Response analysis of slender structures on a spar-type floating offshore wind turbine under three types of freak waves
The Spar-type floating offshore wind turbine (FOWT) is an offshore structure that utilizes wind energy in deep water area. It is affected by the coupling of wind, waves and other environmental factors, leading to complex dynamic response characteristics, particularly during extreme sea conditions li...
Saved in:
Published in | Ocean engineering Vol. 325; p. 120867 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The Spar-type floating offshore wind turbine (FOWT) is an offshore structure that utilizes wind energy in deep water area. It is affected by the coupling of wind, waves and other environmental factors, leading to complex dynamic response characteristics, particularly during extreme sea conditions like freak waves. In our work, the phase modulation method is employed to obtain freak waves with extreme wave height. Based on this method, we propose a new approach called moving interval focusing method to generate three types of freak waves, including amplitude-close freak wave, peak-dominated freak wave and trough-dominated freak wave. Focusing on the Spar-type FOWT as the subject of this study, the response analysis on slender structures including blade and tower is conducted under these freak waves and steady wind. We examine the frequency-domain characteristics of the Spar-type FOWT when subjected to three types of freak waves using wavelet analysis. Our findings indicate that response peaks significantly rise for three freak waves, with the trough-dominated wave showing the most pronounced effect. Additionally, energy density would noticeably increase at the onset of these freak waves. Compared to the amplitude-close freak wave, the blade deformation produces a high frequency in impact region under the peak-dominated freak wave and the trough-dominated freak wave. When the wave trough deepens, the bending moments at blade root and tower base increase, by 12.1% and 34.5%, respectively. There is a time difference between the peak position of shear force and bending moment. Compared with the impact of amplitude-close freak waves, the changes of peak and trough both induce the increasement on the tower shear force. These observations highlight the varying impacts of different wave types on the structural responses of slender components in offshore wind turbines.
•Three type freak waves are generated by the phase modulation method.•Dynamic responses of slender structures on a Spar-type FOWT are analyzed under random wave and freak wave.•Response analysis of slender structures under three type freak waves are conducted.•When the wave trough deepens, the bending moments of the blade root and tower base are higher.•Compared with the amplitude-close freak wave, the peak and trough induce the increase on the tower shear force. |
---|---|
AbstractList | The Spar-type floating offshore wind turbine (FOWT) is an offshore structure that utilizes wind energy in deep water area. It is affected by the coupling of wind, waves and other environmental factors, leading to complex dynamic response characteristics, particularly during extreme sea conditions like freak waves. In our work, the phase modulation method is employed to obtain freak waves with extreme wave height. Based on this method, we propose a new approach called moving interval focusing method to generate three types of freak waves, including amplitude-close freak wave, peak-dominated freak wave and trough-dominated freak wave. Focusing on the Spar-type FOWT as the subject of this study, the response analysis on slender structures including blade and tower is conducted under these freak waves and steady wind. We examine the frequency-domain characteristics of the Spar-type FOWT when subjected to three types of freak waves using wavelet analysis. Our findings indicate that response peaks significantly rise for three freak waves, with the trough-dominated wave showing the most pronounced effect. Additionally, energy density would noticeably increase at the onset of these freak waves. Compared to the amplitude-close freak wave, the blade deformation produces a high frequency in impact region under the peak-dominated freak wave and the trough-dominated freak wave. When the wave trough deepens, the bending moments at blade root and tower base increase, by 12.1% and 34.5%, respectively. There is a time difference between the peak position of shear force and bending moment. Compared with the impact of amplitude-close freak waves, the changes of peak and trough both induce the increasement on the tower shear force. These observations highlight the varying impacts of different wave types on the structural responses of slender components in offshore wind turbines.
•Three type freak waves are generated by the phase modulation method.•Dynamic responses of slender structures on a Spar-type FOWT are analyzed under random wave and freak wave.•Response analysis of slender structures under three type freak waves are conducted.•When the wave trough deepens, the bending moments of the blade root and tower base are higher.•Compared with the amplitude-close freak wave, the peak and trough induce the increase on the tower shear force. |
ArticleNumber | 120867 |
Author | Li, Guoyan Meng, Hang Su, Ouming Feng, Yiting Li, Yan Li, Haoran Cui, Yiwen Wang, Bin |
Author_xml | – sequence: 1 givenname: Haoran surname: Li fullname: Li, Haoran organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China – sequence: 2 givenname: Bin surname: Wang fullname: Wang, Bin email: wangbin@email.tjut.edu.cn organization: Research Institute of Offshore Energy and Intelligent Construction, Tianjin University of Technology, Tianjin, 300384, China – sequence: 3 givenname: Guoyan surname: Li fullname: Li, Guoyan organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China – sequence: 4 givenname: Yiwen surname: Cui fullname: Cui, Yiwen organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China – sequence: 5 givenname: Ouming surname: Su fullname: Su, Ouming organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China – sequence: 6 givenname: Yiting surname: Feng fullname: Feng, Yiting organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China – sequence: 7 givenname: Hang surname: Meng fullname: Meng, Hang organization: State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of New Energy, North China Electric Power University, Beijing, 102206, China – sequence: 8 givenname: Yan surname: Li fullname: Li, Yan organization: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin Key Laboratory of Port and Ocean Engineering, School of Civil Engineering, Tianjin University, Tianjin, 300350, China |
BookMark | eNqFkM1KAzEUhbOoYKu-guQFZrzJdDKdnVL8g4Igug5pctOmjsmQpC19e6etrl1dOJzvcPkmZOSDR0JuGZQMmLjblEGj8uhXJQdel4zDTDQjMgbgbTEDNrskk5Q2ACAEVGOye8fUB5-QKq-6Q3KJBktTh95gpCnHrc7biEPqqaKpV7HIhx6p7YLKzq-Gtk3rEJHunTd06C6dR7o94XkdEemxf1q1EdUX3asdpmtyYVWX8Ob3XpHPp8eP-UuxeHt-nT8sCs3rNheMqdow05hqKrgwyOtGGEBWG82wXdbc8KXg0HAEyyrBLDMgWj1tW2CqMVBdEXHe1TGkFNHKPrpvFQ-SgTwakxv5Z0wejcmzsQG8P4M4fLdzGGXSDr1G4yLqLE1w_038AHUGfhI |
Cites_doi | 10.1016/j.oceaneng.2023.115764 10.1016/j.ecolecon.2023.107841 10.1016/j.chaos.2024.115656 10.1007/s13344-017-0086-2 10.1016/j.engstruct.2024.118686 10.1016/j.oceaneng.2023.113930 10.1016/j.energy.2022.126246 10.1016/j.energy.2020.117787 10.1016/j.renene.2018.01.067 10.1016/j.oceaneng.2022.112201 10.1016/j.oceaneng.2023.114017 10.1016/j.oceaneng.2022.111042 10.1016/j.rser.2023.114092 10.1016/j.oceaneng.2022.111742 10.1016/j.oceaneng.2022.110955 10.1016/j.apor.2020.102178 10.1016/j.marstruc.2022.103362 10.1016/j.energy.2024.132211 10.1016/j.oceaneng.2024.118847 10.1016/j.oceaneng.2024.118837 10.1016/j.oceaneng.2022.113464 10.1016/j.marstruc.2021.103148 10.1016/j.oceaneng.2024.116801 10.1016/j.oceaneng.2024.118967 10.1016/j.oceaneng.2019.106226 10.1016/j.oceaneng.2021.110230 10.1017/jfm.2021.841 10.1016/j.marstruc.2023.103471 10.3390/jmse9111266 10.1080/17445302.2016.1149321 10.1016/j.oceaneng.2023.115094 10.1016/j.energy.2023.127679 10.1016/j.tust.2021.104068 10.1016/j.oceaneng.2024.117316 10.1016/j.oceaneng.2022.112105 10.1016/j.tust.2020.103804 10.1007/s13344-016-0032-8 10.1016/j.oceaneng.2021.110323 10.1016/j.oceaneng.2024.119302 10.1016/j.igd.2023.100070 10.1016/j.engstruct.2023.116732 10.1016/j.oceaneng.2024.117301 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oceaneng.2025.120867 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
ExternalDocumentID | 10_1016_j_oceaneng_2025_120867 S0029801825005815 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFFNX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- RIG SAC SET WUQ |
ID | FETCH-LOGICAL-c259t-11a5d1d7d34626de2576d0e15dc1e9b52d2b62072e0f1361f1d069c49901a7d03 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Tue Jul 01 05:04:48 EDT 2025 Sat Apr 19 16:02:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Slender structures Wavelet energy Floating offshore wind turbine (FOWT) Freak wave Transient response analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c259t-11a5d1d7d34626de2576d0e15dc1e9b52d2b62072e0f1361f1d069c49901a7d03 |
ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2025_120867 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_120867 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 2025-05-00 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Ocean engineering |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Cai, Zhao, Li, Liu (bib2) 2023; 264 Li, Li, Cui, Deng, Wang, Li (bib24) 2024; 312 Yolcan (bib43) 2023; 2 Butterfield, Musial, Jonkman, Sclavounos (bib1) 2007 Klinting, Sand (bib18) 1987 Kimura, Ohta (bib16) 1995; 1994 Zeng, Zhang, Huang, Gu, He (bib45) 2023; 88 Jonkman (bib13) 2009 Zeng, Zhang, Huang, Gu, He (bib46) 2023; 278 (bib3) 2023 Su, Li, Li, Cui, Li, Wang (bib34) 2024; 189 Guo, Liu, Fang, Chen, Pan, Xiao (bib9) 2024; 311 Summerfield-Ryan, Park (bib35) 2023; 210 Li, Li, Li, Zhu, Wang, Tang (bib23) 2024; 294 Li, Li, Wang, Li, Wang, Tang (bib21) 2023; 91 Deng, Yang, Zhao, Xiao, Li (bib5) 2017; 12 Zheng, Chen (bib49) 2022; 262 Ji, Li, Li, Wang, Wang (bib12) 2022; 243 Steer, Kimmoun, Dias (bib33) 2021; 929 Deng, Guo, Liu, Li, Jiang, Xie (bib6) 2023; 273 Huo, Zhao, Zhang, Zhang, Yuan (bib11) 2023; 269 Gu, Chen (bib8) 2024; 311 Wang, Qiao, Tang, Lu, Ou (bib40) 2024; 299 Zeng, Shao, Feng, Xu, Jin, Li (bib47) 2024; 191 Jonkman, Butterfield, Musial, Scott (bib14) 2009 Nederkoorn, Seyffert (bib26) 2022; 251 Song, Qu, Chen, Metrikine (bib30) 2021; 115 Wang, Chen, Koop, Vaz (bib39) 2022; 258 Zhang, Li, Tang, Zhang, Li, Gu (bib48) 2023; 273 Qu, Li, Tang, Hu, Zhang, Yin (bib27) 2020; 100 Song, Hong, Sun, Zhang (bib32) 2024; 318 Zeng, Zhang, Huang, Gu, Pan (bib44) 2022; 82 Wang, Li, Yin (bib37) 2021 Zheng, Chen (bib50) 2022; 262 Soares-Ramos, de Oliveira-Assis, Sarrias-Mena, Fernández-Ramírez (bib29) 2020; 202 Rostam-Alilou, Zhang, Salboukh, Gunes (bib28) 2022; 244 Li, Zhu, Liu, Tang (bib20) 2018; 122 Xue, Xu, Xie, Xu, Jiang (bib42) 2023; 287 Wang, Qiao, Tang, Wang, Yan, Ou (bib38) 2022; 261 Xu, Xie, Xu, Xue, Chen, Ma (bib41) 2024; 299 Kjeldsen (bib17) 2004 Liu, Song, Zhang, Yang, Meng (bib25) 2024; 211 Zhong, Zhang, Wan (bib51) 2023; 283 Tang, Li, Wang, Liu, Zhu (bib36) 2016; 30 Li, Li, Wang, Meng, Su, Tang (bib22) 2024; 311 Clément, Bozonnet, Vinay, Pagnier, Nadal, Réveillon (bib4) 2022; 251 Li, Deng, Li, Tian, Li (bib19) 2017; 31 Kim, Kim, Choe (bib15) 2019; 188 Song, Chen, Zhang (bib31) 2021; 110 Deng, Liu, Dai, Wu, Yuan (bib7) 2024; 304 Zuo, Zhang, Bi, Zhu, Hao, Ma (bib52) 2023; 294 Huo, Yang, Yao, An, Xu (bib10) 2021; 9 Li (10.1016/j.oceaneng.2025.120867_bib19) 2017; 31 Li (10.1016/j.oceaneng.2025.120867_bib20) 2018; 122 Tang (10.1016/j.oceaneng.2025.120867_bib36) 2016; 30 Wang (10.1016/j.oceaneng.2025.120867_bib38) 2022; 261 Zhang (10.1016/j.oceaneng.2025.120867_bib48) 2023; 273 Huo (10.1016/j.oceaneng.2025.120867_bib10) 2021; 9 Jonkman (10.1016/j.oceaneng.2025.120867_bib13) 2009 Steer (10.1016/j.oceaneng.2025.120867_bib33) 2021; 929 Deng (10.1016/j.oceaneng.2025.120867_bib6) 2023; 273 Zeng (10.1016/j.oceaneng.2025.120867_bib45) 2023; 88 Xu (10.1016/j.oceaneng.2025.120867_bib41) 2024; 299 Wang (10.1016/j.oceaneng.2025.120867_bib39) 2022; 258 Gu (10.1016/j.oceaneng.2025.120867_bib8) 2024; 311 Nederkoorn (10.1016/j.oceaneng.2025.120867_bib26) 2022; 251 Butterfield (10.1016/j.oceaneng.2025.120867_bib1) 2007 Deng (10.1016/j.oceaneng.2025.120867_bib5) 2017; 12 Kjeldsen (10.1016/j.oceaneng.2025.120867_bib17) 2004 Xue (10.1016/j.oceaneng.2025.120867_bib42) 2023; 287 Li (10.1016/j.oceaneng.2025.120867_bib22) 2024; 311 Huo (10.1016/j.oceaneng.2025.120867_bib11) 2023; 269 Klinting (10.1016/j.oceaneng.2025.120867_bib18) 1987 Su (10.1016/j.oceaneng.2025.120867_bib34) 2024; 189 Cai (10.1016/j.oceaneng.2025.120867_bib2) 2023; 264 Wang (10.1016/j.oceaneng.2025.120867_bib40) 2024; 299 Kim (10.1016/j.oceaneng.2025.120867_bib15) 2019; 188 Rostam-Alilou (10.1016/j.oceaneng.2025.120867_bib28) 2022; 244 Song (10.1016/j.oceaneng.2025.120867_bib32) 2024; 318 Jonkman (10.1016/j.oceaneng.2025.120867_bib14) 2009 Zheng (10.1016/j.oceaneng.2025.120867_bib49) 2022; 262 Ji (10.1016/j.oceaneng.2025.120867_bib12) 2022; 243 Li (10.1016/j.oceaneng.2025.120867_bib24) 2024; 312 Guo (10.1016/j.oceaneng.2025.120867_bib9) 2024; 311 Wang (10.1016/j.oceaneng.2025.120867_bib37) 2021 Liu (10.1016/j.oceaneng.2025.120867_bib25) 2024; 211 Zuo (10.1016/j.oceaneng.2025.120867_bib52) 2023; 294 Zhong (10.1016/j.oceaneng.2025.120867_bib51) 2023; 283 Song (10.1016/j.oceaneng.2025.120867_bib31) 2021; 110 Zeng (10.1016/j.oceaneng.2025.120867_bib44) 2022; 82 Summerfield-Ryan (10.1016/j.oceaneng.2025.120867_bib35) 2023; 210 Zeng (10.1016/j.oceaneng.2025.120867_bib46) 2023; 278 Yolcan (10.1016/j.oceaneng.2025.120867_bib43) 2023; 2 Soares-Ramos (10.1016/j.oceaneng.2025.120867_bib29) 2020; 202 Clément (10.1016/j.oceaneng.2025.120867_bib4) 2022; 251 Li (10.1016/j.oceaneng.2025.120867_bib21) 2023; 91 Zheng (10.1016/j.oceaneng.2025.120867_bib50) 2022; 262 Song (10.1016/j.oceaneng.2025.120867_bib30) 2021; 115 Kimura (10.1016/j.oceaneng.2025.120867_bib16) 1995; 1994 Deng (10.1016/j.oceaneng.2025.120867_bib7) 2024; 304 Li (10.1016/j.oceaneng.2025.120867_bib23) 2024; 294 Qu (10.1016/j.oceaneng.2025.120867_bib27) 2020; 100 Zeng (10.1016/j.oceaneng.2025.120867_bib47) 2024; 191 (10.1016/j.oceaneng.2025.120867_bib3) 2023 |
References_xml | – volume: 2 year: 2023 ident: bib43 article-title: World energy outlook and state of renewable energy: 10-Year evaluation publication-title: Innovation and Green Development – volume: 251 year: 2022 ident: bib26 article-title: Long-term rogue wave occurrence probability from historical wave data on a spatial scale relevant for spar-type floating wind turbines publication-title: Ocean. Eng. – volume: 311 year: 2024 ident: bib8 article-title: Numerical simulation of a semi-submersible FOWT platform under calibrated extreme and irregular waves publication-title: Ocean. Eng. – volume: 318 year: 2024 ident: bib32 article-title: Joint probabilistic modeling of extreme wind-wave conditions under typhoon impact and applications to extreme response analysis of floating offshore wind turbines publication-title: Eng. Struct. – volume: 261 year: 2022 ident: bib38 article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system publication-title: Ocean. Eng. – volume: 278 year: 2023 ident: bib46 article-title: Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough publication-title: Energy – volume: 304 year: 2024 ident: bib7 article-title: A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques publication-title: Energy – volume: 269 year: 2023 ident: bib11 article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves publication-title: Ocean. Eng. – volume: 9 start-page: 1266 year: 2021 ident: bib10 article-title: Study on slamming pressure characteristics of platform under freak wave publication-title: J. Mar. Sci. Eng. – volume: 82 year: 2022 ident: bib44 article-title: A novel method in generating freak wave and modulating wave profile publication-title: Mar. Struct. – volume: 283 year: 2023 ident: bib51 article-title: Hydrodynamic characteristics of a 15 MW semi-submersible floating offshore wind turbine in freak waves publication-title: Ocean. Eng. – volume: 211 year: 2024 ident: bib25 article-title: Characteristics of internal waves within thermohaline staircase region in the Caribbean Sea publication-title: Deep Sea Res. Oceanogr. Res. Pap. – volume: 191 year: 2024 ident: bib47 article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review publication-title: Renew. Sustain. Energy Rev. – volume: 287 year: 2023 ident: bib42 article-title: Characteristics of freak wave and its interaction with marine structures: a review publication-title: Ocean. Eng. – volume: 258 year: 2022 ident: bib39 article-title: Hydrodynamic response of a FOWT semi-submersible under regular waves using CFD: verification and validation publication-title: Ocean. Eng. – volume: 202 year: 2020 ident: bib29 article-title: Current status and future trends of offshore wind power in Europe publication-title: Energy – volume: 273 year: 2023 ident: bib48 article-title: Multi-objective optimization and dynamic response predictions of an articulated offshore wind turbine publication-title: Ocean. Eng. – year: 2023 ident: bib3 article-title: Wind energy in the European union 2023 publication-title: Ispra: Clean Energy Technology Observatory – volume: 311 year: 2024 ident: bib22 article-title: Effects of various freak waves on dynamic responses of a Spar-buoy floating offshore wind turbine publication-title: Ocean. Eng. – volume: 110 year: 2021 ident: bib31 article-title: Coupled motion characteristics of a large-scale tunnel element suspended by immersion rigs in the vicinity of seabed publication-title: Tunn. Undergr. Space Technol. – year: 2009 ident: bib14 article-title: Definition of a 5-MW Reference Wind Turbine for Offshore System Development – volume: 294 year: 2024 ident: bib23 article-title: Transient tower and blade deformations of a Spar-type floating wind turbine in freak waves publication-title: Ocean. Eng. – volume: 311 year: 2024 ident: bib9 article-title: Tower loads characteristics of a semi-submersible floating wind turbine: an experimental study publication-title: Ocean. Eng. – volume: 189 year: 2024 ident: bib34 article-title: Nonlinear harmonic resonant behaviors and bifurcation in a two degree-of-freedom duffing oscillator coupled system of tension leg platform type floating offshore wind turbine publication-title: Chaos Solitons Fractals – year: 2004 ident: bib17 article-title: Measurements of freak waves in Norway and related ship accidents publication-title: Proc Rogue Waves – year: 1987 ident: bib18 article-title: Analysis of Prototype Freak Waves – volume: 299 year: 2024 ident: bib40 article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization publication-title: Ocean. Eng. – volume: 30 start-page: 521 year: 2016 end-page: 534 ident: bib36 article-title: Dynamic analysis of turret-moored FPSO system in freak wave publication-title: China Ocean Eng. – volume: 262 year: 2022 ident: bib49 article-title: Time-domain fatigue assessment for blade root bolts of floating offshore wind turbine (FOWT) publication-title: Ocean. Eng. – volume: 244 year: 2022 ident: bib28 article-title: Potential use of Bayesian Networks for estimating relationship among rotational dynamics of floating offshore wind turbine tower in extreme environmental conditions publication-title: Ocean. Eng. – volume: 115 year: 2021 ident: bib30 article-title: Effect of immersion depth on the coupled dynamics of a tunnel-rigs system in irregular waves publication-title: Tunn. Undergr. Space Technol. – volume: 122 start-page: 576 year: 2018 end-page: 588 ident: bib20 article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines publication-title: Renew. Energy – volume: 294 year: 2023 ident: bib52 article-title: Structural vibration control of spar-buoy floating offshore wind turbines publication-title: Eng. Struct. – volume: 88 year: 2023 ident: bib45 article-title: Experimental study on dynamic response of a floating offshore wind turbine under various freak wave profiles publication-title: Mar. Struct. – volume: 243 year: 2022 ident: bib12 article-title: Research on the statistical characteristic of freak waves based on observed wave data publication-title: Ocean. Eng. – volume: 312 year: 2024 ident: bib24 article-title: The influence of multi-body interaction on the hydrodynamic performance of a hexagon-type floating photovoltaic publication-title: Ocean. Eng. – volume: 929 year: 2021 ident: bib33 article-title: Breaking-wave induced pressure and acceleration on a clifftop boulder publication-title: J. Fluid Mech. – volume: 262 year: 2022 ident: bib50 article-title: Time-domain fatigue assessment for blade root bolts of floating offshore wind turbine (FOWT) publication-title: Ocean. Eng. – volume: 264 year: 2023 ident: bib2 article-title: Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine publication-title: Energy – volume: 1994 start-page: 356 year: 1995 end-page: 369 ident: bib16 article-title: Probability of the freak wave appearance in a 3-dimensional sea condition publication-title: Coast. Eng. – volume: 100 year: 2020 ident: bib27 article-title: Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect publication-title: Appl. Ocean Res. – volume: 273 year: 2023 ident: bib6 article-title: Dynamic response analysis of a floating vertical axis wind turbine with helical blades based on the model test publication-title: Ocean. Eng. – volume: 251 year: 2022 ident: bib4 article-title: Evaluation of Morison approach with CFD modelling on a surface-piercing cylinder towards the investigation of FOWT Hydrodynamics publication-title: Ocean. Eng. – volume: 91 year: 2023 ident: bib21 article-title: The dynamic response of a Spar-type floating wind turbine under freak waves with different properties publication-title: Mar. Struct. – year: 2009 ident: bib13 article-title: Definition of the Floating System for Phase IV of OC3 – year: 2021 ident: bib37 article-title: Effects of the sequence of freak wave and mooring failure on the transient response of a SPAR-type floating offshore wind turbine publication-title: ISOPE International Ocean and Polar Engineering Conference – volume: 188 year: 2019 ident: bib15 article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals publication-title: Ocean. Eng. – volume: 299 year: 2024 ident: bib41 article-title: Comparative study on hydrodynamic characteristics of T-deck and box-deck bridges under freak waves publication-title: Ocean. Eng. – volume: 210 year: 2023 ident: bib35 article-title: The power of wind: the global wind energy industry's successes and failures publication-title: Ecol. Econ. – year: 2007 ident: bib1 article-title: Engineering Challenges for Floating Offshore Wind Turbines (No. NREL/CP-500-38776) – volume: 31 start-page: 754 year: 2017 end-page: 763 ident: bib19 article-title: Motion and dynamic responses of a semisubmersible in freak waves publication-title: China Ocean Eng. – volume: 12 start-page: 443 year: 2017 end-page: 451 ident: bib5 article-title: Surge motion of a semi-submersible in freak waves publication-title: Ships Offshore Struct. – year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib3 article-title: Wind energy in the European union 2023 – volume: 287 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib42 article-title: Characteristics of freak wave and its interaction with marine structures: a review publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2023.115764 – volume: 210 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib35 article-title: The power of wind: the global wind energy industry's successes and failures publication-title: Ecol. Econ. doi: 10.1016/j.ecolecon.2023.107841 – volume: 189 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib34 article-title: Nonlinear harmonic resonant behaviors and bifurcation in a two degree-of-freedom duffing oscillator coupled system of tension leg platform type floating offshore wind turbine publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2024.115656 – volume: 31 start-page: 754 issue: 6 year: 2017 ident: 10.1016/j.oceaneng.2025.120867_bib19 article-title: Motion and dynamic responses of a semisubmersible in freak waves publication-title: China Ocean Eng. doi: 10.1007/s13344-017-0086-2 – volume: 318 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib32 article-title: Joint probabilistic modeling of extreme wind-wave conditions under typhoon impact and applications to extreme response analysis of floating offshore wind turbines publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2024.118686 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib6 article-title: Dynamic response analysis of a floating vertical axis wind turbine with helical blades based on the model test publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2023.113930 – volume: 264 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib2 article-title: Effects of yawed inflow and blade-tower interaction on the aerodynamic and wake characteristics of a horizontal-axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2022.126246 – volume: 202 year: 2020 ident: 10.1016/j.oceaneng.2025.120867_bib29 article-title: Current status and future trends of offshore wind power in Europe publication-title: Energy doi: 10.1016/j.energy.2020.117787 – volume: 122 start-page: 576 year: 2018 ident: 10.1016/j.oceaneng.2025.120867_bib20 article-title: Transient response of a SPAR-type floating offshore wind turbine with fractured mooring lines publication-title: Renew. Energy doi: 10.1016/j.renene.2018.01.067 – volume: 262 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib49 article-title: Time-domain fatigue assessment for blade root bolts of floating offshore wind turbine (FOWT) publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.112201 – volume: 262 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib50 article-title: Time-domain fatigue assessment for blade root bolts of floating offshore wind turbine (FOWT) publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.112201 – volume: 273 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib48 article-title: Multi-objective optimization and dynamic response predictions of an articulated offshore wind turbine publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2023.114017 – volume: 251 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib4 article-title: Evaluation of Morison approach with CFD modelling on a surface-piercing cylinder towards the investigation of FOWT Hydrodynamics publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111042 – volume: 191 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib47 article-title: Nonlinear hydrodynamics of floating offshore wind turbines: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.114092 – volume: 211 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib25 article-title: Characteristics of internal waves within thermohaline staircase region in the Caribbean Sea publication-title: Deep Sea Res. Oceanogr. Res. Pap. – volume: 258 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib39 article-title: Hydrodynamic response of a FOWT semi-submersible under regular waves using CFD: verification and validation publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.111742 – volume: 251 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib26 article-title: Long-term rogue wave occurrence probability from historical wave data on a spatial scale relevant for spar-type floating wind turbines publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.110955 – year: 2004 ident: 10.1016/j.oceaneng.2025.120867_bib17 article-title: Measurements of freak waves in Norway and related ship accidents publication-title: Proc Rogue Waves – volume: 100 year: 2020 ident: 10.1016/j.oceaneng.2025.120867_bib27 article-title: Dynamic response of spar-type floating offshore wind turbine in freak wave considering the wave-current interaction effect publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2020.102178 – year: 1987 ident: 10.1016/j.oceaneng.2025.120867_bib18 – volume: 88 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib45 article-title: Experimental study on dynamic response of a floating offshore wind turbine under various freak wave profiles publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2022.103362 – volume: 304 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib7 article-title: A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques publication-title: Energy doi: 10.1016/j.energy.2024.132211 – volume: 311 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib8 article-title: Numerical simulation of a semi-submersible FOWT platform under calibrated extreme and irregular waves publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.118847 – volume: 311 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib22 article-title: Effects of various freak waves on dynamic responses of a Spar-buoy floating offshore wind turbine publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.118837 – volume: 269 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib11 article-title: Study on wave slamming characteristics of a typical floating wind turbine under freak waves publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.113464 – year: 2009 ident: 10.1016/j.oceaneng.2025.120867_bib13 – volume: 82 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib44 article-title: A novel method in generating freak wave and modulating wave profile publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2021.103148 – year: 2021 ident: 10.1016/j.oceaneng.2025.120867_bib37 article-title: Effects of the sequence of freak wave and mooring failure on the transient response of a SPAR-type floating offshore wind turbine – volume: 294 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib23 article-title: Transient tower and blade deformations of a Spar-type floating wind turbine in freak waves publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.116801 – volume: 311 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib9 article-title: Tower loads characteristics of a semi-submersible floating wind turbine: an experimental study publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.118967 – volume: 188 year: 2019 ident: 10.1016/j.oceaneng.2025.120867_bib15 article-title: Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2019.106226 – year: 2007 ident: 10.1016/j.oceaneng.2025.120867_bib1 – volume: 244 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib28 article-title: Potential use of Bayesian Networks for estimating relationship among rotational dynamics of floating offshore wind turbine tower in extreme environmental conditions publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.110230 – volume: 929 year: 2021 ident: 10.1016/j.oceaneng.2025.120867_bib33 article-title: Breaking-wave induced pressure and acceleration on a clifftop boulder publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.841 – volume: 91 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib21 article-title: The dynamic response of a Spar-type floating wind turbine under freak waves with different properties publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2023.103471 – volume: 9 start-page: 1266 issue: 11 year: 2021 ident: 10.1016/j.oceaneng.2025.120867_bib10 article-title: Study on slamming pressure characteristics of platform under freak wave publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse9111266 – volume: 12 start-page: 443 issue: 4 year: 2017 ident: 10.1016/j.oceaneng.2025.120867_bib5 article-title: Surge motion of a semi-submersible in freak waves publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2016.1149321 – volume: 283 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib51 article-title: Hydrodynamic characteristics of a 15 MW semi-submersible floating offshore wind turbine in freak waves publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2023.115094 – volume: 278 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib46 article-title: Dynamic response of floating offshore wind turbines under freak waves with large crest and deep trough publication-title: Energy doi: 10.1016/j.energy.2023.127679 – volume: 115 year: 2021 ident: 10.1016/j.oceaneng.2025.120867_bib30 article-title: Effect of immersion depth on the coupled dynamics of a tunnel-rigs system in irregular waves publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2021.104068 – volume: 299 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib40 article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.117316 – volume: 261 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib38 article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2022.112105 – volume: 110 year: 2021 ident: 10.1016/j.oceaneng.2025.120867_bib31 article-title: Coupled motion characteristics of a large-scale tunnel element suspended by immersion rigs in the vicinity of seabed publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2020.103804 – volume: 30 start-page: 521 issue: 4 year: 2016 ident: 10.1016/j.oceaneng.2025.120867_bib36 article-title: Dynamic analysis of turret-moored FPSO system in freak wave publication-title: China Ocean Eng. doi: 10.1007/s13344-016-0032-8 – volume: 243 year: 2022 ident: 10.1016/j.oceaneng.2025.120867_bib12 article-title: Research on the statistical characteristic of freak waves based on observed wave data publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2021.110323 – volume: 312 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib24 article-title: The influence of multi-body interaction on the hydrodynamic performance of a hexagon-type floating photovoltaic publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.119302 – volume: 1994 start-page: 356 year: 1995 ident: 10.1016/j.oceaneng.2025.120867_bib16 article-title: Probability of the freak wave appearance in a 3-dimensional sea condition publication-title: Coast. Eng. – volume: 2 issue: 4 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib43 article-title: World energy outlook and state of renewable energy: 10-Year evaluation publication-title: Innovation and Green Development doi: 10.1016/j.igd.2023.100070 – volume: 294 year: 2023 ident: 10.1016/j.oceaneng.2025.120867_bib52 article-title: Structural vibration control of spar-buoy floating offshore wind turbines publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2023.116732 – year: 2009 ident: 10.1016/j.oceaneng.2025.120867_bib14 – volume: 299 year: 2024 ident: 10.1016/j.oceaneng.2025.120867_bib41 article-title: Comparative study on hydrodynamic characteristics of T-deck and box-deck bridges under freak waves publication-title: Ocean. Eng. doi: 10.1016/j.oceaneng.2024.117301 |
SSID | ssj0006603 |
Score | 2.4621584 |
Snippet | The Spar-type floating offshore wind turbine (FOWT) is an offshore structure that utilizes wind energy in deep water area. It is affected by the coupling of... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 120867 |
SubjectTerms | Floating offshore wind turbine (FOWT) Freak wave Slender structures Transient response analysis Wavelet energy |
Title | Response analysis of slender structures on a spar-type floating offshore wind turbine under three types of freak waves |
URI | https://dx.doi.org/10.1016/j.oceaneng.2025.120867 |
Volume | 325 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jvqggOhXnF3nwtVuTJil9HMMxFSeIA99KsiS6Odqxzzf_di9pixMEH3xsuYSSS-7u19z9DqGbhLnbG-Vo9lkUgIcWgbJwHiOlNOdcJNQ3g3kciP6Q3b_y1xrqVrUwLq2ytP2FTffWunzTLlezPRuPXY0vTcC-AsRxvfF8oTljsdvlrc_vNA8hwqhK83DSW1XCkxa4CJmZ7A1wIuUtQiG-j393UFtOp3eIDspoEXeKDzpCNZM10N4Wh2AD7T-52Uvi6WO0fi6SXg2WJd0Izi1eTH3HOFywxa4AYuM8wxKDOZkH7i8sttNcugxokLaL93xu8AbQOgZZgM4Gr_zwJSjeYCfvZ7UQcH7gjVybxQka9m5fuv2g7K0QjADwLANCJNdExzpiAGm0cbhDh4ZwPSImUZxqqgQNY2pCSyJBLNGhSEbMXaPJWIfRKapneWbOEI6UFtQSCNY0YTRWSnqiNOvZ8qTUTdSuFjSdFRQaaZVbNkkrFaROBWmhgiZKqnVPf2yGFOz8H2PP_zH2Au26pyKf8RLVQSfmCmKOpbr2m-oa7XTuHvqDL-g01u0 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA9jPvgBolNxfubB125N2qT0UYZj6jZBNthbSZZEp9KOfb75t3tJW5wg-OBrewkll9zdr7n7HUI3cWhvb6Sl2Q8DDzw096SB8xhIqRhjPKauGUyvzzvD8GHERhXUKmthbFplYftzm-6sdfGkWaxmczqZ2BpfGoN9BYhje-PZQvOtEI6vbWPQ-PzO8-DcD8o8Dyu-USb81gAfIVKdvgBQpKxBKAT40e8easPrtA_QfhEu4tv8iw5RRac1tLtBIlhDe0929oJ5-gitnvOsV41FwTeCM4PnH65lHM7pYpeAsXGWYoHBnsw8-xsWm49M2BRokDbz12ym8RrgOgZZwM4aL93wBWheYyvvZjUQcb7jtVjp-TEatu8GrY5XNFfwxoB4Fh4hgimiIhWEgGmUtsBD-ZowNSY6lowqKjn1I6p9QwJODFE-j8ehvUcTkfKDE1RNs1SfIhxIxakhEK0pEtJISuGY0oyjyxNC1VGzXNBkmnNoJGVy2VtSqiCxKkhyFdRRXK578mM3JGDo_xh79o-x12i7M-h1k-59__Ec7dg3eXLjBaqCfvQlBCALeeU22Bf0vdh7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Response+analysis+of+slender+structures+on+a+spar-type+floating+offshore+wind+turbine+under+three+types+of+freak+waves&rft.jtitle=Ocean+engineering&rft.au=Li%2C+Haoran&rft.au=Wang%2C+Bin&rft.au=Li%2C+Guoyan&rft.au=Cui%2C+Yiwen&rft.date=2025-05-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=325&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.120867&rft.externalDocID=S0029801825005815 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |