An active learning ensemble method for regression tasks
Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling c...
Saved in:
Published in | Intelligent data analysis Vol. 24; no. 3; pp. 607 - 623 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
IOS Press BV
01.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling cost of unlabeled data is typically high in terms of time and expenditure, active learning has grown rapidly over recent years with great success. This is reflected in various studies providing insights and analyzing several active learning methods, especially in the case of classification tasks, whereas, there is only a limited number of studies concerning the implementation of active learning methods for regression ones. Within this context, the present paper sets out to put forward a pool-based active learning regression algorithm employing the query by committee strategy to evaluate the informativeness of unlabeled examples. The experimental results on a plethora of benchmark datasets demonstrate the efficiency of the proposed method, since it prevails over the baseline active learning approach applying the random sampling strategy, as well as familiar supervised methods. |
---|---|
AbstractList | Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling cost of unlabeled data is typically high in terms of time and expenditure, active learning has grown rapidly over recent years with great success. This is reflected in various studies providing insights and analyzing several active learning methods, especially in the case of classification tasks, whereas, there is only a limited number of studies concerning the implementation of active learning methods for regression ones. Within this context, the present paper sets out to put forward a pool-based active learning regression algorithm employing the query by committee strategy to evaluate the informativeness of unlabeled examples. The experimental results on a plethora of benchmark datasets demonstrate the efficiency of the proposed method, since it prevails over the baseline active learning approach applying the random sampling strategy, as well as familiar supervised methods. |
ArticleNumber | 607 |
Author | Karlos, Stamatis Kotsiantis, Sotiris Fazakis, Nikos Sgarbas, Kyriakos Kostopoulos, Georgios |
Author_xml | – sequence: 1 givenname: Nikos surname: Fazakis fullname: Fazakis, Nikos organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece – sequence: 2 givenname: Georgios surname: Kostopoulos fullname: Kostopoulos, Georgios organization: Educational Software Development Laboratory, Department of Mathematics, University of Patras, Patras, Greece – sequence: 3 givenname: Stamatis surname: Karlos fullname: Karlos, Stamatis organization: Department of Mathematics, University of Patras, Patras, Greece – sequence: 4 givenname: Sotiris surname: Kotsiantis fullname: Kotsiantis, Sotiris organization: Educational Software Development Laboratory, Department of Mathematics, University of Patras, Patras, Greece – sequence: 5 givenname: Kyriakos surname: Sgarbas fullname: Sgarbas, Kyriakos organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece |
BookMark | eNptkMtKAzEUhoNUsFU3PkHAnTCaezLLUm-FghsFdyGTOVOnTjM1SQXf3khdiavzL75z-2ZoEsYACF1Qcs0Z5zfL23lFa6GIOUJTKjWtBGVmUjIxphJKv56gWUobQohgREyRngfsfO4_AQ_gYujDGkNIsG0GwFvIb2OLuzHiCOsIKfVjwNml93SGjjs3JDj_rafo5f7uefFYrZ4elov5qvJM1rlS5ZiGKwG8BKa87mjXKN94RoxUSrlWQk241hyUdIwbrWvdUg_Us5ZJxk_R5WHuLo4fe0jZbsZ9DGWlZYIoJYxkplBXB8rHMaUInd3Ffuvil6XE_oixRYw9iCkw-QP7PrtcXsvR9cN_Ld_b02Uu |
CitedBy_id | crossref_primary_10_15864_jmscm_4101 crossref_primary_10_3390_e21100988 crossref_primary_10_3233_IDA_230150 |
Cites_doi | 10.1109/TFUZZ.2017.2654504 10.1214/aoms/1177704575 10.1109/ICDM.2013.104 10.2200/S00429ED1V01Y201207AIM018 10.1093/biomet/75.4.800 10.1007/BF00116828 10.1007/s10618-016-0469-7 10.1109/ICNN.1995.487351 10.1016/j.eswa.2016.11.029 10.3233/JIFS-169689 10.1023/A:1010933404324 10.1007/978-3-319-11179-7_60 10.1162/neco.1992.4.1.1 10.1007/978-3-540-87481-2_27 10.1145/1390156.1390301 10.1137/1.9781611972788.47 10.1016/j.knosys.2018.04.020 10.1145/1121995.1121998 10.1007/978-3-540-77226-2_22 10.1145/3178876.3186033 10.1016/j.ins.2016.09.017 10.1016/j.eswa.2012.03.021 10.1109/72.870050 10.1016/j.knosys.2017.05.025 10.1609/aaai.v31i1.10859 10.1016/j.patcog.2014.02.001 10.1109/TNNLS.2016.2542184 |
ContentType | Journal Article |
Copyright | Copyright IOS Press BV 2020 |
Copyright_xml | – notice: Copyright IOS Press BV 2020 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.3233/IDA-194608 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1571-4128 |
EndPage | 623 |
ExternalDocumentID | 10_3233_IDA_194608 n/a |
GroupedDBID | --K 0R~ 1B1 29J 4.4 5GY 8VB AAEDT AAFNC AALRI AAQXK AAXUO ABDBF ABIVO ABJNI ABUBZ ACGFS ACPQW ADMUD ADZMO AEMOZ AENEX AFRHK AGIAB AKVCP ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN CAG COF CS3 E.- EAD EAP EBA EBR EBS EBU EIS EJD EMK EPL EST ESX FDB FEDTE FGOYB FIRID HVGLF HZ~ I-F IHE IL9 IOS K1G M41 MET MIO MK~ ML~ MV1 NGNOM NQ- O9- OK1 P2P PQQKQ QWB R2- RIG ROL RPZ SEW TH9 TUS UHS ZL0 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c259t-6194b364e319426c7f1fb6cbc2085666ad5e903773e65a2387797d1ce1c2d2523 |
ISSN | 1088-467X |
IngestDate | Thu Oct 10 20:26:12 EDT 2024 Thu Sep 12 20:43:30 EDT 2024 Tue Jul 23 14:18:58 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-6194b364e319426c7f1fb6cbc2085666ad5e903773e65a2387797d1ce1c2d2523 |
PQID | 2406648528 |
PQPubID | 2046397 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2406648528 crossref_primary_10_3233_IDA_194608 crossref_citationtrail_10_3233_IDA_194608 |
PublicationCentury | 2000 |
PublicationDate | 2020-01-01 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Intelligent data analysis |
PublicationYear | 2020 |
Publisher | IOS Press BV |
Publisher_xml | – name: IOS Press BV |
References | 10.3233/IDA-194608_ref11 Settles (10.3233/IDA-194608_ref8) 2012; 6 10.3233/IDA-194608_ref31 10.3233/IDA-194608_ref10 Angluin (10.3233/IDA-194608_ref12) 1988; 2 Quinlan (10.3233/IDA-194608_ref30) 1992; 92 Cai (10.3233/IDA-194608_ref14) 2017; 28 Demir (10.3233/IDA-194608_ref22) 2014; 47 Ceperic (10.3233/IDA-194608_ref21) 2012; 39 Geman (10.3233/IDA-194608_ref17) 1992; 4 Yin (10.3233/IDA-194608_ref42) 2018; 153 10.3233/IDA-194608_ref19 10.3233/IDA-194608_ref18 Shevade (10.3233/IDA-194608_ref34) 2000; 11 10.3233/IDA-194608_ref9 Breiman (10.3233/IDA-194608_ref35) 2001; 45 Hochberg (10.3233/IDA-194608_ref37) 1988; 75 10.3233/IDA-194608_ref23 10.3233/IDA-194608_ref45 10.3233/IDA-194608_ref20 Kostopoulos (10.3233/IDA-194608_ref44) 2018; 35 10.3233/IDA-194608_ref40 Jiang (10.3233/IDA-194608_ref27) 2006; 35 10.3233/IDA-194608_ref5 Hodges (10.3233/IDA-194608_ref36) 1962; 33 Pedregosa (10.3233/IDA-194608_ref38) 2011; 12 Ramirez-Loaiza (10.3233/IDA-194608_ref16) 2017; 31 Lughofer (10.3233/IDA-194608_ref26) 2018; 26 Ngo-Ye (10.3233/IDA-194608_ref3) 2017; 71 Son (10.3233/IDA-194608_ref15) 2016; 374 10.3233/IDA-194608_ref28 10.3233/IDA-194608_ref24 Zhou (10.3233/IDA-194608_ref6) 2017; 131 10.3233/IDA-194608_ref25 |
References_xml | – volume: 26 start-page: 292 issue: 1 year: 2018 ident: 10.3233/IDA-194608_ref26 article-title: Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models publication-title: IEEE Trans. fuzzy Syst. doi: 10.1109/TFUZZ.2017.2654504 contributor: fullname: Lughofer – volume: 33 start-page: 482 issue: 2 year: 1962 ident: 10.3233/IDA-194608_ref36 article-title: Rank methods for combination of independent experiments in analysis of variance publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177704575 contributor: fullname: Hodges – ident: 10.3233/IDA-194608_ref18 – ident: 10.3233/IDA-194608_ref23 doi: 10.1109/ICDM.2013.104 – volume: 6 start-page: 1 issue: 1 year: 2012 ident: 10.3233/IDA-194608_ref8 article-title: Active learning publication-title: Synth. Lect. Artif. Intell. Mach. Learn. doi: 10.2200/S00429ED1V01Y201207AIM018 contributor: fullname: Settles – volume: 75 start-page: 800 issue: 4 year: 1988 ident: 10.3233/IDA-194608_ref37 article-title: A sharper Bonferroni procedure for multiple tests of significance publication-title: Biometrika doi: 10.1093/biomet/75.4.800 contributor: fullname: Hochberg – volume: 2 start-page: 319 issue: 4 year: 1988 ident: 10.3233/IDA-194608_ref12 article-title: Queries and concept learning publication-title: Mach. Learn. doi: 10.1007/BF00116828 contributor: fullname: Angluin – volume: 31 start-page: 287 issue: 2 year: 2017 ident: 10.3233/IDA-194608_ref16 article-title: Active learning: An empirical study of common baselines publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0469-7 contributor: fullname: Ramirez-Loaiza – ident: 10.3233/IDA-194608_ref9 doi: 10.1109/ICNN.1995.487351 – volume: 71 start-page: 98 year: 2017 ident: 10.3233/IDA-194608_ref3 article-title: Predicting the helpfulness of online reviews using a scripts-enriched text regression model publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.11.029 contributor: fullname: Ngo-Ye – volume: 35 start-page: 1483 issue: 2 year: 2018 ident: 10.3233/IDA-194608_ref44 article-title: Semi-supervised regression: A recent review publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-169689 contributor: fullname: Kostopoulos – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.3233/IDA-194608_ref35 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – ident: 10.3233/IDA-194608_ref40 doi: 10.1007/978-3-319-11179-7_60 – volume: 4 start-page: 1 issue: 1 year: 1992 ident: 10.3233/IDA-194608_ref17 article-title: Neural networks and the bias/variance dilemma publication-title: Neural Comput. doi: 10.1162/neco.1992.4.1.1 contributor: fullname: Geman – volume: 12 start-page: 2825 year: 2011 ident: 10.3233/IDA-194608_ref38 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. contributor: fullname: Pedregosa – ident: 10.3233/IDA-194608_ref28 doi: 10.1007/978-3-540-87481-2_27 – ident: 10.3233/IDA-194608_ref5 doi: 10.1145/1390156.1390301 – ident: 10.3233/IDA-194608_ref11 – ident: 10.3233/IDA-194608_ref20 doi: 10.1137/1.9781611972788.47 – volume: 153 start-page: 40 year: 2018 ident: 10.3233/IDA-194608_ref42 article-title: Active learning based support vector data description method for robust novelty detection publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2018.04.020 contributor: fullname: Yin – ident: 10.3233/IDA-194608_ref19 – volume: 35 start-page: 14 issue: 1 year: 2006 ident: 10.3233/IDA-194608_ref27 article-title: Research issues in data stream association rule mining publication-title: ACM Sigmod Rec. doi: 10.1145/1121995.1121998 contributor: fullname: Jiang – ident: 10.3233/IDA-194608_ref10 doi: 10.1007/978-3-540-77226-2_22 – ident: 10.3233/IDA-194608_ref31 – ident: 10.3233/IDA-194608_ref45 doi: 10.1145/3178876.3186033 – volume: 374 start-page: 240 year: 2016 ident: 10.3233/IDA-194608_ref15 article-title: Active learning using transductive sparse Bayesian regression publication-title: Inf. Sci. (Ny). doi: 10.1016/j.ins.2016.09.017 contributor: fullname: Son – volume: 92 start-page: 343 year: 1992 ident: 10.3233/IDA-194608_ref30 article-title: Learning with continuous classes publication-title: Mach. Learn. contributor: fullname: Quinlan – volume: 39 start-page: 11029 issue: 12 year: 2012 ident: 10.3233/IDA-194608_ref21 article-title: Sparse multikernel support vector regression machines trained by active learning publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.03.021 contributor: fullname: Ceperic – volume: 11 start-page: 1188 issue: 5 year: 2000 ident: 10.3233/IDA-194608_ref34 article-title: Improvements to the SMO algorithm for SVM regression publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.870050 contributor: fullname: Shevade – volume: 131 start-page: 10 year: 2017 ident: 10.3233/IDA-194608_ref6 article-title: An active learning radial basis function modeling method based on self-organization maps for simulation-based design problems publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2017.05.025 contributor: fullname: Zhou – ident: 10.3233/IDA-194608_ref25 doi: 10.1609/aaai.v31i1.10859 – ident: 10.3233/IDA-194608_ref24 – volume: 47 start-page: 2558 issue: 7 year: 2014 ident: 10.3233/IDA-194608_ref22 article-title: A multiple criteria active learning method for support vector regression publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.02.001 contributor: fullname: Demir – volume: 28 start-page: 1668 issue: 7 year: 2017 ident: 10.3233/IDA-194608_ref14 article-title: Batch mode active learning for regression with expected model change publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2016.2542184 contributor: fullname: Cai |
SSID | ssj0004204 |
Score | 2.2490978 |
Snippet | Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 607 |
SubjectTerms | Active learning Algorithms Machine learning Prediction models Random sampling Regression analysis Teaching methods |
Title | An active learning ensemble method for regression tasks |
URI | https://www.proquest.com/docview/2406648528 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe29GV72Ee3ad26ydL2MkVswWAbHunaqJn68dBEyhsCx1RRM6gC7UP_-t5hg5Oqmra9IITBQnc_zr87fHeEfBWaqVgo8E444x4yYi_3mfaQrvORCpgsMA55eiaOZ-GvOZ-7ggptdkmTf1d3j-aV_I9W4RroFbNk_0Gz_aRwAc5Bv3AEDcPxr3SclG0tjFvdNX-4HIJXqn9jNpRpDd3uIlzrS7PbtRw2WX1VbxLSSV-SsxnibtFhZquU9IrN7pBkGtRcVe7fD1bkuK5uVpWLrS_dMJBY5MI1ZputNp9qMGuzMRNeVM1yvdyKPLDRg8jD5PzC7BPp4mDGgoLZ8sD6zs0CY62qBEfVt1ng1uya1GkLr2DDhgrTBvehbQ8Yxp7Hk8PE8-NQjCK3gnV_7c_O0_Hs5CSdHs2nT8kOw9p_A7KTHBwejF2yLGt7SvbvaWrW4uw_3NzbLGV7kW6Zx_QVeWFdBpoY_b8mT3S5S1527Tiotc675PlpX4K3fkNkUlIDDtqBg3bgoAYcFMBBHThoC463ZDY-mv489myXDE-B69p4GIbKAxFqMKbwgSlZ-EUuVK6w-yo4p9mC63gUSBlowTNgaFLGcuEr7Su2YJwF78igrEr9nlBR8DCOYnguiEMdhRmc-oWSsAYtMh7JPfKtk0qqbAl57GSySsGVRAmmIMHUSHCPfOnvvTaFUx69a78Tbmo_rDpFkinCiLPow5-HP5JnDpf7ZNCsb_Qn4IhN_tlq_R6t9mdT |
link.rule.ids | 315,783,787,27937,27938 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+learning+ensemble+method+for+regression+tasks&rft.jtitle=Intelligent+data+analysis&rft.au=Fazakis%2C+Nikos&rft.au=Kostopoulos%2C+Georgios&rft.au=Stamatis+Karlos&rft.au=Kotsiantis%2C+Sotiris&rft.date=2020-01-01&rft.pub=IOS+Press+BV&rft.issn=1088-467X&rft.eissn=1571-4128&rft.volume=24&rft.issue=3&rft.spage=607&rft_id=info:doi/10.3233%2FIDA-194608&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-467X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-467X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-467X&client=summon |