An active learning ensemble method for regression tasks

Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling c...

Full description

Saved in:
Bibliographic Details
Published inIntelligent data analysis Vol. 24; no. 3; pp. 607 - 623
Main Authors Fazakis, Nikos, Kostopoulos, Georgios, Karlos, Stamatis, Kotsiantis, Sotiris, Sgarbas, Kyriakos
Format Journal Article
LanguageEnglish
Published Amsterdam IOS Press BV 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling cost of unlabeled data is typically high in terms of time and expenditure, active learning has grown rapidly over recent years with great success. This is reflected in various studies providing insights and analyzing several active learning methods, especially in the case of classification tasks, whereas, there is only a limited number of studies concerning the implementation of active learning methods for regression ones. Within this context, the present paper sets out to put forward a pool-based active learning regression algorithm employing the query by committee strategy to evaluate the informativeness of unlabeled examples. The experimental results on a plethora of benchmark datasets demonstrate the efficiency of the proposed method, since it prevails over the baseline active learning approach applying the random sampling strategy, as well as familiar supervised methods.
AbstractList Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum expense under an expert’s guidance. Since there is a lack of labeled data in many scientific fields whilst, at the same time, the labeling cost of unlabeled data is typically high in terms of time and expenditure, active learning has grown rapidly over recent years with great success. This is reflected in various studies providing insights and analyzing several active learning methods, especially in the case of classification tasks, whereas, there is only a limited number of studies concerning the implementation of active learning methods for regression ones. Within this context, the present paper sets out to put forward a pool-based active learning regression algorithm employing the query by committee strategy to evaluate the informativeness of unlabeled examples. The experimental results on a plethora of benchmark datasets demonstrate the efficiency of the proposed method, since it prevails over the baseline active learning approach applying the random sampling strategy, as well as familiar supervised methods.
ArticleNumber 607
Author Karlos, Stamatis
Kotsiantis, Sotiris
Fazakis, Nikos
Sgarbas, Kyriakos
Kostopoulos, Georgios
Author_xml – sequence: 1
  givenname: Nikos
  surname: Fazakis
  fullname: Fazakis, Nikos
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
– sequence: 2
  givenname: Georgios
  surname: Kostopoulos
  fullname: Kostopoulos, Georgios
  organization: Educational Software Development Laboratory, Department of Mathematics, University of Patras, Patras, Greece
– sequence: 3
  givenname: Stamatis
  surname: Karlos
  fullname: Karlos, Stamatis
  organization: Department of Mathematics, University of Patras, Patras, Greece
– sequence: 4
  givenname: Sotiris
  surname: Kotsiantis
  fullname: Kotsiantis, Sotiris
  organization: Educational Software Development Laboratory, Department of Mathematics, University of Patras, Patras, Greece
– sequence: 5
  givenname: Kyriakos
  surname: Sgarbas
  fullname: Sgarbas, Kyriakos
  organization: Department of Electrical and Computer Engineering, University of Patras, Patras, Greece
BookMark eNptkMtKAzEUhoNUsFU3PkHAnTCaezLLUm-FghsFdyGTOVOnTjM1SQXf3khdiavzL75z-2ZoEsYACF1Qcs0Z5zfL23lFa6GIOUJTKjWtBGVmUjIxphJKv56gWUobQohgREyRngfsfO4_AQ_gYujDGkNIsG0GwFvIb2OLuzHiCOsIKfVjwNml93SGjjs3JDj_rafo5f7uefFYrZ4elov5qvJM1rlS5ZiGKwG8BKa87mjXKN94RoxUSrlWQk241hyUdIwbrWvdUg_Us5ZJxk_R5WHuLo4fe0jZbsZ9DGWlZYIoJYxkplBXB8rHMaUInd3Ffuvil6XE_oixRYw9iCkw-QP7PrtcXsvR9cN_Ld_b02Uu
CitedBy_id crossref_primary_10_15864_jmscm_4101
crossref_primary_10_3390_e21100988
crossref_primary_10_3233_IDA_230150
Cites_doi 10.1109/TFUZZ.2017.2654504
10.1214/aoms/1177704575
10.1109/ICDM.2013.104
10.2200/S00429ED1V01Y201207AIM018
10.1093/biomet/75.4.800
10.1007/BF00116828
10.1007/s10618-016-0469-7
10.1109/ICNN.1995.487351
10.1016/j.eswa.2016.11.029
10.3233/JIFS-169689
10.1023/A:1010933404324
10.1007/978-3-319-11179-7_60
10.1162/neco.1992.4.1.1
10.1007/978-3-540-87481-2_27
10.1145/1390156.1390301
10.1137/1.9781611972788.47
10.1016/j.knosys.2018.04.020
10.1145/1121995.1121998
10.1007/978-3-540-77226-2_22
10.1145/3178876.3186033
10.1016/j.ins.2016.09.017
10.1016/j.eswa.2012.03.021
10.1109/72.870050
10.1016/j.knosys.2017.05.025
10.1609/aaai.v31i1.10859
10.1016/j.patcog.2014.02.001
10.1109/TNNLS.2016.2542184
ContentType Journal Article
Copyright Copyright IOS Press BV 2020
Copyright_xml – notice: Copyright IOS Press BV 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/IDA-194608
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1571-4128
EndPage 623
ExternalDocumentID 10_3233_IDA_194608
n/a
GroupedDBID --K
0R~
1B1
29J
4.4
5GY
8VB
AAEDT
AAFNC
AALRI
AAQXK
AAXUO
ABDBF
ABIVO
ABJNI
ABUBZ
ACGFS
ACPQW
ADMUD
ADZMO
AEMOZ
AENEX
AFRHK
AGIAB
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
CAG
COF
CS3
E.-
EAD
EAP
EBA
EBR
EBS
EBU
EIS
EJD
EMK
EPL
EST
ESX
FDB
FEDTE
FGOYB
FIRID
HVGLF
HZ~
I-F
IHE
IL9
IOS
K1G
M41
MET
MIO
MK~
ML~
MV1
NGNOM
NQ-
O9-
OK1
P2P
PQQKQ
QWB
R2-
RIG
ROL
RPZ
SEW
TH9
TUS
UHS
ZL0
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c259t-6194b364e319426c7f1fb6cbc2085666ad5e903773e65a2387797d1ce1c2d2523
ISSN 1088-467X
IngestDate Thu Oct 10 20:26:12 EDT 2024
Thu Sep 12 20:43:30 EDT 2024
Tue Jul 23 14:18:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-6194b364e319426c7f1fb6cbc2085666ad5e903773e65a2387797d1ce1c2d2523
PQID 2406648528
PQPubID 2046397
PageCount 17
ParticipantIDs proquest_journals_2406648528
crossref_primary_10_3233_IDA_194608
crossref_citationtrail_10_3233_IDA_194608
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Intelligent data analysis
PublicationYear 2020
Publisher IOS Press BV
Publisher_xml – name: IOS Press BV
References 10.3233/IDA-194608_ref11
Settles (10.3233/IDA-194608_ref8) 2012; 6
10.3233/IDA-194608_ref31
10.3233/IDA-194608_ref10
Angluin (10.3233/IDA-194608_ref12) 1988; 2
Quinlan (10.3233/IDA-194608_ref30) 1992; 92
Cai (10.3233/IDA-194608_ref14) 2017; 28
Demir (10.3233/IDA-194608_ref22) 2014; 47
Ceperic (10.3233/IDA-194608_ref21) 2012; 39
Geman (10.3233/IDA-194608_ref17) 1992; 4
Yin (10.3233/IDA-194608_ref42) 2018; 153
10.3233/IDA-194608_ref19
10.3233/IDA-194608_ref18
Shevade (10.3233/IDA-194608_ref34) 2000; 11
10.3233/IDA-194608_ref9
Breiman (10.3233/IDA-194608_ref35) 2001; 45
Hochberg (10.3233/IDA-194608_ref37) 1988; 75
10.3233/IDA-194608_ref23
10.3233/IDA-194608_ref45
10.3233/IDA-194608_ref20
Kostopoulos (10.3233/IDA-194608_ref44) 2018; 35
10.3233/IDA-194608_ref40
Jiang (10.3233/IDA-194608_ref27) 2006; 35
10.3233/IDA-194608_ref5
Hodges (10.3233/IDA-194608_ref36) 1962; 33
Pedregosa (10.3233/IDA-194608_ref38) 2011; 12
Ramirez-Loaiza (10.3233/IDA-194608_ref16) 2017; 31
Lughofer (10.3233/IDA-194608_ref26) 2018; 26
Ngo-Ye (10.3233/IDA-194608_ref3) 2017; 71
Son (10.3233/IDA-194608_ref15) 2016; 374
10.3233/IDA-194608_ref28
10.3233/IDA-194608_ref24
Zhou (10.3233/IDA-194608_ref6) 2017; 131
10.3233/IDA-194608_ref25
References_xml – volume: 26
  start-page: 292
  issue: 1
  year: 2018
  ident: 10.3233/IDA-194608_ref26
  article-title: Online active learning in data stream regression using uncertainty sampling based on evolving generalized fuzzy models
  publication-title: IEEE Trans. fuzzy Syst.
  doi: 10.1109/TFUZZ.2017.2654504
  contributor:
    fullname: Lughofer
– volume: 33
  start-page: 482
  issue: 2
  year: 1962
  ident: 10.3233/IDA-194608_ref36
  article-title: Rank methods for combination of independent experiments in analysis of variance
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177704575
  contributor:
    fullname: Hodges
– ident: 10.3233/IDA-194608_ref18
– ident: 10.3233/IDA-194608_ref23
  doi: 10.1109/ICDM.2013.104
– volume: 6
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.3233/IDA-194608_ref8
  article-title: Active learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
  doi: 10.2200/S00429ED1V01Y201207AIM018
  contributor:
    fullname: Settles
– volume: 75
  start-page: 800
  issue: 4
  year: 1988
  ident: 10.3233/IDA-194608_ref37
  article-title: A sharper Bonferroni procedure for multiple tests of significance
  publication-title: Biometrika
  doi: 10.1093/biomet/75.4.800
  contributor:
    fullname: Hochberg
– volume: 2
  start-page: 319
  issue: 4
  year: 1988
  ident: 10.3233/IDA-194608_ref12
  article-title: Queries and concept learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116828
  contributor:
    fullname: Angluin
– volume: 31
  start-page: 287
  issue: 2
  year: 2017
  ident: 10.3233/IDA-194608_ref16
  article-title: Active learning: An empirical study of common baselines
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0469-7
  contributor:
    fullname: Ramirez-Loaiza
– ident: 10.3233/IDA-194608_ref9
  doi: 10.1109/ICNN.1995.487351
– volume: 71
  start-page: 98
  year: 2017
  ident: 10.3233/IDA-194608_ref3
  article-title: Predicting the helpfulness of online reviews using a scripts-enriched text regression model
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.11.029
  contributor:
    fullname: Ngo-Ye
– volume: 35
  start-page: 1483
  issue: 2
  year: 2018
  ident: 10.3233/IDA-194608_ref44
  article-title: Semi-supervised regression: A recent review
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-169689
  contributor:
    fullname: Kostopoulos
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.3233/IDA-194608_ref35
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– ident: 10.3233/IDA-194608_ref40
  doi: 10.1007/978-3-319-11179-7_60
– volume: 4
  start-page: 1
  issue: 1
  year: 1992
  ident: 10.3233/IDA-194608_ref17
  article-title: Neural networks and the bias/variance dilemma
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.1.1
  contributor:
    fullname: Geman
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.3233/IDA-194608_ref38
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: Pedregosa
– ident: 10.3233/IDA-194608_ref28
  doi: 10.1007/978-3-540-87481-2_27
– ident: 10.3233/IDA-194608_ref5
  doi: 10.1145/1390156.1390301
– ident: 10.3233/IDA-194608_ref11
– ident: 10.3233/IDA-194608_ref20
  doi: 10.1137/1.9781611972788.47
– volume: 153
  start-page: 40
  year: 2018
  ident: 10.3233/IDA-194608_ref42
  article-title: Active learning based support vector data description method for robust novelty detection
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2018.04.020
  contributor:
    fullname: Yin
– ident: 10.3233/IDA-194608_ref19
– volume: 35
  start-page: 14
  issue: 1
  year: 2006
  ident: 10.3233/IDA-194608_ref27
  article-title: Research issues in data stream association rule mining
  publication-title: ACM Sigmod Rec.
  doi: 10.1145/1121995.1121998
  contributor:
    fullname: Jiang
– ident: 10.3233/IDA-194608_ref10
  doi: 10.1007/978-3-540-77226-2_22
– ident: 10.3233/IDA-194608_ref31
– ident: 10.3233/IDA-194608_ref45
  doi: 10.1145/3178876.3186033
– volume: 374
  start-page: 240
  year: 2016
  ident: 10.3233/IDA-194608_ref15
  article-title: Active learning using transductive sparse Bayesian regression
  publication-title: Inf. Sci. (Ny).
  doi: 10.1016/j.ins.2016.09.017
  contributor:
    fullname: Son
– volume: 92
  start-page: 343
  year: 1992
  ident: 10.3233/IDA-194608_ref30
  article-title: Learning with continuous classes
  publication-title: Mach. Learn.
  contributor:
    fullname: Quinlan
– volume: 39
  start-page: 11029
  issue: 12
  year: 2012
  ident: 10.3233/IDA-194608_ref21
  article-title: Sparse multikernel support vector regression machines trained by active learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.03.021
  contributor:
    fullname: Ceperic
– volume: 11
  start-page: 1188
  issue: 5
  year: 2000
  ident: 10.3233/IDA-194608_ref34
  article-title: Improvements to the SMO algorithm for SVM regression
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/72.870050
  contributor:
    fullname: Shevade
– volume: 131
  start-page: 10
  year: 2017
  ident: 10.3233/IDA-194608_ref6
  article-title: An active learning radial basis function modeling method based on self-organization maps for simulation-based design problems
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2017.05.025
  contributor:
    fullname: Zhou
– ident: 10.3233/IDA-194608_ref25
  doi: 10.1609/aaai.v31i1.10859
– ident: 10.3233/IDA-194608_ref24
– volume: 47
  start-page: 2558
  issue: 7
  year: 2014
  ident: 10.3233/IDA-194608_ref22
  article-title: A multiple criteria active learning method for support vector regression
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.02.001
  contributor:
    fullname: Demir
– volume: 28
  start-page: 1668
  issue: 7
  year: 2017
  ident: 10.3233/IDA-194608_ref14
  article-title: Batch mode active learning for regression with expected model change
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2016.2542184
  contributor:
    fullname: Cai
SSID ssj0004204
Score 2.2490978
Snippet Active learning is a typical approach for learning from both labeled and unlabeled examples aiming to build efficient and accurate predictive models at minimum...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 607
SubjectTerms Active learning
Algorithms
Machine learning
Prediction models
Random sampling
Regression analysis
Teaching methods
Title An active learning ensemble method for regression tasks
URI https://www.proquest.com/docview/2406648528
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5swELe29GV72Ee3ad26ydL2MkVswWAbHunaqJn68dBEyhsCx1RRM6gC7UP_-t5hg5Oqmra9IITBQnc_zr87fHeEfBWaqVgo8E444x4yYi_3mfaQrvORCpgsMA55eiaOZ-GvOZ-7ggptdkmTf1d3j-aV_I9W4RroFbNk_0Gz_aRwAc5Bv3AEDcPxr3SclG0tjFvdNX-4HIJXqn9jNpRpDd3uIlzrS7PbtRw2WX1VbxLSSV-SsxnibtFhZquU9IrN7pBkGtRcVe7fD1bkuK5uVpWLrS_dMJBY5MI1ZputNp9qMGuzMRNeVM1yvdyKPLDRg8jD5PzC7BPp4mDGgoLZ8sD6zs0CY62qBEfVt1ng1uya1GkLr2DDhgrTBvehbQ8Yxp7Hk8PE8-NQjCK3gnV_7c_O0_Hs5CSdHs2nT8kOw9p_A7KTHBwejF2yLGt7SvbvaWrW4uw_3NzbLGV7kW6Zx_QVeWFdBpoY_b8mT3S5S1527Tiotc675PlpX4K3fkNkUlIDDtqBg3bgoAYcFMBBHThoC463ZDY-mv489myXDE-B69p4GIbKAxFqMKbwgSlZ-EUuVK6w-yo4p9mC63gUSBlowTNgaFLGcuEr7Su2YJwF78igrEr9nlBR8DCOYnguiEMdhRmc-oWSsAYtMh7JPfKtk0qqbAl57GSySsGVRAmmIMHUSHCPfOnvvTaFUx69a78Tbmo_rDpFkinCiLPow5-HP5JnDpf7ZNCsb_Qn4IhN_tlq_R6t9mdT
link.rule.ids 315,783,787,27937,27938
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+active+learning+ensemble+method+for+regression+tasks&rft.jtitle=Intelligent+data+analysis&rft.au=Fazakis%2C+Nikos&rft.au=Kostopoulos%2C+Georgios&rft.au=Stamatis+Karlos&rft.au=Kotsiantis%2C+Sotiris&rft.date=2020-01-01&rft.pub=IOS+Press+BV&rft.issn=1088-467X&rft.eissn=1571-4128&rft.volume=24&rft.issue=3&rft.spage=607&rft_id=info:doi/10.3233%2FIDA-194608&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-467X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-467X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-467X&client=summon