Polystyrene microplastic interaction with Oryza sativa : toxicity and metabolic mechanism
Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L −1 under hydroponic conditions...
Saved in:
Published in | Environmental science. Nano Vol. 8; no. 12; pp. 3699 - 3710 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
09.12.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L
−1
under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS
100 nm
rather than PS
1 μm
can be effectively accumulated in rice roots through endocytosis, although PS
1 μm
exhibited stronger phytotoxicity than PS
100 nm
. Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems. |
---|---|
AbstractList | Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L−1 under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS100 nm rather than PS1 μm can be effectively accumulated in rice roots through endocytosis, although PS1 μm exhibited stronger phytotoxicity than PS100 nm. Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems. Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L −1 under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS 100 nm rather than PS 1 μm can be effectively accumulated in rice roots through endocytosis, although PS 1 μm exhibited stronger phytotoxicity than PS 100 nm . Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems. |
Author | Zeb, Aurang Lian, Jiapan Sun, Yuebing Sun, Hongwen Wu, Jiani Liu, Weitao |
Author_xml | – sequence: 1 givenname: Jiani surname: Wu fullname: Wu, Jiani organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 2 givenname: Weitao orcidid: 0000-0003-1352-0243 surname: Liu fullname: Liu, Weitao organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 3 givenname: Aurang surname: Zeb fullname: Zeb, Aurang organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 4 givenname: Jiapan surname: Lian fullname: Lian, Jiapan organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China – sequence: 5 givenname: Yuebing surname: Sun fullname: Sun, Yuebing organization: Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China – sequence: 6 givenname: Hongwen surname: Sun fullname: Sun, Hongwen organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China |
BookMark | eNptkEtLAzEUhYNUsNZu_AUBd8LozaTJzLiTWh8g1oUuXA1JmqEpM0lNUnX89aZUFMTVPXC_-zjnEA2ssxqhYwJnBGh1fkVmDwCc8ukeGubASFYSTgY_mtEDNA5hBQCE5IzyYoheHl3bh9h7bTXujPJu3YoQjcLGRu2FisZZ_G7iEs99_ylwENG8CXyBo_swysQeC7vAnY5CujaNdVothTWhO0L7jWiDHn_XEXq-nj1Nb7P7-c3d9PI-UzmrYkYYMJgUpZSlrgRXTFYqL0FVZcPS-1wsZFlsZSMlY4opzVKf5kWhdfKl6Aid7PauvXvd6BDrldt4m07WOYeSFBMGNFGnOyo5DMHrpl570wnf1wTqbXr1b3oJhj9wMiq2SUQvTPvfyBdEHnPC |
CitedBy_id | crossref_primary_10_1007_s11356_023_29640_0 crossref_primary_10_1016_j_apsoil_2023_105202 crossref_primary_10_1016_j_scitotenv_2023_169489 crossref_primary_10_3389_fpls_2023_1226484 crossref_primary_10_1016_j_plaphy_2022_12_007 crossref_primary_10_1061_JHTRBP_HZENG_1400 crossref_primary_10_1016_j_scitotenv_2022_160903 crossref_primary_10_1007_s11356_023_31680_5 crossref_primary_10_1007_s11356_023_28513_w crossref_primary_10_1007_s11356_023_30550_4 crossref_primary_10_1016_j_cpb_2024_100375 crossref_primary_10_1016_j_jhazmat_2023_132886 crossref_primary_10_1016_j_scitotenv_2023_167786 crossref_primary_10_1007_s00299_024_03162_6 crossref_primary_10_1007_s41742_023_00558_2 crossref_primary_10_1016_j_jhazmat_2023_133417 crossref_primary_10_1021_acsnano_2c07627 crossref_primary_10_1016_j_scitotenv_2024_172449 crossref_primary_10_1111_sum_12868 crossref_primary_10_1080_15226514_2023_2275152 crossref_primary_10_1016_j_scitotenv_2023_168421 crossref_primary_10_1016_j_envpol_2022_120262 crossref_primary_10_1016_j_jhazmat_2025_137621 crossref_primary_10_1016_j_envint_2025_109311 crossref_primary_10_1016_j_envint_2024_108965 crossref_primary_10_1016_j_plaphy_2023_02_035 crossref_primary_10_1016_j_jhazmat_2024_134578 crossref_primary_10_1016_j_scitotenv_2023_167258 crossref_primary_10_1007_s00128_022_03659_4 crossref_primary_10_1016_j_scitotenv_2023_166045 crossref_primary_10_1016_j_jhazmat_2024_134618 crossref_primary_10_1016_j_jece_2024_115189 crossref_primary_10_1007_s41742_024_00588_4 crossref_primary_10_1016_j_scitotenv_2023_169469 crossref_primary_10_3390_agronomy13030701 crossref_primary_10_1007_s00128_022_03566_8 crossref_primary_10_1016_j_scitotenv_2022_155097 crossref_primary_10_1016_j_scitotenv_2023_168219 crossref_primary_10_1016_j_jhazmat_2024_134282 crossref_primary_10_1016_j_scitotenv_2022_155092 crossref_primary_10_1016_j_scitotenv_2025_178462 crossref_primary_10_1016_j_plaphy_2022_09_012 crossref_primary_10_1016_j_scitotenv_2023_167129 crossref_primary_10_1016_j_scitotenv_2023_163642 crossref_primary_10_1016_j_scitotenv_2023_167920 crossref_primary_10_1016_j_scitotenv_2023_162278 crossref_primary_10_1016_j_envpol_2022_120823 crossref_primary_10_1016_j_jhazmat_2023_133279 crossref_primary_10_1016_j_resconrec_2022_106503 crossref_primary_10_1016_j_ecoenv_2024_116490 crossref_primary_10_1016_j_scitotenv_2022_156678 crossref_primary_10_1016_j_envexpbot_2024_105666 crossref_primary_10_1016_j_scitotenv_2023_169183 crossref_primary_10_1016_j_chemosphere_2023_138079 crossref_primary_10_1016_j_scitotenv_2023_167071 crossref_primary_10_1016_j_scitotenv_2024_173931 crossref_primary_10_2139_ssrn_4098837 crossref_primary_10_3390_toxics12020155 crossref_primary_10_1016_j_ecoenv_2023_115597 crossref_primary_10_1016_j_scitotenv_2024_177732 crossref_primary_10_1016_j_cej_2024_150122 crossref_primary_10_1016_j_jenvman_2022_115441 crossref_primary_10_1016_j_envint_2025_109257 crossref_primary_10_1016_j_apsoil_2022_104505 crossref_primary_10_1016_j_apsoil_2022_104507 crossref_primary_10_1016_j_jhazmat_2025_137803 crossref_primary_10_1016_j_plaphy_2023_01_062 crossref_primary_10_1111_pce_15115 crossref_primary_10_1016_j_scitotenv_2023_167756 crossref_primary_10_1016_j_scitotenv_2022_160025 crossref_primary_10_1016_j_chemosphere_2022_137637 crossref_primary_10_1016_j_envres_2022_114402 crossref_primary_10_1016_j_plaphy_2023_03_011 crossref_primary_10_1016_j_scitotenv_2024_172915 crossref_primary_10_1007_s11356_023_27621_x crossref_primary_10_1016_j_plaphy_2023_01_022 crossref_primary_10_1021_acs_jafc_3c09092 |
Cites_doi | 10.1111/j.1399-3054.1997.tb04778.x 10.1016/0003-2697(71)90370-8 10.1016/j.envpol.2018.02.050 10.1039/C4NR06849A 10.1172/JCI78239 10.1021/acs.est.6b04140 10.1016/j.plaphy.2020.02.014 10.1016/0003-9861(68)90654-1 10.1016/j.plaphy.2016.06.021 10.1111/nph.15794 10.1016/j.chemosphere.2019.03.163 10.1021/acs.est.8b05266 10.3390/plants8020031 10.1016/j.jhazmat.2019.120885 10.1021/acs.estlett.8b00614 10.1111/gcb.15074 10.1016/j.scitotenv.2018.10.321 10.1038/s41565-020-0707-4 10.1016/j.plantsci.2010.04.012 10.1016/j.envpol.2017.06.062 10.1007/s10646-010-0496-x 10.1016/j.scitotenv.2018.01.341 10.1016/j.scitotenv.2017.01.190 10.1093/jxb/erm121 10.1016/j.taap.2004.11.002 10.1021/acs.est.9b06085 10.1021/es503001d 10.1016/S0076-6879(55)02300-8 10.1016/j.plaphy.2016.02.040 10.1016/j.ecoenv.2020.111379 10.1016/j.envpol.2017.07.050 10.1021/jf400428t 10.1016/j.chemosphere.2020.128453 10.1016/j.chemosphere.2019.125491 10.1111/gcb.14020 10.1038/s41561-019-0335-5 10.1021/acs.est.9b05794 10.1016/j.envpol.2019.04.055 10.1007/s12374-020-09247-5 10.1002/smll.202005834 10.1146/annurev.micro.091208.073210 10.1016/j.tplants.2011.08.003 10.1016/j.jhazmat.2020.123412 10.1038/s41893-020-0567-9 10.1016/j.jhazmat.2020.124967 10.1016/j.envpol.2019.113363 10.3389/fpls.2015.00534 10.1016/j.jhazmat.2019.121620 10.1016/j.ecoenv.2019.110133 10.1186/s12989-020-00358-y 10.3109/17435390.2015.1048326 10.1016/j.envpol.2020.114498 10.1093/bioinformatics/18.suppl_2.S241 10.1016/j.scitotenv.2010.03.031 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2021 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2021 |
DBID | AAYXX CITATION 7QH 7ST 7UA C1K F1W H97 L.G SOI |
DOI | 10.1039/D1EN00636C |
DatabaseName | CrossRef Aqualine Environment Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Environment Abstracts |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts Aqualine Environment Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2051-8161 |
EndPage | 3710 |
ExternalDocumentID | 10_1039_D1EN00636C |
GroupedDBID | 0R~ 4.4 AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACLDK ADMRA ADSRN AEFDR AENGV AETIL AFLYV AFOGI AFRAH AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BLAPV BSQNT C6K CITATION EBS ECGLT EE0 EF- GGIMP H13 HZ~ H~N J3I O-G O9- RAOCF RCNCU RPMJG RRC RSCEA RVUXY 7QH 7ST 7UA C1K F1W H97 L.G SOI |
ID | FETCH-LOGICAL-c259t-15050478bb8e9a6c5b9c280c98f58166adb87f581fbb55c5ce5c283277ee205c3 |
ISSN | 2051-8153 |
IngestDate | Mon Jun 30 12:00:34 EDT 2025 Tue Jul 01 02:35:39 EDT 2025 Thu Apr 24 23:12:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c259t-15050478bb8e9a6c5b9c280c98f58166adb87f581fbb55c5ce5c283277ee205c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1352-0243 |
PQID | 2608174503 |
PQPubID | 2047519 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2608174503 crossref_primary_10_1039_D1EN00636C crossref_citationtrail_10_1039_D1EN00636C |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-09 |
PublicationDateYYYYMMDD | 2021-12-09 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Environmental science. Nano |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | PlasticsEurope (D1EN00636C/cit2) 2020 Wang (D1EN00636C/cit51) 2021; 207 Bosker (D1EN00636C/cit17) 2019; 226 Zhang (D1EN00636C/cit30) 2013; 61 Nair (D1EN00636C/cit54) 2010; 179 Lv (D1EN00636C/cit56) 2019; 6 Lian (D1EN00636C/cit18) 2020; 385 Dietz (D1EN00636C/cit55) 2011; 16 Pikuda (D1EN00636C/cit23) 2019; 6 Shu (D1EN00636C/cit49) 2016; 107 Maity (D1EN00636C/cit4) 2020; 26 Liu (D1EN00636C/cit42) 2020; 63 Alscher (D1EN00636C/cit34) 1997; 100 Mahender (D1EN00636C/cit33) 2019; 8 Heath (D1EN00636C/cit27) 1968; 125 Kalčíková (D1EN00636C/cit32) 2017; 230 Allen (D1EN00636C/cit11) 2019; 12 Kumar (D1EN00636C/cit5) 2021; 409 Ma (D1EN00636C/cit53) 2010; 408 Scalabrin (D1EN00636C/cit41) 2016; 103 Chance (D1EN00636C/cit29) 1955; 2 Ling (D1EN00636C/cit50) 2009; 63 Taylor (D1EN00636C/cit43) 2002; 18 Godoy (D1EN00636C/cit13) 2019; 255 de Souza Machado (D1EN00636C/cit6) 2018; 24 Wiegand (D1EN00636C/cit36) 2005; 203 Han (D1EN00636C/cit44) 2019; 380 Winter (D1EN00636C/cit48) 2015; 6 Li (D1EN00636C/cit20) 2020; 3 Horton (D1EN00636C/cit7) 2017; 586 Larue (D1EN00636C/cit3) 2021; 17 Wang (D1EN00636C/cit15) 2020; 244 Lian (D1EN00636C/cit47) 2020; 263 Feng (D1EN00636C/cit39) 2020; 54 Lv (D1EN00636C/cit10) 2019; 652 Wang (D1EN00636C/cit35) 2010; 19 Prüst (D1EN00636C/cit38) 2020; 17 Nizzetto (D1EN00636C/cit9) 2016; 50 Xie (D1EN00636C/cit21) 2020; 190 Forde (D1EN00636C/cit46) 2007; 58 Ng (D1EN00636C/cit8) 2018; 627 Rillig (D1EN00636C/cit12) 2019; 223 Zhang (D1EN00636C/cit26) 2020; 54 Wu (D1EN00636C/cit24) 2017; 230 Beauchamp (D1EN00636C/cit28) 1971; 44 Besseling (D1EN00636C/cit40) 2014; 48 Li (D1EN00636C/cit14) 2018; 237 Zhou (D1EN00636C/cit31) 2021; 401 Tanaka (D1EN00636C/cit45) 2015; 125 Murali (D1EN00636C/cit58) 2015; 7 Taylor (D1EN00636C/cit52) 2020; 7 Schwab (D1EN00636C/cit57) 2016; 10 Giorgetti (D1EN00636C/cit16) 2020; 149 Sun (D1EN00636C/cit19) 2020; 15 Yoshida (D1EN00636C/cit25) 1976 Wanner (D1EN00636C/cit1) 2021; 264 Al-Sid-Cheikh (D1EN00636C/cit22) 2018; 52 Jiang (D1EN00636C/cit37) 2019; 250 |
References_xml | – volume: 100 start-page: 224 year: 1997 ident: D1EN00636C/cit34 publication-title: Physiol. Plant. doi: 10.1111/j.1399-3054.1997.tb04778.x – volume: 44 start-page: 276 year: 1971 ident: D1EN00636C/cit28 publication-title: Anal. Biochem. doi: 10.1016/0003-2697(71)90370-8 – volume: 237 start-page: 460 year: 2018 ident: D1EN00636C/cit14 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.02.050 – volume: 7 start-page: 4199 year: 2015 ident: D1EN00636C/cit58 publication-title: Nanoscale doi: 10.1039/C4NR06849A – volume-title: Plastics – the Facts 2020 year: 2020 ident: D1EN00636C/cit2 – volume: 125 start-page: 1591 year: 2015 ident: D1EN00636C/cit45 publication-title: J. Clin. Invest. doi: 10.1172/JCI78239 – volume: 50 start-page: 10777 year: 2016 ident: D1EN00636C/cit9 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.6b04140 – volume: 149 start-page: 170 year: 2020 ident: D1EN00636C/cit16 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2020.02.014 – volume: 125 start-page: 189 year: 1968 ident: D1EN00636C/cit27 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 107 start-page: 344 year: 2016 ident: D1EN00636C/cit49 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.06.021 – volume: 223 start-page: 1066 year: 2019 ident: D1EN00636C/cit12 publication-title: New Phytol. doi: 10.1111/nph.15794 – volume: 226 start-page: 774 year: 2019 ident: D1EN00636C/cit17 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.03.163 – volume: 52 start-page: 14480 year: 2018 ident: D1EN00636C/cit22 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b05266 – volume: 8 start-page: 31 year: 2019 ident: D1EN00636C/cit33 publication-title: Plants doi: 10.3390/plants8020031 – volume: 380 start-page: 120885 year: 2019 ident: D1EN00636C/cit44 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.120885 – volume: 6 start-page: 21 year: 2019 ident: D1EN00636C/cit23 publication-title: Environ. Sci. Technol. Lett. doi: 10.1021/acs.estlett.8b00614 – volume: 6 start-page: 41 year: 2019 ident: D1EN00636C/cit56 publication-title: Environ. Sci.: Nano – volume: 26 start-page: 3241 year: 2020 ident: D1EN00636C/cit4 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.15074 – volume: 652 start-page: 1209 year: 2019 ident: D1EN00636C/cit10 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.10.321 – volume: 15 start-page: 755 year: 2020 ident: D1EN00636C/cit19 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0707-4 – volume: 179 start-page: 154 year: 2010 ident: D1EN00636C/cit54 publication-title: Plant Sci. doi: 10.1016/j.plantsci.2010.04.012 – volume: 230 start-page: 302 year: 2017 ident: D1EN00636C/cit24 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.06.062 – volume: 19 start-page: 1130 year: 2010 ident: D1EN00636C/cit35 publication-title: Ecotoxicology doi: 10.1007/s10646-010-0496-x – volume: 627 start-page: 1377 year: 2018 ident: D1EN00636C/cit8 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.01.341 – volume: 586 start-page: 127 year: 2017 ident: D1EN00636C/cit7 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.01.190 – volume: 58 start-page: 2339 year: 2007 ident: D1EN00636C/cit46 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erm121 – volume: 203 start-page: 201 year: 2005 ident: D1EN00636C/cit36 publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2004.11.002 – volume: 54 start-page: 3386 year: 2020 ident: D1EN00636C/cit39 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b06085 – volume: 48 start-page: 12336 year: 2014 ident: D1EN00636C/cit40 publication-title: Environ. Sci. Technol. doi: 10.1021/es503001d – volume: 2 start-page: 764 volume-title: Methods in Enzymology year: 1955 ident: D1EN00636C/cit29 doi: 10.1016/S0076-6879(55)02300-8 – volume: 103 start-page: 53 year: 2016 ident: D1EN00636C/cit41 publication-title: Plant Physiol. Biochem. doi: 10.1016/j.plaphy.2016.02.040 – volume: 207 start-page: 111379 year: 2021 ident: D1EN00636C/cit51 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.111379 – volume: 230 start-page: 1108 year: 2017 ident: D1EN00636C/cit32 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2017.07.050 – volume: 61 start-page: 2597 year: 2013 ident: D1EN00636C/cit30 publication-title: J. Agric. Food Chem. doi: 10.1021/jf400428t – volume: 264 start-page: 128453 year: 2021 ident: D1EN00636C/cit1 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128453 – volume: 244 start-page: 125491 year: 2020 ident: D1EN00636C/cit15 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.125491 – volume: 24 start-page: 1405 year: 2018 ident: D1EN00636C/cit6 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14020 – volume: 12 start-page: 339 year: 2019 ident: D1EN00636C/cit11 publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0335-5 – volume: 54 start-page: 3181 year: 2020 ident: D1EN00636C/cit26 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.9b05794 – volume: 250 start-page: 831 year: 2019 ident: D1EN00636C/cit37 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.04.055 – volume: 63 start-page: 229 year: 2020 ident: D1EN00636C/cit42 publication-title: J. Plant Biol. doi: 10.1007/s12374-020-09247-5 – volume: 17 start-page: 2005834 year: 2021 ident: D1EN00636C/cit3 publication-title: Small doi: 10.1002/smll.202005834 – volume: 63 start-page: 61 year: 2009 ident: D1EN00636C/cit50 publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev.micro.091208.073210 – volume: 16 start-page: 582 year: 2011 ident: D1EN00636C/cit55 publication-title: Trends Plant Sci. doi: 10.1016/j.tplants.2011.08.003 – volume: 401 start-page: 123412 year: 2021 ident: D1EN00636C/cit31 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123412 – volume-title: Laboratory Manual for Physiological Studies of Rice year: 1976 ident: D1EN00636C/cit25 – volume: 3 start-page: 929 year: 2020 ident: D1EN00636C/cit20 publication-title: Nat. Sustain. doi: 10.1038/s41893-020-0567-9 – volume: 409 start-page: 124967 year: 2021 ident: D1EN00636C/cit5 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124967 – volume: 255 start-page: 113363 year: 2019 ident: D1EN00636C/cit13 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2019.113363 – volume: 6 start-page: 534 year: 2015 ident: D1EN00636C/cit48 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2015.00534 – volume: 385 start-page: 121620 year: 2020 ident: D1EN00636C/cit18 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121620 – volume: 190 start-page: 110133 year: 2020 ident: D1EN00636C/cit21 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2019.110133 – volume: 7 start-page: 1942 year: 2020 ident: D1EN00636C/cit52 publication-title: Environ. Sci.: Nano – volume: 17 start-page: 24 year: 2020 ident: D1EN00636C/cit38 publication-title: Part. Fibre Toxicol. doi: 10.1186/s12989-020-00358-y – volume: 10 start-page: 257 year: 2016 ident: D1EN00636C/cit57 publication-title: Nanotoxicology doi: 10.3109/17435390.2015.1048326 – volume: 263 start-page: 114498 year: 2020 ident: D1EN00636C/cit47 publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2020.114498 – volume: 18 start-page: S241 year: 2002 ident: D1EN00636C/cit43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.suppl_2.S241 – volume: 408 start-page: 3053 year: 2010 ident: D1EN00636C/cit53 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2010.03.031 |
SSID | ssj0001125367 |
Score | 2.5680435 |
Snippet | Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 3699 |
SubjectTerms | Agricultural ecosystems Agricultural land Amino acids Aquatic plants Ecosystems Endocytosis Hydroponics Internalization Metabolic pathways Metabolic response Metabolism Metabolomics Microplastics Nutrient uptake Nutritional requirements Oxidative stress Phytotoxicity Plastic pollution Polystyrene Polystyrene resins Presenilin 1 Rice Risk assessment Roots Seedlings Soil Terrestrial ecosystems Toxicity Uptake |
Title | Polystyrene microplastic interaction with Oryza sativa : toxicity and metabolic mechanism |
URI | https://www.proquest.com/docview/2608174503 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKduGCQIAYbMgSXNCUksRxEnOrRqeBSschFRWXKHYcVGn9UJeidX897zl2kokJAZcocpwo8vvlfeX59wh5C0Y0Kv2Ke2CLIi8qqtgTIpJeBfFtEFWiKk1O98s0vphFn-d8Phjse1VLu1oO1e29-0r-R6owBnLFXbL_INn2oTAA5yBfOIKE4fhXMv66vtpfYxoZPMUlVtZtwBdGBlYkgdjaLuAm03q53d8Wp1i589M046nXNwuFDjjmzZe6Bigg2_VS40ZgxyroEvbdXji3g1LpIerldavSdwYNALVFW-GzMGPf9KIu2nmjHZjGH6ffteymNRlYuHdjgWpzEGFg6jk6TddkOlyZqSkjsc3qOm0WwtfvpUHDDDzU_bGGjd2p47SPurCnW1nctFKydpolTT3sbzbAZ0ihWgZ6hf5XrDpL5_7uTy_z89lkkmfjefaAHIYQYYCKPByNs0-TLkEHrh8zHYjbV3f0tky87x5_16G5a8-Nk5I9Jo9sdEFHDVSekIFePSXzHkxoHya0BxOKMKEGJrSByQfqQEIBJLQFCW1B8ozMzsfZ2YVnG2p4CqLc2gPnnyMbk5SpFkWsuBQqTH0l0orj_-OilGmCp5WUnCuuNFfYyipJtIZFUOw5OVitV_oFoczXMRJBCZ8VkV8lRZCKoCgFMupVQiZH5J1blVxZtnlsenKVm6oHJvKPwXhqVvDsiLxp524ajpV7Zx27xc3tN3idQzSeQkzNffbyz5dfkYcdcI_JQb3d6RNwJ2v52gr-F0Z-eho |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polystyrene+microplastic+interaction+with+Oryza+sativa%3A+toxicity+and+metabolic+mechanism&rft.jtitle=Environmental+science.+Nano&rft.au=Wu%2C+Jiani&rft.au=Liu%2C+Weitao&rft.au=Aurang+Zeb&rft.au=Lian%2C+Jiapan&rft.date=2021-12-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=8&rft.issue=12&rft.spage=3699&rft.epage=3710&rft_id=info:doi/10.1039%2Fd1en00636c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon |