UTMCR: 3U‐Net Transformer With Multi‐Contrastive Regularization for Single Image Dehazing

ABSTRACT Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network stru...

Full description

Saved in:
Bibliographic Details
Published inComputer animation and virtual worlds Vol. 36; no. 3
Main Authors Xu, HangBin, Zou, ChangJun, Lin, ChuChao
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.05.2025
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets. UTMCR proposes a single image dehazing method combining 3U‐Net and Transformer, enhanced by Multi‐Contrastive Regularization (MCR) to improve feature discriminability while preserving local details and global dehazing performance. The framework employs a multi‐scale U‐shaped architecture for progressive restoration and introduces contrastive learning to optimize feature distributions between clear and hazy images, significantly improving reconstruction quality in complex hazy scenes.
AbstractList ABSTRACT Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets. UTMCR proposes a single image dehazing method combining 3U‐Net and Transformer, enhanced by Multi‐Contrastive Regularization (MCR) to improve feature discriminability while preserving local details and global dehazing performance. The framework employs a multi‐scale U‐shaped architecture for progressive restoration and introduces contrastive learning to optimize feature distributions between clear and hazy images, significantly improving reconstruction quality in complex hazy scenes.
Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets.
Author Lin, ChuChao
Zou, ChangJun
Xu, HangBin
Author_xml – sequence: 1
  givenname: HangBin
  orcidid: 0009-0001-2904-0124
  surname: Xu
  fullname: Xu, HangBin
  organization: East China Jiaotong University
– sequence: 2
  givenname: ChangJun
  orcidid: 0000-0001-7012-324X
  surname: Zou
  fullname: Zou, ChangJun
  email: zoucj2006@163.com
  organization: East China Jiaotong University
– sequence: 3
  givenname: ChuChao
  orcidid: 0009-0005-2716-5782
  surname: Lin
  fullname: Lin, ChuChao
  organization: East China Jiaotong University
BookMark eNp1kM1OwkAUhScGEwFd-AaTuHJRmE7LdMYdqX8koAmCujGTodzCkNLiTIuBlY_gM_okjta4c3VP7vnuPclpoUZe5IDQqU86PiG0m6htJ3JCHKCm3wuZF9LoufGnmX-EWtauHMGoT5roZToZxeMLHEw_3z_uoMQTo3KbFmYNBj_pcolHVVZqZ8ZFXhplS70FPIZFlSmj96rURY4djh90vsgAD9ZqAfgSlmrvFsfoMFWZhZPf2UbT66tJfOsN728GcX_oJbQnhCdSQlToM6VYRAEIJCHnjEU8oWKWQsg4iHnAmQDghCWKC5rOAhXMlTMJV0EbndV_N6Z4rcCWclVUJneRMqCUCx5xHjnqvKYSU1hrIJUbo9fK7KRP5Hd70rUnf9pzbLdm33QGu_9BGfcf64svJdF0gg
Cites_doi 10.1109/APCC47188.2019.9026457
10.1049/ipr2.12506
10.1016/j.neucom.2023.126535
10.1109/CVPRW53098.2021.00074
10.1109/ICCV.2017.511
10.2991/icmt-13.2013.35
10.1109/CVPR46437.2021.01041
10.1109/ICCVW54120.2021.00210
10.1063/1.3037551
10.1016/j.ijleo.2015.06.060
10.1109/TIP.2018.2867951
10.1109/ICCV48922.2021.00986
10.1109/TIP.2020.3040075
10.1109/ICIP.2019.8803046
10.23919/CCC50068.2020.9189214
10.1109/TIP.2023.3256763
10.1109/TIP.2016.2598681
10.1609/aaai.v34i07.6865
10.1109/TIP.2015.2446191
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
2025 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
– notice: 2025 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cav.70029
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
EISSN 1546-427X
EndPage n/a
ExternalDocumentID 10_1002_cav_70029
CAV70029
Genre researchArticle
GrantInformation_xml – fundername: Humanities and Social Sciences Research Project in Jiangxi Province's Universities
  funderid: JC24205
– fundername: College Student Innovation and Entrepreneurship Training Program Project
– fundername: National Natural Science Foundation of China
  funderid: 62162027
– fundername: Research Project on Innovation and Entrepreneurship Education of East China Jiaotong University
  funderid: 24hjct18
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
29F
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
ITG
ITH
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N9A
NF~
O66
O9-
OIG
P2W
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
V8K
W8V
W99
WBKPD
WIH
WIK
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
1OB
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2599-9f00a416aa672ee0ec4886678c29bfe468e9d3869ee806ca892fb3a3dafe408a3
IEDL.DBID DR2
ISSN 1546-4261
IngestDate Sat Aug 23 13:25:58 EDT 2025
Thu Jul 03 08:39:49 EDT 2025
Wed Jun 25 09:40:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2599-9f00a416aa672ee0ec4886678c29bfe468e9d3869ee806ca892fb3a3dafe408a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-2904-0124
0000-0001-7012-324X
0009-0005-2716-5782
PQID 3228987887
PQPubID 2034909
PageCount 10
ParticipantIDs proquest_journals_3228987887
crossref_primary_10_1002_cav_70029
wiley_primary_10_1002_cav_70029_CAV70029
PublicationCentury 2000
PublicationDate May/June 2025
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May/June 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Chichester
PublicationTitle Computer animation and virtual worlds
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2015; 24
2010; 33
2023; 32
2018; 28
2013; 3
2010; 1
2019; 5
2015; 126
2023
2020; 30
2022
2021
2020
2023; 551
2019
1977; 30
2017
2020; 34
2013
2015; 9875
2022; 16
2016; 25
Xie B. (e_1_2_11_6_1) 2010; 1
Joy N. (e_1_2_11_9_1) 2019; 5
e_1_2_11_10_1
e_1_2_11_32_1
e_1_2_11_14_1
e_1_2_11_13_1
e_1_2_11_11_1
e_1_2_11_33_1
e_1_2_11_7_1
e_1_2_11_29_1
e_1_2_11_5_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_26_1
He K. (e_1_2_11_2_1) 2010; 33
e_1_2_11_3_1
Guo C.‐L. (e_1_2_11_21_1) 2022
Chen T. (e_1_2_11_30_1) 2020
Qiu Y. (e_1_2_11_34_1) 2023
Jiwani M. A. (e_1_2_11_12_1) 2013; 3
e_1_2_11_20_1
e_1_2_11_25_1
Liu X. (e_1_2_11_28_1) 2019
e_1_2_11_23_1
e_1_2_11_22_1
e_1_2_11_18_1
e_1_2_11_17_1
e_1_2_11_16_1
e_1_2_11_15_1
Zheng Y. (e_1_2_11_31_1) 2023
Yu L. (e_1_2_11_8_1) 2015
e_1_2_11_19_1
Liu Y. (e_1_2_11_24_1) 2023
References_xml – volume: 30
  start-page: 1100
  year: 2020
  end-page: 1115
  article-title: Deep Retinex Network for Single Image Dehazing
  publication-title: IEEE Transactions on Image Processing
– volume: 551
  year: 2023
  article-title: Visual Transformer With Stable Prior and Patch‐Level Attention for Single Image Dehazing
  publication-title: Neurocomputing
– start-page: 627
  year: 2021
  end-page: 646
– start-page: 279
  year: 2013
  end-page: 292
– volume: 5
  start-page: 305
  year: 2019
  end-page: 309
  article-title: Fast Image Dehazing Method Based on Homomorphism Filtering and Contrast Enhancement
  publication-title: International Journal of Scientific Research and Engineering Trends
– volume: 34
  start-page: 11908
  issue: 7
  year: 2020
  end-page: 11915
  article-title: Ffa‐Net: Feature Fusion Attention Network for Single Image Dehazing
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– start-page: 36
  year: 2019
  end-page: 40
– start-page: 12802
  year: 2023
  end-page: 12813
– volume: 24
  start-page: 3522
  issue: 11
  year: 2015
  end-page: 3533
  article-title: A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior
  publication-title: IEEE Transactions on Image Processing
– volume: 25
  start-page: 5187
  issue: 11
  year: 2016
  end-page: 5198
  article-title: Dehazenet: An End‐To‐End System for Single Image Haze Removal
  publication-title: IEEE Transactions on Image Processing
– volume: 33
  start-page: 2341
  issue: 12
  year: 2010
  end-page: 2353
  article-title: Single Image Haze Removal Using Dark Channel Prior
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 28
  start-page: 492
  issue: 1
  year: 2018
  end-page: 505
  article-title: Benchmarking Single‐Image Dehazing and Beyond
  publication-title: IEEE Transactions on Image Processing
– start-page: 7314
  year: 2019
  end-page: 7323
– volume: 16
  start-page: 2518
  issue: 9
  year: 2022
  end-page: 2534
  article-title: Two‐Stage Single Image Dehazing Network Using Swin‐Transformer
  publication-title: IET Image Processing
– start-page: 4770
  year: 2017
  end-page: 4778
– volume: 32
  start-page: 1927
  year: 2023
  end-page: 1941
  article-title: Vision Transformers for Single Image Dehazing
  publication-title: IEEE Transactions on Image Processing
– start-page: 5812
  year: 2022
  end-page: 5820
– start-page: 1597
  year: 2020
  end-page: 1607
– volume: 126
  start-page: 2619
  issue: 20
  year: 2015
  end-page: 2625
  article-title: Enhancement of Low Exposure Images via Recursive Histogram Equalization Algorithms
  publication-title: Optik
– start-page: 1406
  year: 2023
  end-page: 1415
– start-page: 10012
  year: 2021
  end-page: 10022
– start-page: 1014
  year: 2019
  end-page: 1018
– volume: 30
  start-page: 76
  year: 1977
  end-page: 77
  article-title: Optics of the Atmosphere: Scattering by Molecules and Particles
  publication-title: Physics Today
– start-page: 1833
  year: 2021
  end-page: 1844
– start-page: 5785
  year: 2023
  end-page: 5794
– year: 2022
– year: 2020
– start-page: 6444
  year: 2020
  end-page: 6449
– volume: 1
  start-page: 848
  year: 2010
  end-page: 851
  article-title: Improved Single Image Dehazing Using Dark Channel Prior and Multi‐Scale Retinex
  publication-title: 2010 International Conference on Intelligent System Design and Engineering Application
– volume: 9875
  year: 2015
– volume: 3
  start-page: 1
  issue: 6
  year: 2013
  end-page: 6
  article-title: Single Image Fog Removal Using Depth Estimation Based on Blur Estimation
  publication-title: International Journal of Scientific and Research Publications
– start-page: 10551
  year: 2021
  end-page: 10560
– start-page: 987502
  volume-title: Eighth International Conference on Machine Vision (ICMV 2015)
  year: 2015
  ident: e_1_2_11_8_1
– ident: e_1_2_11_26_1
  doi: 10.1109/APCC47188.2019.9026457
– ident: e_1_2_11_19_1
– ident: e_1_2_11_25_1
  doi: 10.1049/ipr2.12506
– start-page: 5785
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_11_31_1
– start-page: 1406
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2023
  ident: e_1_2_11_24_1
– ident: e_1_2_11_23_1
  doi: 10.1016/j.neucom.2023.126535
– ident: e_1_2_11_13_1
  doi: 10.1109/CVPRW53098.2021.00074
– volume: 1
  start-page: 848
  year: 2010
  ident: e_1_2_11_6_1
  article-title: Improved Single Image Dehazing Using Dark Channel Prior and Multi‐Scale Retinex
  publication-title: 2010 International Conference on Intelligent System Design and Engineering Application
– ident: e_1_2_11_14_1
  doi: 10.1109/ICCV.2017.511
– ident: e_1_2_11_11_1
  doi: 10.2991/icmt-13.2013.35
– ident: e_1_2_11_17_1
  doi: 10.1109/CVPR46437.2021.01041
– ident: e_1_2_11_22_1
  doi: 10.1109/ICCVW54120.2021.00210
– ident: e_1_2_11_3_1
  doi: 10.1063/1.3037551
– ident: e_1_2_11_4_1
  doi: 10.1016/j.ijleo.2015.06.060
– volume: 3
  start-page: 1
  issue: 6
  year: 2013
  ident: e_1_2_11_12_1
  article-title: Single Image Fog Removal Using Depth Estimation Based on Blur Estimation
  publication-title: International Journal of Scientific and Research Publications
– ident: e_1_2_11_32_1
  doi: 10.1109/TIP.2018.2867951
– volume: 33
  start-page: 2341
  issue: 12
  year: 2010
  ident: e_1_2_11_2_1
  article-title: Single Image Haze Removal Using Dark Channel Prior
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 5812
  volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
  year: 2022
  ident: e_1_2_11_21_1
– ident: e_1_2_11_29_1
  doi: 10.1109/ICCV48922.2021.00986
– ident: e_1_2_11_5_1
  doi: 10.1109/TIP.2020.3040075
– ident: e_1_2_11_15_1
– ident: e_1_2_11_33_1
  doi: 10.1109/ICIP.2019.8803046
– start-page: 1597
  volume-title: International Conference on Machine Learning
  year: 2020
  ident: e_1_2_11_30_1
– ident: e_1_2_11_18_1
– start-page: 7314
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2019
  ident: e_1_2_11_28_1
– ident: e_1_2_11_7_1
  doi: 10.23919/CCC50068.2020.9189214
– ident: e_1_2_11_20_1
  doi: 10.1109/TIP.2023.3256763
– ident: e_1_2_11_27_1
  doi: 10.1109/TIP.2016.2598681
– start-page: 12802
  volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision
  year: 2023
  ident: e_1_2_11_34_1
– ident: e_1_2_11_16_1
  doi: 10.1609/aaai.v34i07.6865
– volume: 5
  start-page: 305
  year: 2019
  ident: e_1_2_11_9_1
  article-title: Fast Image Dehazing Method Based on Homomorphism Filtering and Contrast Enhancement
  publication-title: International Journal of Scientific Research and Engineering Trends
– ident: e_1_2_11_10_1
  doi: 10.1109/TIP.2015.2446191
SSID ssj0026210
Score 2.3714538
Snippet ABSTRACT Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer...
Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
contrastive regularization
image dehazing
Modelling
Modules
Regularization
Regularization methods
Swin Transformer
U‐Net
Title UTMCR: 3U‐Net Transformer With Multi‐Contrastive Regularization for Single Image Dehazing
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70029
https://www.proquest.com/docview/3228987887
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4I8pLFmJgSWucxHFgqgoVINGhtNABFNnphSKgoCZlYOIn8Bv5JZydpjwkJMQWxU6U3PnuPid33xGyIwKu3dj3nUBxZUpyXEcxr-egcWF4wpAuA1PgfNYUxx3vtOt3p8hBUQuT80NMPrgZy7D-2hi40mn1kzQ0Vs-VwPxUQv9rcrUMIGpNqKO44DkTge8Jx2wTClYhxquTK7_Hok-A-RWm2jjTmCNXxRPm6SV3lVGmK_HLD_LGf77CPJkd409ayxfMApmCwSKZubhNR_nZdIlcd9pn9dY-dTvvr29NyGi7ALcwpJe3WZ_aql0cNNRWQ5Uaj0lbtqn9cFzWSXE6PceweA_05AF9Fj2EvmGyvlkmncZRu37sjLswODFujUInTBhTCNuUQr0CMIjR5gXGuJiHOgFPSAh7rhQhgGQiVjLkiXaV21M4yKRyV0hp8DiAVUJdoXkSSE8bDiDmg-55CdOJlAkkexB6ZbJd6CN6ysk2opxWmUcoq8jKqkw2Ck1FY3tLI3RLMpQmM7JMdq3If79BVK9d2IO1v09dJ9PcNP61mY4bpJQNR7CJaCTTW3bZfQCbcNuH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqAc6C9iKW0tRKVeshgncZxKPaDdot3C7mG7S7mgYGcngGi31Sbbqj3xCDxIX4WX4Ek6zs9CkZC4cOAWxZbleP4-OzOfAdZkIIwb-74TaKFtSY7raO4NHTIuCk8U0lVgC5w7XdkaeJ_2_L0Z-FvVwhT8ENMDN2sZub-2Bm4PpNcvWUNj_bMe2L9KZUrlNv7-RRu29EO7SdJ9K8TWx36j5ZR3CjgxAf3QCRPONYEQrWmWiBxj0mBJHjsWoUnQkwrDoatkiKi4jLUKRWJc7Q41NXKlXRr3ATy0N4hbpv5mb0pWJaQouA98Tzp2Y1LxGHGxPp3q_9HvEtJeBcZ5ZNt6DOfVmhQJLSf1SWbq8Z9rdJH3ZdGewEIJsdlmYRNPYQZHz2B-9zidFG_T57A_6HcavffMHVycnnUxY_0Kv-OYfTnOjlhemEyNlr1rrFMbFFgPD23Sblm5yqg7-0yR_yuy9jdyy6yJR5as-_AFDO7k-xZhdvR9hEvAXGlEEijPWJoj7qMZegk3iVIJJhsYejVYrRQg-lHwiUQFc7SISDZRLpsarFSqEZUuJY3I86pQ2eTPGrzLZXzzAFFjczd_WL591zcw1-p3dqKddnf7JTwS9p7jPLFzBWaz8QRfEfjKzOtc5xkc3LW-_ANFEjpi
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64B91oYCFQOKSrXESx0biUO2y6lK6Qstu6QUFOxm3FbBUmywITjwC78Gr8BQ8CeP8bAEJiUsP3KLYshzP32dn5jPAPZkIG2ZxHCRGGF-SEwaGR3lAxkXhiUK6SnyB8-5Ibk-jp_vx_gp8a2than6I5YGbt4zKX3sDP87d5glpaGY-dBP_U6nJqNzBTx9pv1Y8HvZJuPeFGDyZ9LaD5kqBICOcrwPtODeEQYyhSSJyzEiBJTnsTGjrMJIKdR4qqREVl5lRWjgbmjA31MiVCWncM3A2klz7eyL64yVXlZCipj6IIxn4fUlLY8TF5nKqvwe_E0T7Ky6uAtvgInxvl6TOZ3nTXZS2m33-gy3yP1mzS3ChAdhsq7aIy7CCsyuwtndULOq3xVV4NZ3s9saPWDj98eXrCEs2adE7ztnLo_KQVWXJ1Oi5u-am8CGBjfHAp-w2dauMurMXFPffIhu-I6fM-njoqboPrsH0VL7vOqzO3s9wHVgorXCJiqwnOeIx2jxy3DqlHLqHqKMO3G3lnx7XbCJpzRstUpJNWsmmAxutZqSNQylS8rtKK5_62YEHlYj_PkDa29qrHm78e9c7cO55f5A-G452bsJ54S85rrI6N2C1nC_wFiGv0t6uNJ7B69NWl59FpTkR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UTMCR%3A+3U%E2%80%90Net+Transformer+With+Multi%E2%80%90Contrastive+Regularization+for+Single+Image+Dehazing&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Xu%2C+HangBin&rft.au=Zou%2C+ChangJun&rft.au=Lin%2C+ChuChao&rft.date=2025-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon