Polystyrene microplastic interaction with Oryza sativa : toxicity and metabolic mechanism

Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L −1 under hydroponic conditions...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science. Nano Vol. 8; no. 12; pp. 3699 - 3710
Main Authors Wu, Jiani, Liu, Weitao, Zeb, Aurang, Lian, Jiapan, Sun, Yuebing, Sun, Hongwen
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 09.12.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L −1 under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS 100 nm rather than PS 1 μm can be effectively accumulated in rice roots through endocytosis, although PS 1 μm exhibited stronger phytotoxicity than PS 100 nm . Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems.
AbstractList Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L−1 under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS100 nm rather than PS1 μm can be effectively accumulated in rice roots through endocytosis, although PS1 μm exhibited stronger phytotoxicity than PS100 nm. Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems.
Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings were exposed to two different-sized polystyrene (PS) microplastics (100 nm and 1 μm) at 0, 0.1, 1 and 10 mg L −1 under hydroponic conditions for 2 weeks to investigate the metabolic mechanism of PS-induced phytotoxicity and the internalization of PS in rice. PS can trigger oxidative stress. Metabolomic analysis showed that rice leaves had a stronger metabolic response than roots, and the influence of PS on rice metabolic profile was dose-dependent. Metabolic pathways, especially amino acid metabolism, were regulated to affect the growth and development of rice. Phenotypic indexes are consistent with the results of metabolomics. The primary root length of rice was decreased and the nutrient uptake was inhibited, while lateral roots were stimulated to grow to meet the nutritional requirement. Moreover, we found that PS 100 nm rather than PS 1 μm can be effectively accumulated in rice roots through endocytosis, although PS 1 μm exhibited stronger phytotoxicity than PS 100 nm . Our study provides direct evidence for the negative effects of PS on rice, which may have significant implications for assessing the risk of microplastics to terrestrial ecosystems.
Author Zeb, Aurang
Lian, Jiapan
Sun, Yuebing
Sun, Hongwen
Wu, Jiani
Liu, Weitao
Author_xml – sequence: 1
  givenname: Jiani
  surname: Wu
  fullname: Wu, Jiani
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 2
  givenname: Weitao
  orcidid: 0000-0003-1352-0243
  surname: Liu
  fullname: Liu, Weitao
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 3
  givenname: Aurang
  surname: Zeb
  fullname: Zeb, Aurang
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 4
  givenname: Jiapan
  surname: Lian
  fullname: Lian, Jiapan
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
– sequence: 5
  givenname: Yuebing
  surname: Sun
  fullname: Sun, Yuebing
  organization: Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
– sequence: 6
  givenname: Hongwen
  surname: Sun
  fullname: Sun, Hongwen
  organization: Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
BookMark eNptkEtLAzEUhYNUsNZu_AUBd8LozaTJzLiTWh8g1oUuXA1JmqEpM0lNUnX89aZUFMTVPXC_-zjnEA2ssxqhYwJnBGh1fkVmDwCc8ukeGubASFYSTgY_mtEDNA5hBQCE5IzyYoheHl3bh9h7bTXujPJu3YoQjcLGRu2FisZZ_G7iEs99_ylwENG8CXyBo_swysQeC7vAnY5CujaNdVothTWhO0L7jWiDHn_XEXq-nj1Nb7P7-c3d9PI-UzmrYkYYMJgUpZSlrgRXTFYqL0FVZcPS-1wsZFlsZSMlY4opzVKf5kWhdfKl6Aid7PauvXvd6BDrldt4m07WOYeSFBMGNFGnOyo5DMHrpl570wnf1wTqbXr1b3oJhj9wMiq2SUQvTPvfyBdEHnPC
CitedBy_id crossref_primary_10_1007_s11356_023_29640_0
crossref_primary_10_1016_j_apsoil_2023_105202
crossref_primary_10_1016_j_scitotenv_2023_169489
crossref_primary_10_3389_fpls_2023_1226484
crossref_primary_10_1016_j_plaphy_2022_12_007
crossref_primary_10_1061_JHTRBP_HZENG_1400
crossref_primary_10_1016_j_scitotenv_2022_160903
crossref_primary_10_1007_s11356_023_31680_5
crossref_primary_10_1007_s11356_023_28513_w
crossref_primary_10_1007_s11356_023_30550_4
crossref_primary_10_1016_j_cpb_2024_100375
crossref_primary_10_1016_j_jhazmat_2023_132886
crossref_primary_10_1016_j_scitotenv_2023_167786
crossref_primary_10_1007_s00299_024_03162_6
crossref_primary_10_1007_s41742_023_00558_2
crossref_primary_10_1016_j_jhazmat_2023_133417
crossref_primary_10_1021_acsnano_2c07627
crossref_primary_10_1016_j_scitotenv_2024_172449
crossref_primary_10_1111_sum_12868
crossref_primary_10_1080_15226514_2023_2275152
crossref_primary_10_1016_j_scitotenv_2023_168421
crossref_primary_10_1016_j_envpol_2022_120262
crossref_primary_10_1016_j_jhazmat_2025_137621
crossref_primary_10_1016_j_envint_2025_109311
crossref_primary_10_1016_j_envint_2024_108965
crossref_primary_10_1016_j_plaphy_2023_02_035
crossref_primary_10_1016_j_jhazmat_2024_134578
crossref_primary_10_1016_j_scitotenv_2023_167258
crossref_primary_10_1007_s00128_022_03659_4
crossref_primary_10_1016_j_scitotenv_2023_166045
crossref_primary_10_1016_j_jhazmat_2024_134618
crossref_primary_10_1016_j_jece_2024_115189
crossref_primary_10_1007_s41742_024_00588_4
crossref_primary_10_1016_j_scitotenv_2023_169469
crossref_primary_10_3390_agronomy13030701
crossref_primary_10_1007_s00128_022_03566_8
crossref_primary_10_1016_j_scitotenv_2022_155097
crossref_primary_10_1016_j_scitotenv_2023_168219
crossref_primary_10_1016_j_jhazmat_2024_134282
crossref_primary_10_1016_j_scitotenv_2022_155092
crossref_primary_10_1016_j_scitotenv_2025_178462
crossref_primary_10_1016_j_plaphy_2022_09_012
crossref_primary_10_1016_j_scitotenv_2023_167129
crossref_primary_10_1016_j_scitotenv_2023_163642
crossref_primary_10_1016_j_scitotenv_2023_167920
crossref_primary_10_1016_j_scitotenv_2023_162278
crossref_primary_10_1016_j_envpol_2022_120823
crossref_primary_10_1016_j_jhazmat_2023_133279
crossref_primary_10_1016_j_resconrec_2022_106503
crossref_primary_10_1016_j_ecoenv_2024_116490
crossref_primary_10_1016_j_scitotenv_2022_156678
crossref_primary_10_1016_j_envexpbot_2024_105666
crossref_primary_10_1016_j_scitotenv_2023_169183
crossref_primary_10_1016_j_chemosphere_2023_138079
crossref_primary_10_1016_j_scitotenv_2023_167071
crossref_primary_10_1016_j_scitotenv_2024_173931
crossref_primary_10_2139_ssrn_4098837
crossref_primary_10_3390_toxics12020155
crossref_primary_10_1016_j_ecoenv_2023_115597
crossref_primary_10_1016_j_scitotenv_2024_177732
crossref_primary_10_1016_j_cej_2024_150122
crossref_primary_10_1016_j_jenvman_2022_115441
crossref_primary_10_1016_j_envint_2025_109257
crossref_primary_10_1016_j_apsoil_2022_104505
crossref_primary_10_1016_j_apsoil_2022_104507
crossref_primary_10_1016_j_jhazmat_2025_137803
crossref_primary_10_1016_j_plaphy_2023_01_062
crossref_primary_10_1111_pce_15115
crossref_primary_10_1016_j_scitotenv_2023_167756
crossref_primary_10_1016_j_scitotenv_2022_160025
crossref_primary_10_1016_j_chemosphere_2022_137637
crossref_primary_10_1016_j_envres_2022_114402
crossref_primary_10_1016_j_plaphy_2023_03_011
crossref_primary_10_1016_j_scitotenv_2024_172915
crossref_primary_10_1007_s11356_023_27621_x
crossref_primary_10_1016_j_plaphy_2023_01_022
crossref_primary_10_1021_acs_jafc_3c09092
Cites_doi 10.1111/j.1399-3054.1997.tb04778.x
10.1016/0003-2697(71)90370-8
10.1016/j.envpol.2018.02.050
10.1039/C4NR06849A
10.1172/JCI78239
10.1021/acs.est.6b04140
10.1016/j.plaphy.2020.02.014
10.1016/0003-9861(68)90654-1
10.1016/j.plaphy.2016.06.021
10.1111/nph.15794
10.1016/j.chemosphere.2019.03.163
10.1021/acs.est.8b05266
10.3390/plants8020031
10.1016/j.jhazmat.2019.120885
10.1021/acs.estlett.8b00614
10.1111/gcb.15074
10.1016/j.scitotenv.2018.10.321
10.1038/s41565-020-0707-4
10.1016/j.plantsci.2010.04.012
10.1016/j.envpol.2017.06.062
10.1007/s10646-010-0496-x
10.1016/j.scitotenv.2018.01.341
10.1016/j.scitotenv.2017.01.190
10.1093/jxb/erm121
10.1016/j.taap.2004.11.002
10.1021/acs.est.9b06085
10.1021/es503001d
10.1016/S0076-6879(55)02300-8
10.1016/j.plaphy.2016.02.040
10.1016/j.ecoenv.2020.111379
10.1016/j.envpol.2017.07.050
10.1021/jf400428t
10.1016/j.chemosphere.2020.128453
10.1016/j.chemosphere.2019.125491
10.1111/gcb.14020
10.1038/s41561-019-0335-5
10.1021/acs.est.9b05794
10.1016/j.envpol.2019.04.055
10.1007/s12374-020-09247-5
10.1002/smll.202005834
10.1146/annurev.micro.091208.073210
10.1016/j.tplants.2011.08.003
10.1016/j.jhazmat.2020.123412
10.1038/s41893-020-0567-9
10.1016/j.jhazmat.2020.124967
10.1016/j.envpol.2019.113363
10.3389/fpls.2015.00534
10.1016/j.jhazmat.2019.121620
10.1016/j.ecoenv.2019.110133
10.1186/s12989-020-00358-y
10.3109/17435390.2015.1048326
10.1016/j.envpol.2020.114498
10.1093/bioinformatics/18.suppl_2.S241
10.1016/j.scitotenv.2010.03.031
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2021
Copyright_xml – notice: Copyright Royal Society of Chemistry 2021
DBID AAYXX
CITATION
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
DOI 10.1039/D1EN00636C
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2051-8161
EndPage 3710
ExternalDocumentID 10_1039_D1EN00636C
GroupedDBID 0R~
4.4
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACLDK
ADMRA
ADSRN
AEFDR
AENGV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BLAPV
BSQNT
C6K
CITATION
EBS
ECGLT
EE0
EF-
