Just-in-time framework for robust soft sensing based on robust variational autoencoder

Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that...

Full description

Saved in:
Bibliographic Details
Published inJournal of process control Vol. 143; p. 103325
Main Authors Guo, Fan, Liu, Kun, Huang, Biao
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method. •Under the JITL framework, a robust soft sensor modeling approach is developed based on robust VAE.•Once the robust VAE model is trained, each robust feature variable in the latent space can be determined.•Numerical simulations and two processes are utilized to validate the effectiveness of the proposed method.
AbstractList Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method. •Under the JITL framework, a robust soft sensor modeling approach is developed based on robust VAE.•Once the robust VAE model is trained, each robust feature variable in the latent space can be determined.•Numerical simulations and two processes are utilized to validate the effectiveness of the proposed method.
ArticleNumber 103325
Author Guo, Fan
Huang, Biao
Liu, Kun
Author_xml – sequence: 1
  givenname: Fan
  surname: Guo
  fullname: Guo, Fan
  organization: School of Automation, Nanjing Institute of Technology, Nanjing 211167, China
– sequence: 2
  givenname: Kun
  surname: Liu
  fullname: Liu, Kun
  organization: School of Automation, Nanjing Institute of Technology, Nanjing 211167, China
– sequence: 3
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  email: bhuang@ualberta.ca
  organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G2G6, Canada
BookMark eNqFkM1KAzEUhbOoYFt9BckLTM3PJJ3slOIvBTfqNiSZG8nYJiVJK769U6prN_fAPZzD4ZuhSUwRELqiZEEJldfDYtjl5FKsC0ZYOz45Z2KCpkQJ1VDB2nM0K2UghPAlk1P0_rwvtQmxqWEL2Gezha-UP7FPGedkRxOX5McDsYT4ga0p0OMU_8yDycHUkKLZYLOvCaJLPeQLdObNpsDlr87R2_3d6-qxWb88PK1u141jQtVGdsR1lkkpOQXhgNOWWrrsFaiWWMugpc4xa5TreGcAeOuFUE5KCh2XvudzJE-9LqdSMni9y2Fr8remRB-J6EH_EdFHIvpEZAzenIIwrjsEyLq4MI6HPmRwVfcp_FfxA7Fwc04
Cites_doi 10.1016/j.jprocont.2018.02.011
10.1007/978-3-030-30508-6_36
10.1109/TII.2021.3073645
10.1109/TCST.2016.2579609
10.1016/j.ces.2014.10.029
10.1002/aic.12346
10.1109/TAI.2022.3217028
10.1109/TII.2017.2712743
10.1109/TSM.2018.2826012
10.1109/TIM.2023.3288259
10.24963/ijcai.2018/374
10.1214/08-AOAS191
10.1109/TSP.2010.2080271
10.1109/TII.2016.2610839
10.1016/j.engappai.2023.106124
10.1016/j.jprocont.2013.05.007
10.1016/j.chemolab.2020.104118
10.1016/S0098-1354(02)00127-8
10.1016/j.jprocont.2020.05.012
10.1016/0098-1354(93)80018-I
10.1109/TIE.2019.2922941
10.1021/ie503962e
10.1016/j.engappai.2022.105180
10.1109/TCYB.2016.2646059
10.1109/TCST.2017.2778691
10.1145/1143844.1143849
10.1016/S0098-1354(97)00262-7
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.jprocont.2024.103325
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
ExternalDocumentID 10_1016_j_jprocont_2024_103325
S0959152424001653
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LX7
LY7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCE
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
UNMZH
WUQ
ZMT
ZY4
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c259t-680c8b266631e5ce3141b17d9e940bb2e41cc2ba9c838aee34f559c661e836fd3
IEDL.DBID .~1
ISSN 0959-1524
IngestDate Tue Jul 01 03:17:16 EDT 2025
Sat Nov 09 16:01:07 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Robust Kullback-Leibler divergence
Robust PPCR
VAE with Student’s t-prior
Just-in-time learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c259t-680c8b266631e5ce3141b17d9e940bb2e41cc2ba9c838aee34f559c661e836fd3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0959152424001653
ParticipantIDs crossref_primary_10_1016_j_jprocont_2024_103325
elsevier_sciencedirect_doi_10_1016_j_jprocont_2024_103325
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Journal of process control
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yuan, Huang, Ge, Song (bib11) 2017; 13
L.L.T. Chan, X.F. Wu, J.H. Chen, L. Xie, and C.I. Chen, Just-In-Time Modeling With Variable Shrinkage Based on Gaussian Processes for Semiconductor Manufacturing, IEEE Trans. on Semiconduct. M. 31, 335-342, 2018.
