterojunction for high−performance robust memory applications publication-title: Nat. Commun. doi: 10.1038/s41467-023-37918-7 – volume: 7 year: 2020 ident: 10.1016/j.jallcom.2025.181931_bib18 article-title: Emergent interfacial ferromagnetism and exchange bias effect in paramagnetic/ferromagnetic oxide heterostructures publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.202001172 – volume: 110 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib23 article-title: Strain–driven exchange interaction and interface magnetism in LaNiO3/La0.67Sr0.33MnO3 heterostructures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.104424 – volume: 4 year: 2018 ident: 10.1016/j.jallcom.2025.181931_bib35 article-title: Direct demonstration of the emergent magnetism resulting from the multivalence Mn in a LaMnO3 epitaxial thin film system publication-title: Adv. Electron. Mater. – volume: 11 start-page: 76 year: 2021 ident: 10.1016/j.jallcom.2025.181931_bib36 article-title: Solid-state ball–milling of Co3O4 nano/microspheres and carbon black endorsed LaMnO3 perovskite catalyst for bifunctional oxygen electrocatalysis publication-title: Catalysts doi: 10.3390/catal11010076 – volume: 3 start-page: 2300129 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib17 article-title: Tuneable vertical hysteresis loop shift in exchange coupled La0.67Sr0.33MnO3–SrRuO3 bilayer publication-title: Adv. Phys. Res. doi: 10.1002/apxr.202300129 – volume: 192 start-page: 203 year: 1999 ident: 10.1016/j.jallcom.2025.181931_bib12 article-title: Exchange bias publication-title: J. Magn. Magn. Mater. doi: 10.1016/S0304-8853(98)00266-2 – volume: 16 start-page: 1030 year: 2016 ident: 10.1016/j.jallcom.2025.181931_bib8 article-title: Exchange bias tuning for magnetoresistive sensors by inclusion of non–magnetic impurities publication-title: Sensors doi: 10.3390/s16071030 – volume: 107 year: 2023 ident: 10.1016/j.jallcom.2025.181931_bib16 article-title: Large exchange bias in Mn–Ni–Sn Heusler alloys: Role of cluster spin glass state publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.054405 – volume: 515 year: 2020 ident: 10.1016/j.jallcom.2025.181931_bib32 article-title: The strain induced magnetic and anisotropic variations of LaCoO3 thin films publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2020.167303 – volume: 3 start-page: 2412 year: 2013 ident: 10.1016/j.jallcom.2025.181931_bib25 article-title: The antiferromagnetic structures of IrMn3 and their influence on exchange−bias publication-title: Sci. Rep. doi: 10.1038/srep02412 – volume: 101 year: 2020 ident: 10.1016/j.jallcom.2025.181931_bib34 article-title: Orbital reconstruction mediated giant vertical magnetization shift and insulator–to–metal transition in superlattices based on antiferromagnetic manganites publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.024422 – volume: 104 year: 2021 ident: 10.1016/j.jallcom.2025.181931_bib2 article-title: High exchange–bias blocking temperature in an ultrathin amorphous antiferromagnet system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.104.L100401 – volume: 124 year: 2022 ident: 10.1016/j.jallcom.2025.181931_bib33 article-title: Fast and full spectrum sunlight photocatalysts: Fe/Co or Ni implanted multiferroic LaMnO3 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2022.111973 – volume: 117 year: 2020 ident: 10.1016/j.jallcom.2025.181931_bib20 article-title: Polarity and charge redistribution induced emergent interfacial ferromagnetism in non–magnetic LaNiO3/SrMnO3 superlattices publication-title: Appl. Phys. Lett. doi: 10.1063/5.0028864 – volume: 41 start-page: 91 year: 1999 ident: 10.1016/j.jallcom.2025.181931_bib29 article-title: Ferro–and antiferromagnetic ordering in LaMnO3+δ publication-title: Phys. Solid State doi: 10.1134/1.1130735 – volume: 276 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib11 article-title: Magnetization reversal process in flat and patterned exchange–biased CoO/[Co/Pd] thin films publication-title: Acta Mater. doi: 10.1016/j.actamat.2024.120129 – volume: 33 start-page: R247 year: 2000 ident: 10.1016/j.jallcom.2025.181931_bib13 article-title: Mechanisms for exchange bias publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/33/23/201 – volume: 13 start-page: 613 year: 2023 ident: 10.1016/j.jallcom.2025.181931_bib15 article-title: Investigating the origin of exchange bias effect in ferromagnetic FeNi nanoparticles prepared via controlled synthesis publication-title: Appl. Nanosci. doi: 10.1007/s13204-021-01870-z – volume: 109 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib3 article-title: Magnetic coupling at the interface between ultrathin tetragonal CuO and La0.7Sr0.3MnO3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.144423 – volume: 8 year: 2021 ident: 10.1016/j.jallcom.2025.181931_bib24 article-title: Magnetic straintronics: manipulating the magnetization of magnetostrictive nanomagnets with strain for energy−efficient applications publication-title: Appl. Phys. Rev. doi: 10.1063/5.0062993 – volume: 62 start-page: 1046 year: 2019 ident: 10.1016/j.jallcom.2025.181931_bib28 article-title: Intrinsic exchange bias effect in strain–engineered single antiferromagnetic LaMnO3 films publication-title: Sci. China Mater. doi: 10.1007/s40843-018-9387-0 – volume: 79 start-page: 350 year: 1950 ident: 10.1016/j.jallcom.2025.181931_bib38 article-title: Antiferromagnetism. Theory of superexchange interaction publication-title: Phys. Rev. doi: 10.1103/PhysRev.79.350 – volume: 103 year: 2021 ident: 10.1016/j.jallcom.2025.181931_bib6 article-title: Anisotropic coercivity and the effects of interlayer exchange coupling in CoFeB/FeRh bilayers publication-title: Phys. Rev. B – volume: 588 year: 2022 ident: 10.1016/j.jallcom.2025.181931_bib7 article-title: Large exchange bias and spin pumping in ultrathin IrMn/Co system for spintronic device applications publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2022.152914 – volume: 18 start-page: 5008 year: 2009 ident: 10.1016/j.jallcom.2025.181931_bib30 article-title: The structural, electronic, and magnetic properties of SrFeOn (n = 2 and 2.5): a GGA+U study publication-title: Chin. Phys. B doi: 10.1088/1674-1056/18/11/065 – volume: 968 year: 2023 ident: 10.1016/j.jallcom.2025.181931_bib4 article-title: Field and temperature–controlled positive and negative exchange biases in CoO/YIG bilayers on GGG(111) publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2023.172081 – volume: 24 start-page: 6924 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib21 article-title: Exchange bias induced by the spin–glass–like state in a Te–rich FeGeTe van der Waals ferromagnet publication-title: Nano Lett. doi: 10.1021/acs.nanolett.4c01031 – volume: 381 start-page: 1213 year: 2017 ident: 10.1016/j.jallcom.2025.181931_bib10 article-title: Perspectives of voltage control for magnetic exchange bias in multiferroic heterostructures publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2017.01.065 – volume: 11 start-page: 26460 year: 2019 ident: 10.1016/j.jallcom.2025.181931_bib27 article-title: Interfacial ferromagnetic coupling and positive spontaneous exchange bias in SrFeO3-x/La0.7Sr0.3MnO3 bilayers publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b07639 – volume: 100 start-page: 564 year: 1955 ident: 10.1016/j.jallcom.2025.181931_bib31 article-title: Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3 publication-title: Phys. Rev. doi: 10.1103/PhysRev.100.564 – volume: 102 start-page: 1413 year: 1956 ident: 10.1016/j.jallcom.2025.181931_bib1 article-title: New magnetic anisotropy publication-title: Phys. Rev. doi: 10.1103/PhysRev.102.1413 – volume: 9 start-page: 36423 year: 2017 ident: 10.1016/j.jallcom.2025.181931_bib22 article-title: Interfacial antiferromagnetic coupling and dual–exchange bias in tetragonal SrRuO3−PrMnO3 superlattices publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11930 – volume: 4 year: 2020 ident: 10.1016/j.jallcom.2025.181931_bib19 article-title: Charge–transfer–induced interfacial ferromagnetism in La0.7Sr0.3MnO3/NdNiO3 publication-title: Phys. Rev. Mater. – volume: 5 start-page: 1340 year: 2024 ident: 10.1016/j.jallcom.2025.181931_bib37 article-title: Unlocking OER catalytic potential and chiral Fe3O4 film as a game–changer for electrochemical water oxidation pathway and by–product control publication-title: Mater. Adv. doi: 10.1039/D3MA00854A |
SSID | ssj0001931 |
Score | 2.466364 |
Snippet | Exchange bias (EB), commonly observed at the interface between ferromagnetic (FM) and antiferromagnetic (AFM) materials, significantly impacts the performance... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 181931 |
SubjectTerms | Coercivity Double exchange mechanism Exchange bias field Magnetic anisotropy |
Title | Strain–induced robust ferromagnetism and exchange bias effect in epitaxial LaMnO3/SrFeO2.5 bilayer |
URI | https://dx.doi.org/10.1016/j.jallcom.2025.181931 |
Volume | 1036 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5EEfUgWhXf7MFrkjbZZJNjKZb6PlTBW9jsTiWlTSWN4En8D_5Df4mzeVAF8eAxyyws305mvknmAXCmtZKJCtFCLtDiAb2KklYsGVB8IRSKsGy7eHMbDB745aP_uAS9phbGpFXWtr-y6aW1rlecGk3nOU2dYTtyzT8_CnFMjxXXFPFxLoyW22-LNA8iKOXUPBK2jPSiiscZ22M5mZikEZc8v02-LvI6v_unbz6nvwWbNVlk3eo827CEWQvWes2MthZsfGsn2ILVMp1TzXdAD8vRD5_vHxRy0-Vpls-Sl3nBRpjns6l8yrBI51MmM83wtSr-ZUkq56zK72BpxtDME3kl9WTX8ia785xh3sc71_ZJcCKJqe_CQ__8vjew6nkKlqIgp7ACrUUkfKH9RBEtSBLXV0TvOHZEwH1JXIewdEceRp72MZSdQPJgRCFZiOjxpO3twXI2y3Af6LQog5C4m-Ajrjwd-kjOVqNEFWkKKg_AblCMn6u2GXGTTzaOa9hjA3tcwX4AYYN1_OP-YzLtf289_P_WI1g3T-Zbrds-huUif8ETIhlFclpq0SmsdC-uBrdfkrLTOQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTuswEB1BEQIWCAqIN16wTdMmdh5LVFEVaMuiILGLHHuKUrUpSoPE8v7D_cP7JXecBw8JsWDreCTrZDxzJpkHwKXWSsYqQAu5jxb36CpKWrGkR_GFr9APiraLw5HXf-S3T-JpBbp1LYxJq6xsf2nTC2tdrdgVmvZLktjjduiYf34U4pgeK064CmumO5VowNrVzV1_9G6QiaMUg_Nov2UEPgp57GlrKmczkzfikPNvkbsL3c73LuqT2-ntwHbFF9lVeaRdWMG0CRvdekxbE7Y-dRRswnqR0amWe6DHxfSHf3_-UtRN70-zbBG_LnM2wSxbzOVzinmynDOZaoZvZf0vixO5ZGWKB0tShmakyBtpKBvIYXrv2uOsh_dOS9DGmSSyvg-PveuHbt-qRipYiuKc3PK09kNf-FrEiphBHDtCEcPj2PE9LiTRHYLTmbgYulpgIDue5N6EorIA0eVx2z2ARrpI8RDotCi9gOibzydcuToQSP5Wo0QVaoorj6BVoxi9lJ0zojqlbBpVsEcG9qiE_QiCGuvoiwpEZN1_Fj3-vegFbPQfhoNocDO6O4FN88R8unXap9DIs1c8I86Rx-eVTv0H3LrV6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Strain%E2%80%93induced+robust+ferromagnetism+and+exchange+bias+effect+in+epitaxial+LaMnO3%2FSrFeO2.5+bilayer&rft.jtitle=Journal+of+alloys+and+compounds&rft.au=Zhang%2C+Jun&rft.au=Zhao%2C+Ye&rft.au=Shen%2C+Yufan&rft.au=Gao%2C+Xiaoli&rft.date=2025-07-20&rft.issn=0925-8388&rft.volume=1036&rft.spage=181931&rft_id=info:doi/10.1016%2Fj.jallcom.2025.181931&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jallcom_2025_181931 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-8388&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-8388&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-8388&client=summon |