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
7QH
7ST
7UA
C1K
F1W
H97
L.G
SOI
ID FETCH-LOGICAL-c259t-15050478bb8e9a6c5b9c280c98f58166adb87f581fbb55c5ce5c283277ee205c3
ISSN 2051-8153
IngestDate Mon Jun 30 12:00:34 EDT 2025
Tue Jul 01 02:35:39 EDT 2025
Thu Apr 24 23:12:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c259t-15050478bb8e9a6c5b9c280c98f58166adb87f581fbb55c5ce5c283277ee205c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1352-0243
PQID 2608174503
PQPubID 2047519
PageCount 12
ParticipantIDs proquest_journals_2608174503
crossref_primary_10_1039_D1EN00636C
crossref_citationtrail_10_1039_D1EN00636C
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-09
PublicationDateYYYYMMDD 2021-12-09
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-09
  day: 09
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Environmental science. Nano
PublicationYear 2021
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References PlasticsEurope (D1EN00636C/cit2) 2020
Wang (D1EN00636C/cit51) 2021; 207
Bosker (D1EN00636C/cit17) 2019; 226
Zhang (D1EN00636C/cit30) 2013; 61
Nair (D1EN00636C/cit54) 2010; 179
Lv (D1EN00636C/cit56) 2019; 6
Lian (D1EN00636C/cit18) 2020; 385
Dietz (D1EN00636C/cit55) 2011; 16
Pikuda (D1EN00636C/cit23) 2019; 6
Shu (D1EN00636C/cit49) 2016; 107
Maity (D1EN00636C/cit4) 2020; 26
Liu (D1EN00636C/cit42) 2020; 63
Alscher (D1EN00636C/cit34) 1997; 100
Mahender (D1EN00636C/cit33) 2019; 8
Heath (D1EN00636C/cit27) 1968; 125
Kalčíková (D1EN00636C/cit32) 2017; 230
Allen (D1EN00636C/cit11) 2019; 12
Kumar (D1EN00636C/cit5) 2021; 409
Ma (D1EN00636C/cit53) 2010; 408
Scalabrin (D1EN00636C/cit41) 2016; 103
Chance (D1EN00636C/cit29) 1955; 2
Ling (D1EN00636C/cit50) 2009; 63
Taylor (D1EN00636C/cit43) 2002; 18
Godoy (D1EN00636C/cit13) 2019; 255
de Souza Machado (D1EN00636C/cit6) 2018; 24
Wiegand (D1EN00636C/cit36) 2005; 203
Han (D1EN00636C/cit44) 2019; 380
Winter (D1EN00636C/cit48) 2015; 6
Li (D1EN00636C/cit20) 2020; 3
Horton (D1EN00636C/cit7) 2017; 586
Larue (D1EN00636C/cit3) 2021; 17
Wang (D1EN00636C/cit15) 2020; 244
Lian (D1EN00636C/cit47) 2020; 263
Feng (D1EN00636C/cit39) 2020; 54
Lv (D1EN00636C/cit10) 2019; 652
Wang (D1EN00636C/cit35) 2010; 19
Prüst (D1EN00636C/cit38) 2020; 17
Nizzetto (D1EN00636C/cit9) 2016; 50
Xie (D1EN00636C/cit21) 2020; 190
Forde (D1EN00636C/cit46) 2007; 58
Ng (D1EN00636C/cit8) 2018; 627
Rillig (D1EN00636C/cit12) 2019; 223
Zhang (D1EN00636C/cit26) 2020; 54
Wu (D1EN00636C/cit24) 2017; 230
Beauchamp (D1EN00636C/cit28) 1971; 44
Besseling (D1EN00636C/cit40) 2014; 48
Li (D1EN00636C/cit14) 2018; 237
Zhou (D1EN00636C/cit31) 2021; 401
Tanaka (D1EN00636C/cit45) 2015; 125
Murali (D1EN00636C/cit58) 2015; 7
Taylor (D1EN00636C/cit52) 2020; 7
Schwab (D1EN00636C/cit57) 2016; 10
Giorgetti (D1EN00636C/cit16) 2020; 149
Sun (D1EN00636C/cit19) 2020; 15
Yoshida (D1EN00636C/cit25) 1976
Wanner (D1EN00636C/cit1) 2021; 264
Al-Sid-Cheikh (D1EN00636C/cit22) 2018; 52
Jiang (D1EN00636C/cit37) 2019; 250
References_xml – volume: 100
  start-page: 224
  year: 1997
  ident: D1EN00636C/cit34
  publication-title: Physiol. Plant.
  doi: 10.1111/j.1399-3054.1997.tb04778.x
– volume: 44
  start-page: 276
  year: 1971
  ident: D1EN00636C/cit28
  publication-title: Anal. Biochem.
  doi: 10.1016/0003-2697(71)90370-8
– volume: 237
  start-page: 460
  year: 2018
  ident: D1EN00636C/cit14
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2018.02.050
– volume: 7
  start-page: 4199
  year: 2015
  ident: D1EN00636C/cit58
  publication-title: Nanoscale
  doi: 10.1039/C4NR06849A
– volume-title: Plastics – the Facts 2020
  year: 2020
  ident: D1EN00636C/cit2
– volume: 125
  start-page: 1591
  year: 2015
  ident: D1EN00636C/cit45
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI78239
– volume: 50
  start-page: 10777
  year: 2016
  ident: D1EN00636C/cit9
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.6b04140
– volume: 149
  start-page: 170
  year: 2020
  ident: D1EN00636C/cit16
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2020.02.014
– volume: 125
  start-page: 189
  year: 1968
  ident: D1EN00636C/cit27
  publication-title: Arch. Biochem. Biophys.
  doi: 10.1016/0003-9861(68)90654-1
– volume: 107
  start-page: 344
  year: 2016
  ident: D1EN00636C/cit49
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.06.021
– volume: 223
  start-page: 1066
  year: 2019
  ident: D1EN00636C/cit12
  publication-title: New Phytol.
  doi: 10.1111/nph.15794
– volume: 226
  start-page: 774
  year: 2019
  ident: D1EN00636C/cit17
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.03.163
– volume: 52
  start-page: 14480
  year: 2018
  ident: D1EN00636C/cit22
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b05266
– volume: 8
  start-page: 31
  year: 2019
  ident: D1EN00636C/cit33
  publication-title: Plants
  doi: 10.3390/plants8020031
– volume: 380
  start-page: 120885
  year: 2019
  ident: D1EN00636C/cit44
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.120885
– volume: 6
  start-page: 21
  year: 2019
  ident: D1EN00636C/cit23
  publication-title: Environ. Sci. Technol. Lett.
  doi: 10.1021/acs.estlett.8b00614
– volume: 6
  start-page: 41
  year: 2019
  ident: D1EN00636C/cit56
  publication-title: Environ. Sci.: Nano
– volume: 26
  start-page: 3241
  year: 2020
  ident: D1EN00636C/cit4
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.15074
– volume: 652
  start-page: 1209
  year: 2019
  ident: D1EN00636C/cit10
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.10.321
– volume: 15
  start-page: 755
  year: 2020
  ident: D1EN00636C/cit19
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0707-4
– volume: 179
  start-page: 154
  year: 2010
  ident: D1EN00636C/cit54
  publication-title: Plant Sci.
  doi: 10.1016/j.plantsci.2010.04.012
– volume: 230
  start-page: 302
  year: 2017
  ident: D1EN00636C/cit24
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.06.062
– volume: 19
  start-page: 1130
  year: 2010
  ident: D1EN00636C/cit35
  publication-title: Ecotoxicology
  doi: 10.1007/s10646-010-0496-x
– volume: 627
  start-page: 1377
  year: 2018
  ident: D1EN00636C/cit8
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.01.341
– volume: 586
  start-page: 127
  year: 2017
  ident: D1EN00636C/cit7
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.01.190
– volume: 58
  start-page: 2339
  year: 2007
  ident: D1EN00636C/cit46
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/erm121
– volume: 203
  start-page: 201
  year: 2005
  ident: D1EN00636C/cit36
  publication-title: Toxicol. Appl. Pharmacol.
  doi: 10.1016/j.taap.2004.11.002
– volume: 54
  start-page: 3386
  year: 2020
  ident: D1EN00636C/cit39
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b06085
– volume: 48
  start-page: 12336
  year: 2014
  ident: D1EN00636C/cit40
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es503001d
– volume: 2
  start-page: 764
  volume-title: Methods in Enzymology
  year: 1955
  ident: D1EN00636C/cit29
  doi: 10.1016/S0076-6879(55)02300-8
– volume: 103
  start-page: 53
  year: 2016
  ident: D1EN00636C/cit41
  publication-title: Plant Physiol. Biochem.
  doi: 10.1016/j.plaphy.2016.02.040
– volume: 207
  start-page: 111379
  year: 2021
  ident: D1EN00636C/cit51
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2020.111379
– volume: 230
  start-page: 1108
  year: 2017
  ident: D1EN00636C/cit32
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2017.07.050
– volume: 61
  start-page: 2597
  year: 2013
  ident: D1EN00636C/cit30
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf400428t
– volume: 264
  start-page: 128453
  year: 2021
  ident: D1EN00636C/cit1
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128453
– volume: 244
  start-page: 125491
  year: 2020
  ident: D1EN00636C/cit15
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2019.125491
– volume: 24
  start-page: 1405
  year: 2018
  ident: D1EN00636C/cit6
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14020
– volume: 12
  start-page: 339
  year: 2019
  ident: D1EN00636C/cit11
  publication-title: Nat. Geosci.
  doi: 10.1038/s41561-019-0335-5
– volume: 54
  start-page: 3181
  year: 2020
  ident: D1EN00636C/cit26
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.9b05794
– volume: 250
  start-page: 831
  year: 2019
  ident: D1EN00636C/cit37
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.04.055
– volume: 63
  start-page: 229
  year: 2020
  ident: D1EN00636C/cit42
  publication-title: J. Plant Biol.
  doi: 10.1007/s12374-020-09247-5
– volume: 17
  start-page: 2005834
  year: 2021
  ident: D1EN00636C/cit3
  publication-title: Small
  doi: 10.1002/smll.202005834
– volume: 63
  start-page: 61
  year: 2009
  ident: D1EN00636C/cit50
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev.micro.091208.073210
– volume: 16
  start-page: 582
  year: 2011
  ident: D1EN00636C/cit55
  publication-title: Trends Plant Sci.
  doi: 10.1016/j.tplants.2011.08.003
– volume: 401
  start-page: 123412
  year: 2021
  ident: D1EN00636C/cit31
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123412
– volume-title: Laboratory Manual for Physiological Studies of Rice
  year: 1976
  ident: D1EN00636C/cit25
– volume: 3
  start-page: 929
  year: 2020
  ident: D1EN00636C/cit20
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-020-0567-9
– volume: 409
  start-page: 124967
  year: 2021
  ident: D1EN00636C/cit5
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.124967
– volume: 255
  start-page: 113363
  year: 2019
  ident: D1EN00636C/cit13
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2019.113363
– volume: 6
  start-page: 534
  year: 2015
  ident: D1EN00636C/cit48
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2015.00534
– volume: 385
  start-page: 121620
  year: 2020
  ident: D1EN00636C/cit18
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2019.121620
– volume: 190
  start-page: 110133
  year: 2020
  ident: D1EN00636C/cit21
  publication-title: Ecotoxicol. Environ. Saf.
  doi: 10.1016/j.ecoenv.2019.110133
– volume: 7
  start-page: 1942
  year: 2020
  ident: D1EN00636C/cit52
  publication-title: Environ. Sci.: Nano
– volume: 17
  start-page: 24
  year: 2020
  ident: D1EN00636C/cit38
  publication-title: Part. Fibre Toxicol.
  doi: 10.1186/s12989-020-00358-y
– volume: 10
  start-page: 257
  year: 2016
  ident: D1EN00636C/cit57
  publication-title: Nanotoxicology
  doi: 10.3109/17435390.2015.1048326
– volume: 263
  start-page: 114498
  year: 2020
  ident: D1EN00636C/cit47
  publication-title: Environ. Pollut.
  doi: 10.1016/j.envpol.2020.114498
– volume: 18
  start-page: S241
  year: 2002
  ident: D1EN00636C/cit43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.suppl_2.S241
– volume: 408
  start-page: 3053
  year: 2010
  ident: D1EN00636C/cit53
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2010.03.031
SSID ssj0001125367
Score 2.5680435
Snippet Little is known about the effects of microplastics on terrestrial ecosystems, especially agricultural soils and terrestrial higher plants. Here, rice seedlings...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3699
SubjectTerms Agricultural ecosystems
Agricultural land
Amino acids
Aquatic plants
Ecosystems
Endocytosis
Hydroponics
Internalization
Metabolic pathways
Metabolic response
Metabolism
Metabolomics
Microplastics
Nutrient uptake
Nutritional requirements
Oxidative stress
Phytotoxicity
Plastic pollution
Polystyrene
Polystyrene resins
Presenilin 1
Rice
Risk assessment
Roots
Seedlings
Soil
Terrestrial ecosystems
Toxicity
Uptake
Title Polystyrene microplastic interaction with Oryza sativa : toxicity and metabolic mechanism
URI https://www.proquest.com/docview/2608174503
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKduGCQIAYbMgSXNCUksRxEnOrRqeBSschFRWXKHYcVGn9UJeidX897zl2kokJAZcocpwo8vvlfeX59wh5C0Y0Kv2Ke2CLIi8qqtgTIpJeBfFtEFWiKk1O98s0vphFn-d8Phjse1VLu1oO1e29-0r-R6owBnLFXbL_INn2oTAA5yBfOIKE4fhXMv66vtpfYxoZPMUlVtZtwBdGBlYkgdjaLuAm03q53d8Wp1i589M046nXNwuFDjjmzZe6Bigg2_VS40ZgxyroEvbdXji3g1LpIerldavSdwYNALVFW-GzMGPf9KIu2nmjHZjGH6ffteymNRlYuHdjgWpzEGFg6jk6TddkOlyZqSkjsc3qOm0WwtfvpUHDDDzU_bGGjd2p47SPurCnW1nctFKydpolTT3sbzbAZ0ihWgZ6hf5XrDpL5_7uTy_z89lkkmfjefaAHIYQYYCKPByNs0-TLkEHrh8zHYjbV3f0tky87x5_16G5a8-Nk5I9Jo9sdEFHDVSekIFePSXzHkxoHya0BxOKMKEGJrSByQfqQEIBJLQFCW1B8ozMzsfZ2YVnG2p4CqLc2gPnnyMbk5SpFkWsuBQqTH0l0orj_-OilGmCp5WUnCuuNFfYyipJtIZFUOw5OVitV_oFoczXMRJBCZ8VkV8lRZCKoCgFMupVQiZH5J1blVxZtnlsenKVm6oHJvKPwXhqVvDsiLxp524ajpV7Zx27xc3tN3idQzSeQkzNffbyz5dfkYcdcI_JQb3d6RNwJ2v52gr-F0Z-eho
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polystyrene+microplastic+interaction+with+Oryza+sativa%3A+toxicity+and+metabolic+mechanism&rft.jtitle=Environmental+science.+Nano&rft.au=Wu%2C+Jiani&rft.au=Liu%2C+Weitao&rft.au=Aurang+Zeb&rft.au=Lian%2C+Jiapan&rft.date=2021-12-09&rft.pub=Royal+Society+of+Chemistry&rft.issn=2051-8153&rft.eissn=2051-8161&rft.volume=8&rft.issue=12&rft.spage=3699&rft.epage=3710&rft_id=info:doi/10.1039%2Fd1en00636c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-8153&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-8153&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-8153&client=summon