D.P. Kingma, and M. Welling, Auto-Encoding Variational Bayes, arXiv1312.6114, In The 2nd International Conference on Learning Representations (ICLR), 2013.
Joe Qin (bib3) 1998; 22
Birol, Ündey, Çinar (bib34) 2002; 26
Zhao, Fatehi, Huang (bib31) 2018; 48
H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t Variational Autoencoder for Robust Density Estimation, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). pp. 2696-2702, July. 2018.
Guo, Kodamana, Zhao, Huang, Ding (bib32) 2017; 13
Zhu, Ge, Song (bib28) 2015; 122
Kadlec, Gabrys (bib5) 2011; 57
Zhang, Song, Zhan, Xu (bib22) 2023; 122
Kaneko, Funatsu (bib4) 2015; 54
Yang, Ge (bib7) 2022; 18
N. Abiri, and M. Ohlsson. Variational auto-encoders with Student’s t-prior. In Proceedings 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 415–420. ESANN, April 2019.
C. Archambeau, N. Delannay, and M. Verleysen, Robust Probabilistic Projections, Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.
Wei, Wang (bib15) 2022; 71
Li, Liu, Huang, Xu (bib8) 2023; 4
N. Abiri, and M. Ohlsson, The advantage of using Student's t-priors in variational autoencoders, ICLR 2020 Conference, 2019.
Khatibisepehr, Huang, Khare (bib1) 2013; 23
Kodamana, Raveendran, Huang (bib12) 2018; 27
Wang, Li, Huang, Yang, Gui (bib21) 2022; 114
Kodamana, Huang, Ranjan, Zhao, Tan, Sammaknejad (bib30) 2018; 66
Liu, Liu, Mu, Shang (bib6) 2023; 72
Wang, Men, Li (bib13) 2022; 71
Downs, Vogel (bib33) 1993; 17
T. Kobayashi. Variational Deep Embedding with Regularized Student-t Mixture Model. ICANN 2019, LNCS 11729, pp. 443–455, 2019.
Yuan, Ge, Huang, Song (bib9) 2017; 25
Zou, Lu, Hu, Mao (bib14) 2023; 72
Jiang, Yan, Yi, Gao (bib2) 2020; 67
Guo, Huang (bib10) 2020; 204
Guo, Bai, Huang (bib18) 2020; 92
Gelman, Jakulin, Pittau, Su (bib19) 2008; 2
Christmas, Everson (bib29) 2011; 59
Chamain, Qi, Ding (bib17) 2022; 9
Wang (10.1016/j.jprocont.2024.103325_bib13) 2022; 71
Wei (10.1016/j.jprocont.2024.103325_bib15) 2022; 71
10.1016/j.jprocont.2024.103325_bib23
Gelman (10.1016/j.jprocont.2024.103325_bib19) 2008; 2
Wang (10.1016/j.jprocont.2024.103325_bib21) 2022; 114
10.1016/j.jprocont.2024.103325_bib24
Jiang (10.1016/j.jprocont.2024.103325_bib2) 2020; 67
10.1016/j.jprocont.2024.103325_bib25
Kodamana (10.1016/j.jprocont.2024.103325_bib30) 2018; 66
Birol (10.1016/j.jprocont.2024.103325_bib34) 2002; 26
10.1016/j.jprocont.2024.103325_bib26
Khatibisepehr (10.1016/j.jprocont.2024.103325_bib1) 2013; 23
Guo (10.1016/j.jprocont.2024.103325_bib10) 2020; 204
10.1016/j.jprocont.2024.103325_bib20
10.1016/j.jprocont.2024.103325_bib27
Downs (10.1016/j.jprocont.2024.103325_bib33) 1993; 17
Joe Qin (10.1016/j.jprocont.2024.103325_bib3) 1998; 22
Yuan (10.1016/j.jprocont.2024.103325_bib11) 2017; 13
Kaneko (10.1016/j.jprocont.2024.103325_bib4) 2015; 54
Liu (10.1016/j.jprocont.2024.103325_bib6) 2023; 72
Li (10.1016/j.jprocont.2024.103325_bib8) 2023; 4
Yang (10.1016/j.jprocont.2024.103325_bib7) 2022; 18
Kadlec (10.1016/j.jprocont.2024.103325_bib5) 2011; 57
Chamain (10.1016/j.jprocont.2024.103325_bib17) 2022; 9
Kodamana (10.1016/j.jprocont.2024.103325_bib12) 2018; 27
Christmas (10.1016/j.jprocont.2024.103325_bib29) 2011; 59
Guo (10.1016/j.jprocont.2024.103325_bib32) 2017; 13
10.1016/j.jprocont.2024.103325_bib16
Zhao (10.1016/j.jprocont.2024.103325_bib31) 2018; 48
Guo (10.1016/j.jprocont.2024.103325_bib18) 2020; 92
Zou (10.1016/j.jprocont.2024.103325_bib14) 2023; 72
Zhang (10.1016/j.jprocont.2024.103325_bib22) 2023; 122
Yuan (10.1016/j.jprocont.2024.103325_bib9) 2017; 25
Zhu (10.1016/j.jprocont.2024.103325_bib28) 2015; 122
References_xml – reference: D.P. Kingma, and M. Welling, Auto-Encoding Variational Bayes, arXiv1312.6114, In The 2nd International Conference on Learning Representations (ICLR), 2013.
– reference: T. Kobayashi. Variational Deep Embedding with Regularized Student-t Mixture Model. ICANN 2019, LNCS 11729, pp. 443–455, 2019.
– volume: 2
  start-page: 1360
  year: 2008
  end-page: 1383
  ident: bib19
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Stat.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 12
  ident: bib13
  article-title: Transformer for high-speed train wheel wear prediction with multiplex local–global temporal fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 25
  start-page: 1124
  year: 2017
  end-page: 1132
  ident: bib9
  article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data
  publication-title: IEEE Trans. Contr. Syst. T.
– reference: H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t Variational Autoencoder for Robust Density Estimation, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). pp. 2696-2702, July. 2018.
– volume: 22
  start-page: 503
  year: 1998
  end-page: 514
  ident: bib3
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
– reference: L.L.T. Chan, X.F. Wu, J.H. Chen, L. Xie, and C.I. Chen, Just-In-Time Modeling With Variable Shrinkage Based on Gaussian Processes for Semiconductor Manufacturing, IEEE Trans. on Semiconduct. M. 31, 335-342, 2018.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 11
  ident: bib14
  article-title: Remaining useful life estimation of bearing using deep multiscale window-based transformer
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 18
  start-page: 976
  year: 2022
  end-page: 985
  ident: bib7
  article-title: Rethinking the value of just-in-time learning in the era of industrial big data
  publication-title: IEEE Trans. Ind. Inform.
– volume: 54
  start-page: 700
  year: 2015
  end-page: 704
  ident: bib4
  article-title: Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements
  publication-title: Ind. Eng. Chem. Res.
– volume: 59
  start-page: 48
  year: 2011
  end-page: 57
  ident: bib29
  article-title: Robust autoregression: student-t innovations using variational Bayes
  publication-title: IEEE Trans. Signal Process.
– volume: 26
  start-page: 1553
  year: 2002
  end-page: 1565
  ident: bib34
  article-title: A modular simulation package for fed-batch fermentation: penicillin production
  publication-title: Comput. Chem. Eng.
– volume: 57
  start-page: 1288
  year: 2011
  end-page: 1301
  ident: bib5
  article-title: Local learning-based adaptive soft sensor for catalyst activation prediction
  publication-title: AICHE J.
– volume: 67
  year: 2020
  ident: bib2
  article-title: Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares
  publication-title: IEEE Trans. Ind. Electron.
– volume: 9
  start-page: 21916
  year: 2022
  end-page: 21931
  ident: bib17
  article-title: End-to-end image classification and compression with variational autoencoders
  publication-title: IEEE Internet Things J.
– volume: 48
  start-page: 532
  year: 2018
  end-page: 542
  ident: bib31
  article-title: Robust estimation of ARX models with time varying time delays using variational bayesian
  publication-title: IEEE T. Cybern.
– volume: 13
  start-page: 3047
  year: 2017
  end-page: 3057
  ident: bib32
  article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational bayesian approach
  publication-title: IEEE Trans. Ind. Inf.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 11
  ident: bib15
  article-title: Mixed-type wafer defect pattern recognition framework based on multifaceted dynamic convolution
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 27
  start-page: 838
  year: 2018
  end-page: 846
  ident: bib12
  article-title: Mixtures of probabilistic PCA with common structure latent bases for process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 72
  start-page: 1
  year: 2023
  end-page: 10
  ident: bib6
  article-title: Just-in-time learning based functional spectral data modeling for in-situ measurement of slurry component concentrations via infrared spectroscopy
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 204
  year: 2020
  ident: bib10
  article-title: A mutual information-based Variational Autoencoder for robust JIT soft sensing with abnormal observations
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 66
  start-page: 68
  year: 2018
  end-page: 83
  ident: bib30
  article-title: Approaches to robust process identification: a review and tutorial of probabilistic methods
  publication-title: J. Process Control
– volume: 92
  start-page: 90
  year: 2020
  end-page: 97
  ident: bib18
  article-title: Output-relevant variational autoencoder for JIT soft sensor modeling with missing data
  publication-title: J. Process Control
– reference: C. Archambeau, N. Delannay, and M. Verleysen, Robust Probabilistic Projections, Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006.
– reference: N. Abiri, and M. Ohlsson. Variational auto-encoders with Student’s t-prior. In Proceedings 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 415–420. ESANN, April 2019.
– volume: 122
  year: 2023
  ident: bib22
  article-title: Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism
  publication-title: Eng. Appl. Artif. Intel.
– volume: 23
  start-page: 1575
  year: 2013
  end-page: 1596
  ident: bib1
  article-title: Design of inferential sensors in the process industry: a review of Bayesian methods
  publication-title: J. Process Control
– volume: 4
  start-page: 722
  year: 2023
  end-page: 733
  ident: bib8
  article-title: A semi supervised soft-sensor of just-in-time learning with structure entropy clustering and applications for industrial processes monitoring
  publication-title: IEEE Trans. Artif. Intell.
– volume: 114
  year: 2022
  ident: bib21
  article-title: VAE4RSS: A VAE-based neural network approach for robust soft sensor with application to zinc roasting process
  publication-title: Eng. Appl. Artif. Intel.
– volume: 122
  start-page: 573
  year: 2015
  end-page: 584
  ident: bib28
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
– volume: 17
  start-page: 245
  year: 1993
  end-page: 255
  ident: bib33
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
– volume: 13
  start-page: 532
  year: 2017
  end-page: 541
  ident: bib11
  article-title: Semi-supervised JITL framework for nonlinear soft sensor modeling based on locally semi-supervised weighted PPCR
  publication-title: IEEE Trans. Ind. Inf.
– reference: N. Abiri, and M. Ohlsson, The advantage of using Student's t-priors in variational autoencoders, ICLR 2020 Conference, 2019.
– ident: 10.1016/j.jprocont.2024.103325_bib16
– volume: 66
  start-page: 68
  year: 2018
  ident: 10.1016/j.jprocont.2024.103325_bib30
  article-title: Approaches to robust process identification: a review and tutorial of probabilistic methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2018.02.011
– ident: 10.1016/j.jprocont.2024.103325_bib20
  doi: 10.1007/978-3-030-30508-6_36
– volume: 18
  start-page: 976
  issue: 2
  year: 2022
  ident: 10.1016/j.jprocont.2024.103325_bib7
  article-title: Rethinking the value of just-in-time learning in the era of industrial big data
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2021.3073645
– volume: 25
  start-page: 1124
  year: 2017
  ident: 10.1016/j.jprocont.2024.103325_bib9
  article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data
  publication-title: IEEE Trans. Contr. Syst. T.
  doi: 10.1109/TCST.2016.2579609
– volume: 122
  start-page: 573
  year: 2015
  ident: 10.1016/j.jprocont.2024.103325_bib28
  article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2014.10.029
– volume: 57
  start-page: 1288
  issue: 5
  year: 2011
  ident: 10.1016/j.jprocont.2024.103325_bib5
  article-title: Local learning-based adaptive soft sensor for catalyst activation prediction
  publication-title: AICHE J.
  doi: 10.1002/aic.12346
– volume: 4
  start-page: 722
  issue: 4
  year: 2023
  ident: 10.1016/j.jprocont.2024.103325_bib8
  article-title: A semi supervised soft-sensor of just-in-time learning with structure entropy clustering and applications for industrial processes monitoring
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2022.3217028
– volume: 13
  start-page: 3047
  issue: 6
  year: 2017
  ident: 10.1016/j.jprocont.2024.103325_bib32
  article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational bayesian approach
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2712743
– ident: 10.1016/j.jprocont.2024.103325_bib26
  doi: 10.1109/TSM.2018.2826012
– ident: 10.1016/j.jprocont.2024.103325_bib25
– volume: 72
  start-page: 1
  issue: 3514211
  year: 2023
  ident: 10.1016/j.jprocont.2024.103325_bib14
  article-title: Remaining useful life estimation of bearing using deep multiscale window-based transformer
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2023.3288259
– ident: 10.1016/j.jprocont.2024.103325_bib23
  doi: 10.24963/ijcai.2018/374
– volume: 2
  start-page: 1360
  issue: 4
  year: 2008
  ident: 10.1016/j.jprocont.2024.103325_bib19
  article-title: A weakly informative default prior distribution for logistic and other regression models
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/08-AOAS191
– volume: 59
  start-page: 48
  issue: 1
  year: 2011
  ident: 10.1016/j.jprocont.2024.103325_bib29
  article-title: Robust autoregression: student-t innovations using variational Bayes
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2080271
– volume: 13
  start-page: 532
  issue: 2
  year: 2017
  ident: 10.1016/j.jprocont.2024.103325_bib11
  article-title: Semi-supervised JITL framework for nonlinear soft sensor modeling based on locally semi-supervised weighted PPCR
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2016.2610839
– volume: 122
  year: 2023
  ident: 10.1016/j.jprocont.2024.103325_bib22
  article-title: Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2023.106124
– volume: 71
  start-page: 1
  issue: 3507412
  year: 2022
  ident: 10.1016/j.jprocont.2024.103325_bib13
  article-title: Transformer for high-speed train wheel wear prediction with multiplex local–global temporal fusion
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 23
  start-page: 1575
  issue: 10
  year: 2013
  ident: 10.1016/j.jprocont.2024.103325_bib1
  article-title: Design of inferential sensors in the process industry: a review of Bayesian methods
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2013.05.007
– volume: 72
  start-page: 1
  year: 2023
  ident: 10.1016/j.jprocont.2024.103325_bib6
  article-title: Just-in-time learning based functional spectral data modeling for in-situ measurement of slurry component concentrations via infrared spectroscopy
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 204
  year: 2020
  ident: 10.1016/j.jprocont.2024.103325_bib10
  article-title: A mutual information-based Variational Autoencoder for robust JIT soft sensing with abnormal observations
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104118
– volume: 26
  start-page: 1553
  year: 2002
  ident: 10.1016/j.jprocont.2024.103325_bib34
  article-title: A modular simulation package for fed-batch fermentation: penicillin production
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(02)00127-8
– volume: 92
  start-page: 90
  year: 2020
  ident: 10.1016/j.jprocont.2024.103325_bib18
  article-title: Output-relevant variational autoencoder for JIT soft sensor modeling with missing data
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2020.05.012
– volume: 17
  start-page: 245
  year: 1993
  ident: 10.1016/j.jprocont.2024.103325_bib33
  article-title: A plant-wide industrial process control problem
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(93)80018-I
– volume: 67
  issue: 5
  year: 2020
  ident: 10.1016/j.jprocont.2024.103325_bib2
  article-title: Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2922941
– volume: 9
  start-page: 21916
  issue: 21
  year: 2022
  ident: 10.1016/j.jprocont.2024.103325_bib17
  article-title: End-to-end image classification and compression with variational autoencoders
  publication-title: IEEE Internet Things J.
– volume: 54
  start-page: 700
  issue: 2
  year: 2015
  ident: 10.1016/j.jprocont.2024.103325_bib4
  article-title: Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie503962e
– volume: 114
  year: 2022
  ident: 10.1016/j.jprocont.2024.103325_bib21
  article-title: VAE4RSS: A VAE-based neural network approach for robust soft sensor with application to zinc roasting process
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2022.105180
– volume: 48
  start-page: 532
  issue: : 2
  year: 2018
  ident: 10.1016/j.jprocont.2024.103325_bib31
  article-title: Robust estimation of ARX models with time varying time delays using variational bayesian
  publication-title: IEEE T. Cybern.
  doi: 10.1109/TCYB.2016.2646059
– volume: 27
  start-page: 838
  issue: 2
  year: 2018
  ident: 10.1016/j.jprocont.2024.103325_bib12
  article-title: Mixtures of probabilistic PCA with common structure latent bases for process monitoring
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2017.2778691
– ident: 10.1016/j.jprocont.2024.103325_bib24
– ident: 10.1016/j.jprocont.2024.103325_bib27
  doi: 10.1145/1143844.1143849
– volume: 22
  start-page: 503
  issue: 4-5
  year: 1998
  ident: 10.1016/j.jprocont.2024.103325_bib3
  article-title: Recursive PLS algorithms for adaptive data modeling
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(97)00262-7
– volume: 71
  start-page: 1
  issue: 2511211
  year: 2022
  ident: 10.1016/j.jprocont.2024.103325_bib15
  article-title: Mixed-type wafer defect pattern recognition framework based on multifaceted dynamic convolution
  publication-title: IEEE Trans. Instrum. Meas.
SSID ssj0003726
Score 2.4336367
Snippet Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103325
SubjectTerms Just-in-time learning
Robust Kullback-Leibler divergence
Robust PPCR
VAE with Student’s t-prior
Title Just-in-time framework for robust soft sensing based on robust variational autoencoder
URI https://dx.doi.org/10.1016/j.jprocont.2024.103325
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGDgUUCUR-WB1U0cO3YyVhVVAdEFirpF8SOoHZKqTRn57fjyEEVCYmBM7JOis3Pf3em7O4TuTEapCoUhlnFNuE19kgrNSKCVb5kNjC-hGvl5KiYz_jgP5x00amthgFbZ2P7aplfWunnjNdr0VouF9wIZLIc-HFiQVITQ8ZNzCbd88PlN82CyGrlWpbtg906V8HKwBJQocuBUBhzqzxmMzP4NoHZAZ3yCjhpvEQ_rDzpFHZt30XE7iQE3P2YXHe60FTxDbzCiiyxyAoPjcdbSr7DzT_G6UG4Rb5z1xRsgr-fvGJDM4CJvFz9c_NzkCHG6LQvodWns-hzNxvevowlp5icQ7YKakojI15FyCCwYtaG2jHKqqDSxjbmvVGA51TpQaawjFqXWnVbm4gvtENtGTGSGXaC9vMjtJcKZifxISSadGI8j4aI0aqmSyhkEmfq2h7xWacmqbpORtPyxZdKqOQE1J7WaeyhudZv8OPDE2fI_ZK_-IXuNDuCpLie8QXvlemtvnV9Rqn51cfpof_jwNJl-AVrrz1c
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSDD9SIzz14Xel2t68jIRKQx0Uw3Jrudmvg0BIo_n53aGswMfHgtZNJmtn2-2Y2M_MBPMUJY9JxY6q5UFToyKKRqzi1lbQ013ZseTiNPJ64_Zl4nTvzGnSrWRhsqyyxv8D0HVqXT9plNNurxaL9hjdYhn0EdkEy1-EH0MDtVE4dGp3BsD_5BmTu7VTXdjde6LA3KLx8XiJRZCm2VdoCR9A5qmb_xlF7vNM7g5MyYSSd4p3OoabTJpxWYgyk_DebcLy3WfAC3lGliy5SitrxJKk6sIhJUck6k8ZINgaAyQb719MPgmQWkyytjJ-mhC6vCUm0zTNcdxnr9SXMei_Tbp-WEgpUmbomp65vKV8aEnY5047SnAkmmRcHOhCWlLYWTClbRoHyuR9pc2CJKTGUIW3tczeJ-RXU0yzV10CS2Ld86XHPuInAd02hxjSTnjSY4EWWbkG7Clq4KjZlhFUL2TKswhximMMizC0IqtiGP848NHD-h-_NP3wf4bA_HY_C0WAyvIUjtBTThXdQz9dbfW_SjFw-lJ_RF4Nk0gg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Just-in-time+framework+for+robust+soft+sensing+based+on+robust+variational+autoencoder&rft.jtitle=Journal+of+process+control&rft.au=Guo%2C+Fan&rft.au=Liu%2C+Kun&rft.au=Huang%2C+Biao&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.volume=143&rft_id=info:doi/10.1016%2Fj.jprocont.2024.103325&rft.externalDocID=S0959152424001653
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon