Just-in-time framework for robust soft sensing based on robust variational autoencoder
Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that...
Saved in:
Published in | Journal of process control Vol. 143; p. 103325 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method.
•Under the JITL framework, a robust soft sensor modeling approach is developed based on robust VAE.•Once the robust VAE model is trained, each robust feature variable in the latent space can be determined.•Numerical simulations and two processes are utilized to validate the effectiveness of the proposed method. |
---|---|
AbstractList | Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning (JITL) framework, a robust soft sensor modeling approach is developed based on robust Variational Autoencoder (VAE). Unlike the vanilla VAE that extracts features from the given dataset under the Gaussian prior assumption, robust VAE employs Student’s t-distribution as prior distribution to handle abnormal data. Under assumption of the Student’s t-prior, the proposed robust VAE model is capable of describing collected data contaminated with outliers. Once the robust VAE model is trained, each robust feature variable in the latent space can be determined. Subsequently, similarity measure is calculated using robust Kullback-Leibler divergence between two Student’s t-distributions, that is, the distribution of a new data sample and that of each historical data sample. After completing similarity measurement for a query sample, the weights for input-output historical data can be determined. Based on these weighted historical data samples, a robust probabilistic principal component regression (PPCR) is utilized to perform local modeling for prediction. Numerical simulations, including the Tennessee Eastman and Penicillin fermentation benchmark processes, are utilized to validate the proposed JITL-based robust soft sensor modeling method.
•Under the JITL framework, a robust soft sensor modeling approach is developed based on robust VAE.•Once the robust VAE model is trained, each robust feature variable in the latent space can be determined.•Numerical simulations and two processes are utilized to validate the effectiveness of the proposed method. |
ArticleNumber | 103325 |
Author | Guo, Fan Huang, Biao Liu, Kun |
Author_xml | – sequence: 1 givenname: Fan surname: Guo fullname: Guo, Fan organization: School of Automation, Nanjing Institute of Technology, Nanjing 211167, China – sequence: 2 givenname: Kun surname: Liu fullname: Liu, Kun organization: School of Automation, Nanjing Institute of Technology, Nanjing 211167, China – sequence: 3 givenname: Biao surname: Huang fullname: Huang, Biao email: bhuang@ualberta.ca organization: Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G2G6, Canada |
BookMark | eNqFkM1KAzEUhbOoYFt9BckLTM3PJJ3slOIvBTfqNiSZG8nYJiVJK769U6prN_fAPZzD4ZuhSUwRELqiZEEJldfDYtjl5FKsC0ZYOz45Z2KCpkQJ1VDB2nM0K2UghPAlk1P0_rwvtQmxqWEL2Gezha-UP7FPGedkRxOX5McDsYT4ga0p0OMU_8yDycHUkKLZYLOvCaJLPeQLdObNpsDlr87R2_3d6-qxWb88PK1u141jQtVGdsR1lkkpOQXhgNOWWrrsFaiWWMugpc4xa5TreGcAeOuFUE5KCh2XvudzJE-9LqdSMni9y2Fr8remRB-J6EH_EdFHIvpEZAzenIIwrjsEyLq4MI6HPmRwVfcp_FfxA7Fwc04 |
Cites_doi | 10.1016/j.jprocont.2018.02.011 10.1007/978-3-030-30508-6_36 10.1109/TII.2021.3073645 10.1109/TCST.2016.2579609 10.1016/j.ces.2014.10.029 10.1002/aic.12346 10.1109/TAI.2022.3217028 10.1109/TII.2017.2712743 10.1109/TSM.2018.2826012 10.1109/TIM.2023.3288259 10.24963/ijcai.2018/374 10.1214/08-AOAS191 10.1109/TSP.2010.2080271 10.1109/TII.2016.2610839 10.1016/j.engappai.2023.106124 10.1016/j.jprocont.2013.05.007 10.1016/j.chemolab.2020.104118 10.1016/S0098-1354(02)00127-8 10.1016/j.jprocont.2020.05.012 10.1016/0098-1354(93)80018-I 10.1109/TIE.2019.2922941 10.1021/ie503962e 10.1016/j.engappai.2022.105180 10.1109/TCYB.2016.2646059 10.1109/TCST.2017.2778691 10.1145/1143844.1143849 10.1016/S0098-1354(97)00262-7 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.jprocont.2024.103325 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
ExternalDocumentID | 10_1016_j_jprocont_2024_103325 S0959152424001653 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO ABFNM ABFRF ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JJJVA KOM LX7 LY7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCE SDF SDG SDP SES SET SEW SPC SPCBC SSG SST SSZ T5K UNMZH WUQ ZMT ZY4 ~G- AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c259t-680c8b266631e5ce3141b17d9e940bb2e41cc2ba9c838aee34f559c661e836fd3 |
IEDL.DBID | .~1 |
ISSN | 0959-1524 |
IngestDate | Tue Jul 01 03:17:16 EDT 2025 Sat Nov 09 16:01:07 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Robust Kullback-Leibler divergence Robust PPCR VAE with Student’s t-prior Just-in-time learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-680c8b266631e5ce3141b17d9e940bb2e41cc2ba9c838aee34f559c661e836fd3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0959152424001653 |
ParticipantIDs | crossref_primary_10_1016_j_jprocont_2024_103325 elsevier_sciencedirect_doi_10_1016_j_jprocont_2024_103325 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of process control |
PublicationYear | 2024 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yuan, Huang, Ge, Song (bib11) 2017; 13 L.L.T. Chan, X.F. Wu, J.H. Chen, L. Xie, and C.I. Chen, Just-In-Time Modeling With Variable Shrinkage Based on Gaussian Processes for Semiconductor Manufacturing, IEEE Trans. on Semiconduct. M. 31, 335-342, 2018. D.P. Kingma, and M. Welling, Auto-Encoding Variational Bayes, arXiv1312.6114, In The 2nd International Conference on Learning Representations (ICLR), 2013. Joe Qin (bib3) 1998; 22 Birol, Ündey, Çinar (bib34) 2002; 26 Zhao, Fatehi, Huang (bib31) 2018; 48 H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t Variational Autoencoder for Robust Density Estimation, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). pp. 2696-2702, July. 2018. Guo, Kodamana, Zhao, Huang, Ding (bib32) 2017; 13 Zhu, Ge, Song (bib28) 2015; 122 Kadlec, Gabrys (bib5) 2011; 57 Zhang, Song, Zhan, Xu (bib22) 2023; 122 Kaneko, Funatsu (bib4) 2015; 54 Yang, Ge (bib7) 2022; 18 N. Abiri, and M. Ohlsson. Variational auto-encoders with Student’s t-prior. In Proceedings 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 415–420. ESANN, April 2019. C. Archambeau, N. Delannay, and M. Verleysen, Robust Probabilistic Projections, Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006. Wei, Wang (bib15) 2022; 71 Li, Liu, Huang, Xu (bib8) 2023; 4 N. Abiri, and M. Ohlsson, The advantage of using Student's t-priors in variational autoencoders, ICLR 2020 Conference, 2019. Khatibisepehr, Huang, Khare (bib1) 2013; 23 Kodamana, Raveendran, Huang (bib12) 2018; 27 Wang, Li, Huang, Yang, Gui (bib21) 2022; 114 Kodamana, Huang, Ranjan, Zhao, Tan, Sammaknejad (bib30) 2018; 66 Liu, Liu, Mu, Shang (bib6) 2023; 72 Wang, Men, Li (bib13) 2022; 71 Downs, Vogel (bib33) 1993; 17 T. Kobayashi. Variational Deep Embedding with Regularized Student-t Mixture Model. ICANN 2019, LNCS 11729, pp. 443–455, 2019. Yuan, Ge, Huang, Song (bib9) 2017; 25 Zou, Lu, Hu, Mao (bib14) 2023; 72 Jiang, Yan, Yi, Gao (bib2) 2020; 67 Guo, Huang (bib10) 2020; 204 Guo, Bai, Huang (bib18) 2020; 92 Gelman, Jakulin, Pittau, Su (bib19) 2008; 2 Christmas, Everson (bib29) 2011; 59 Chamain, Qi, Ding (bib17) 2022; 9 Wang (10.1016/j.jprocont.2024.103325_bib13) 2022; 71 Wei (10.1016/j.jprocont.2024.103325_bib15) 2022; 71 10.1016/j.jprocont.2024.103325_bib23 Gelman (10.1016/j.jprocont.2024.103325_bib19) 2008; 2 Wang (10.1016/j.jprocont.2024.103325_bib21) 2022; 114 10.1016/j.jprocont.2024.103325_bib24 Jiang (10.1016/j.jprocont.2024.103325_bib2) 2020; 67 10.1016/j.jprocont.2024.103325_bib25 Kodamana (10.1016/j.jprocont.2024.103325_bib30) 2018; 66 Birol (10.1016/j.jprocont.2024.103325_bib34) 2002; 26 10.1016/j.jprocont.2024.103325_bib26 Khatibisepehr (10.1016/j.jprocont.2024.103325_bib1) 2013; 23 Guo (10.1016/j.jprocont.2024.103325_bib10) 2020; 204 10.1016/j.jprocont.2024.103325_bib20 10.1016/j.jprocont.2024.103325_bib27 Downs (10.1016/j.jprocont.2024.103325_bib33) 1993; 17 Joe Qin (10.1016/j.jprocont.2024.103325_bib3) 1998; 22 Yuan (10.1016/j.jprocont.2024.103325_bib11) 2017; 13 Kaneko (10.1016/j.jprocont.2024.103325_bib4) 2015; 54 Liu (10.1016/j.jprocont.2024.103325_bib6) 2023; 72 Li (10.1016/j.jprocont.2024.103325_bib8) 2023; 4 Yang (10.1016/j.jprocont.2024.103325_bib7) 2022; 18 Kadlec (10.1016/j.jprocont.2024.103325_bib5) 2011; 57 Chamain (10.1016/j.jprocont.2024.103325_bib17) 2022; 9 Kodamana (10.1016/j.jprocont.2024.103325_bib12) 2018; 27 Christmas (10.1016/j.jprocont.2024.103325_bib29) 2011; 59 Guo (10.1016/j.jprocont.2024.103325_bib32) 2017; 13 10.1016/j.jprocont.2024.103325_bib16 Zhao (10.1016/j.jprocont.2024.103325_bib31) 2018; 48 Guo (10.1016/j.jprocont.2024.103325_bib18) 2020; 92 Zou (10.1016/j.jprocont.2024.103325_bib14) 2023; 72 Zhang (10.1016/j.jprocont.2024.103325_bib22) 2023; 122 Yuan (10.1016/j.jprocont.2024.103325_bib9) 2017; 25 Zhu (10.1016/j.jprocont.2024.103325_bib28) 2015; 122 |
References_xml | – reference: D.P. Kingma, and M. Welling, Auto-Encoding Variational Bayes, arXiv1312.6114, In The 2nd International Conference on Learning Representations (ICLR), 2013. – reference: T. Kobayashi. Variational Deep Embedding with Regularized Student-t Mixture Model. ICANN 2019, LNCS 11729, pp. 443–455, 2019. – volume: 2 start-page: 1360 year: 2008 end-page: 1383 ident: bib19 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Stat. – volume: 71 start-page: 1 year: 2022 end-page: 12 ident: bib13 article-title: Transformer for high-speed train wheel wear prediction with multiplex local–global temporal fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 25 start-page: 1124 year: 2017 end-page: 1132 ident: bib9 article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data publication-title: IEEE Trans. Contr. Syst. T. – reference: H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Student-t Variational Autoencoder for Robust Density Estimation, Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18). pp. 2696-2702, July. 2018. – volume: 22 start-page: 503 year: 1998 end-page: 514 ident: bib3 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. – reference: L.L.T. Chan, X.F. Wu, J.H. Chen, L. Xie, and C.I. Chen, Just-In-Time Modeling With Variable Shrinkage Based on Gaussian Processes for Semiconductor Manufacturing, IEEE Trans. on Semiconduct. M. 31, 335-342, 2018. – volume: 72 start-page: 1 year: 2023 end-page: 11 ident: bib14 article-title: Remaining useful life estimation of bearing using deep multiscale window-based transformer publication-title: IEEE Trans. Instrum. Meas. – volume: 18 start-page: 976 year: 2022 end-page: 985 ident: bib7 article-title: Rethinking the value of just-in-time learning in the era of industrial big data publication-title: IEEE Trans. Ind. Inform. – volume: 54 start-page: 700 year: 2015 end-page: 704 ident: bib4 article-title: Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements publication-title: Ind. Eng. Chem. Res. – volume: 59 start-page: 48 year: 2011 end-page: 57 ident: bib29 article-title: Robust autoregression: student-t innovations using variational Bayes publication-title: IEEE Trans. Signal Process. – volume: 26 start-page: 1553 year: 2002 end-page: 1565 ident: bib34 article-title: A modular simulation package for fed-batch fermentation: penicillin production publication-title: Comput. Chem. Eng. – volume: 57 start-page: 1288 year: 2011 end-page: 1301 ident: bib5 article-title: Local learning-based adaptive soft sensor for catalyst activation prediction publication-title: AICHE J. – volume: 67 year: 2020 ident: bib2 article-title: Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares publication-title: IEEE Trans. Ind. Electron. – volume: 9 start-page: 21916 year: 2022 end-page: 21931 ident: bib17 article-title: End-to-end image classification and compression with variational autoencoders publication-title: IEEE Internet Things J. – volume: 48 start-page: 532 year: 2018 end-page: 542 ident: bib31 article-title: Robust estimation of ARX models with time varying time delays using variational bayesian publication-title: IEEE T. Cybern. – volume: 13 start-page: 3047 year: 2017 end-page: 3057 ident: bib32 article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational bayesian approach publication-title: IEEE Trans. Ind. Inf. – volume: 71 start-page: 1 year: 2022 end-page: 11 ident: bib15 article-title: Mixed-type wafer defect pattern recognition framework based on multifaceted dynamic convolution publication-title: IEEE Trans. Instrum. Meas. – volume: 27 start-page: 838 year: 2018 end-page: 846 ident: bib12 article-title: Mixtures of probabilistic PCA with common structure latent bases for process monitoring publication-title: IEEE Trans. Control Syst. Technol. – volume: 72 start-page: 1 year: 2023 end-page: 10 ident: bib6 article-title: Just-in-time learning based functional spectral data modeling for in-situ measurement of slurry component concentrations via infrared spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 204 year: 2020 ident: bib10 article-title: A mutual information-based Variational Autoencoder for robust JIT soft sensing with abnormal observations publication-title: Chemom. Intell. Lab. Syst. – volume: 66 start-page: 68 year: 2018 end-page: 83 ident: bib30 article-title: Approaches to robust process identification: a review and tutorial of probabilistic methods publication-title: J. Process Control – volume: 92 start-page: 90 year: 2020 end-page: 97 ident: bib18 article-title: Output-relevant variational autoencoder for JIT soft sensor modeling with missing data publication-title: J. Process Control – reference: C. Archambeau, N. Delannay, and M. Verleysen, Robust Probabilistic Projections, Proceedings of the 23rd International Conference on Machine Learning, Pittsburgh, PA, 2006. – reference: N. Abiri, and M. Ohlsson. Variational auto-encoders with Student’s t-prior. In Proceedings 27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, 415–420. ESANN, April 2019. – volume: 122 year: 2023 ident: bib22 article-title: Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism publication-title: Eng. Appl. Artif. Intel. – volume: 23 start-page: 1575 year: 2013 end-page: 1596 ident: bib1 article-title: Design of inferential sensors in the process industry: a review of Bayesian methods publication-title: J. Process Control – volume: 4 start-page: 722 year: 2023 end-page: 733 ident: bib8 article-title: A semi supervised soft-sensor of just-in-time learning with structure entropy clustering and applications for industrial processes monitoring publication-title: IEEE Trans. Artif. Intell. – volume: 114 year: 2022 ident: bib21 article-title: VAE4RSS: A VAE-based neural network approach for robust soft sensor with application to zinc roasting process publication-title: Eng. Appl. Artif. Intel. – volume: 122 start-page: 573 year: 2015 end-page: 584 ident: bib28 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. – volume: 17 start-page: 245 year: 1993 end-page: 255 ident: bib33 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. – volume: 13 start-page: 532 year: 2017 end-page: 541 ident: bib11 article-title: Semi-supervised JITL framework for nonlinear soft sensor modeling based on locally semi-supervised weighted PPCR publication-title: IEEE Trans. Ind. Inf. – reference: N. Abiri, and M. Ohlsson, The advantage of using Student's t-priors in variational autoencoders, ICLR 2020 Conference, 2019. – ident: 10.1016/j.jprocont.2024.103325_bib16 – volume: 66 start-page: 68 year: 2018 ident: 10.1016/j.jprocont.2024.103325_bib30 article-title: Approaches to robust process identification: a review and tutorial of probabilistic methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2018.02.011 – ident: 10.1016/j.jprocont.2024.103325_bib20 doi: 10.1007/978-3-030-30508-6_36 – volume: 18 start-page: 976 issue: 2 year: 2022 ident: 10.1016/j.jprocont.2024.103325_bib7 article-title: Rethinking the value of just-in-time learning in the era of industrial big data publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2021.3073645 – volume: 25 start-page: 1124 year: 2017 ident: 10.1016/j.jprocont.2024.103325_bib9 article-title: A probabilistic just-in-time learning framework for soft sensor development with missing data publication-title: IEEE Trans. Contr. Syst. T. doi: 10.1109/TCST.2016.2579609 – volume: 122 start-page: 573 year: 2015 ident: 10.1016/j.jprocont.2024.103325_bib28 article-title: Robust supervised probabilistic principal component analysis model for soft sensing of key process variables publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2014.10.029 – volume: 57 start-page: 1288 issue: 5 year: 2011 ident: 10.1016/j.jprocont.2024.103325_bib5 article-title: Local learning-based adaptive soft sensor for catalyst activation prediction publication-title: AICHE J. doi: 10.1002/aic.12346 – volume: 4 start-page: 722 issue: 4 year: 2023 ident: 10.1016/j.jprocont.2024.103325_bib8 article-title: A semi supervised soft-sensor of just-in-time learning with structure entropy clustering and applications for industrial processes monitoring publication-title: IEEE Trans. Artif. Intell. doi: 10.1109/TAI.2022.3217028 – volume: 13 start-page: 3047 issue: 6 year: 2017 ident: 10.1016/j.jprocont.2024.103325_bib32 article-title: Robust identification of nonlinear errors-in-variables systems with parameter uncertainties using variational bayesian approach publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2712743 – ident: 10.1016/j.jprocont.2024.103325_bib26 doi: 10.1109/TSM.2018.2826012 – ident: 10.1016/j.jprocont.2024.103325_bib25 – volume: 72 start-page: 1 issue: 3514211 year: 2023 ident: 10.1016/j.jprocont.2024.103325_bib14 article-title: Remaining useful life estimation of bearing using deep multiscale window-based transformer publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2023.3288259 – ident: 10.1016/j.jprocont.2024.103325_bib23 doi: 10.24963/ijcai.2018/374 – volume: 2 start-page: 1360 issue: 4 year: 2008 ident: 10.1016/j.jprocont.2024.103325_bib19 article-title: A weakly informative default prior distribution for logistic and other regression models publication-title: Ann. Appl. Stat. doi: 10.1214/08-AOAS191 – volume: 59 start-page: 48 issue: 1 year: 2011 ident: 10.1016/j.jprocont.2024.103325_bib29 article-title: Robust autoregression: student-t innovations using variational Bayes publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2080271 – volume: 13 start-page: 532 issue: 2 year: 2017 ident: 10.1016/j.jprocont.2024.103325_bib11 article-title: Semi-supervised JITL framework for nonlinear soft sensor modeling based on locally semi-supervised weighted PPCR publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2016.2610839 – volume: 122 year: 2023 ident: 10.1016/j.jprocont.2024.103325_bib22 article-title: Deep Gaussian mixture adaptive network for robust soft sensor modeling with a closed-loop calibration mechanism publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2023.106124 – volume: 71 start-page: 1 issue: 3507412 year: 2022 ident: 10.1016/j.jprocont.2024.103325_bib13 article-title: Transformer for high-speed train wheel wear prediction with multiplex local–global temporal fusion publication-title: IEEE Trans. Instrum. Meas. – volume: 23 start-page: 1575 issue: 10 year: 2013 ident: 10.1016/j.jprocont.2024.103325_bib1 article-title: Design of inferential sensors in the process industry: a review of Bayesian methods publication-title: J. Process Control doi: 10.1016/j.jprocont.2013.05.007 – volume: 72 start-page: 1 year: 2023 ident: 10.1016/j.jprocont.2024.103325_bib6 article-title: Just-in-time learning based functional spectral data modeling for in-situ measurement of slurry component concentrations via infrared spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 204 year: 2020 ident: 10.1016/j.jprocont.2024.103325_bib10 article-title: A mutual information-based Variational Autoencoder for robust JIT soft sensing with abnormal observations publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104118 – volume: 26 start-page: 1553 year: 2002 ident: 10.1016/j.jprocont.2024.103325_bib34 article-title: A modular simulation package for fed-batch fermentation: penicillin production publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(02)00127-8 – volume: 92 start-page: 90 year: 2020 ident: 10.1016/j.jprocont.2024.103325_bib18 article-title: Output-relevant variational autoencoder for JIT soft sensor modeling with missing data publication-title: J. Process Control doi: 10.1016/j.jprocont.2020.05.012 – volume: 17 start-page: 245 year: 1993 ident: 10.1016/j.jprocont.2024.103325_bib33 article-title: A plant-wide industrial process control problem publication-title: Comput. Chem. Eng. doi: 10.1016/0098-1354(93)80018-I – volume: 67 issue: 5 year: 2020 ident: 10.1016/j.jprocont.2024.103325_bib2 article-title: Data-driven batch-end quality modeling and monitoring based on optimized sparse partial least squares publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2019.2922941 – volume: 9 start-page: 21916 issue: 21 year: 2022 ident: 10.1016/j.jprocont.2024.103325_bib17 article-title: End-to-end image classification and compression with variational autoencoders publication-title: IEEE Internet Things J. – volume: 54 start-page: 700 issue: 2 year: 2015 ident: 10.1016/j.jprocont.2024.103325_bib4 article-title: Moving window and just-in-time soft sensor model based on time differences considering a small number of measurements publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie503962e – volume: 114 year: 2022 ident: 10.1016/j.jprocont.2024.103325_bib21 article-title: VAE4RSS: A VAE-based neural network approach for robust soft sensor with application to zinc roasting process publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2022.105180 – volume: 48 start-page: 532 issue: : 2 year: 2018 ident: 10.1016/j.jprocont.2024.103325_bib31 article-title: Robust estimation of ARX models with time varying time delays using variational bayesian publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2016.2646059 – volume: 27 start-page: 838 issue: 2 year: 2018 ident: 10.1016/j.jprocont.2024.103325_bib12 article-title: Mixtures of probabilistic PCA with common structure latent bases for process monitoring publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2017.2778691 – ident: 10.1016/j.jprocont.2024.103325_bib24 – ident: 10.1016/j.jprocont.2024.103325_bib27 doi: 10.1145/1143844.1143849 – volume: 22 start-page: 503 issue: 4-5 year: 1998 ident: 10.1016/j.jprocont.2024.103325_bib3 article-title: Recursive PLS algorithms for adaptive data modeling publication-title: Comput. Chem. Eng. doi: 10.1016/S0098-1354(97)00262-7 – volume: 71 start-page: 1 issue: 2511211 year: 2022 ident: 10.1016/j.jprocont.2024.103325_bib15 article-title: Mixed-type wafer defect pattern recognition framework based on multifaceted dynamic convolution publication-title: IEEE Trans. Instrum. Meas. |
SSID | ssj0003726 |
Score | 2.4336367 |
Snippet | Modeling with high-dimensional data subject to abnormal observations have always been a practical interest. In this paper, under the just-in-time learning... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103325 |
SubjectTerms | Just-in-time learning Robust Kullback-Leibler divergence Robust PPCR VAE with Student’s t-prior |
Title | Just-in-time framework for robust soft sensing based on robust variational autoencoder |
URI | https://dx.doi.org/10.1016/j.jprocont.2024.103325 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqWGDgUUCUR-WB1U0cO3YyVhVVAdEFirpF8SOoHZKqTRn57fjyEEVCYmBM7JOis3Pf3em7O4TuTEapCoUhlnFNuE19kgrNSKCVb5kNjC-hGvl5KiYz_jgP5x00amthgFbZ2P7aplfWunnjNdr0VouF9wIZLIc-HFiQVITQ8ZNzCbd88PlN82CyGrlWpbtg906V8HKwBJQocuBUBhzqzxmMzP4NoHZAZ3yCjhpvEQ_rDzpFHZt30XE7iQE3P2YXHe60FTxDbzCiiyxyAoPjcdbSr7DzT_G6UG4Rb5z1xRsgr-fvGJDM4CJvFz9c_NzkCHG6LQvodWns-hzNxvevowlp5icQ7YKakojI15FyCCwYtaG2jHKqqDSxjbmvVGA51TpQaawjFqXWnVbm4gvtENtGTGSGXaC9vMjtJcKZifxISSadGI8j4aI0aqmSyhkEmfq2h7xWacmqbpORtPyxZdKqOQE1J7WaeyhudZv8OPDE2fI_ZK_-IXuNDuCpLie8QXvlemtvnV9Rqn51cfpof_jwNJl-AVrrz1c |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ4gHNSDD9SIzz14Xel2t68jIRKQx0Uw3Jrudmvg0BIo_n53aGswMfHgtZNJmtn2-2Y2M_MBPMUJY9JxY6q5UFToyKKRqzi1lbQ013ZseTiNPJ64_Zl4nTvzGnSrWRhsqyyxv8D0HVqXT9plNNurxaL9hjdYhn0EdkEy1-EH0MDtVE4dGp3BsD_5BmTu7VTXdjde6LA3KLx8XiJRZCm2VdoCR9A5qmb_xlF7vNM7g5MyYSSd4p3OoabTJpxWYgyk_DebcLy3WfAC3lGliy5SitrxJKk6sIhJUck6k8ZINgaAyQb719MPgmQWkyytjJ-mhC6vCUm0zTNcdxnr9SXMei_Tbp-WEgpUmbomp65vKV8aEnY5047SnAkmmRcHOhCWlLYWTClbRoHyuR9pc2CJKTGUIW3tczeJ-RXU0yzV10CS2Ld86XHPuInAd02hxjSTnjSY4EWWbkG7Clq4KjZlhFUL2TKswhximMMizC0IqtiGP848NHD-h-_NP3wf4bA_HY_C0WAyvIUjtBTThXdQz9dbfW_SjFw-lJ_RF4Nk0gg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Just-in-time+framework+for+robust+soft+sensing+based+on+robust+variational+autoencoder&rft.jtitle=Journal+of+process+control&rft.au=Guo%2C+Fan&rft.au=Liu%2C+Kun&rft.au=Huang%2C+Biao&rft.date=2024-11-01&rft.pub=Elsevier+Ltd&rft.issn=0959-1524&rft.volume=143&rft_id=info:doi/10.1016%2Fj.jprocont.2024.103325&rft.externalDocID=S0959152424001653 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0959-1524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0959-1524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0959-1524&client=summon |