UTMCR: 3U‐Net Transformer With Multi‐Contrastive Regularization for Single Image Dehazing
ABSTRACT Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network stru...
Saved in:
Published in | Computer animation and virtual worlds Vol. 36; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.05.2025
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT
Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets.
UTMCR proposes a single image dehazing method combining 3U‐Net and Transformer, enhanced by Multi‐Contrastive Regularization (MCR) to improve feature discriminability while preserving local details and global dehazing performance. The framework employs a multi‐scale U‐shaped architecture for progressive restoration and introduces contrastive learning to optimize feature distributions between clear and hazy images, significantly improving reconstruction quality in complex hazy scenes. |
---|---|
AbstractList | ABSTRACT
Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets.
UTMCR proposes a single image dehazing method combining 3U‐Net and Transformer, enhanced by Multi‐Contrastive Regularization (MCR) to improve feature discriminability while preserving local details and global dehazing performance. The framework employs a multi‐scale U‐shaped architecture for progressive restoration and introduces contrastive learning to optimize feature distributions between clear and hazy images, significantly improving reconstruction quality in complex hazy scenes. Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework due to their insufficient global modeling capability and large number of parameters. However, the existing Transformer network structure adopts a single U‐Net structure, which is insufficient in multi‐level and multi‐scale feature fusion and modeling capability. Therefore, we propose an end‐to‐end dehazing network (UTMCR‐Net). The network consists of two parts: (1) UT module, which connects three U‐Net networks in series, where the backbone is replaced by the Dehazeformer block. By connecting three U‐Net networks in series, we can improve the image global modeling capability and capture multi‐scale information at different levels to achieve multi‐level and multi‐scale feature fusion. (2) MCR module, which improves the original contrastive regularization method by splitting the results of the UT module into four equal blocks, which are then compared and learned by using the contrast regularization method, respectively. Specifically, we use three U‐Net networks to enhance the global modeling capability of UTMCR as well as the multi‐scale feature fusion capability. The image dehazing ability is further enhanced using the MCR module. Experimental results show that our method achieves better results on most datasets. |
Author | Lin, ChuChao Zou, ChangJun Xu, HangBin |
Author_xml | – sequence: 1 givenname: HangBin orcidid: 0009-0001-2904-0124 surname: Xu fullname: Xu, HangBin organization: East China Jiaotong University – sequence: 2 givenname: ChangJun orcidid: 0000-0001-7012-324X surname: Zou fullname: Zou, ChangJun email: zoucj2006@163.com organization: East China Jiaotong University – sequence: 3 givenname: ChuChao orcidid: 0009-0005-2716-5782 surname: Lin fullname: Lin, ChuChao organization: East China Jiaotong University |
BookMark | eNp1kM1OwkAUhScGEwFd-AaTuHJRmE7LdMYdqX8koAmCujGTodzCkNLiTIuBlY_gM_okjta4c3VP7vnuPclpoUZe5IDQqU86PiG0m6htJ3JCHKCm3wuZF9LoufGnmX-EWtauHMGoT5roZToZxeMLHEw_3z_uoMQTo3KbFmYNBj_pcolHVVZqZ8ZFXhplS70FPIZFlSmj96rURY4djh90vsgAD9ZqAfgSlmrvFsfoMFWZhZPf2UbT66tJfOsN728GcX_oJbQnhCdSQlToM6VYRAEIJCHnjEU8oWKWQsg4iHnAmQDghCWKC5rOAhXMlTMJV0EbndV_N6Z4rcCWclVUJneRMqCUCx5xHjnqvKYSU1hrIJUbo9fK7KRP5Hd70rUnf9pzbLdm33QGu_9BGfcf64svJdF0gg |
Cites_doi | 10.1109/APCC47188.2019.9026457 10.1049/ipr2.12506 10.1016/j.neucom.2023.126535 10.1109/CVPRW53098.2021.00074 10.1109/ICCV.2017.511 10.2991/icmt-13.2013.35 10.1109/CVPR46437.2021.01041 10.1109/ICCVW54120.2021.00210 10.1063/1.3037551 10.1016/j.ijleo.2015.06.060 10.1109/TIP.2018.2867951 10.1109/ICCV48922.2021.00986 10.1109/TIP.2020.3040075 10.1109/ICIP.2019.8803046 10.23919/CCC50068.2020.9189214 10.1109/TIP.2023.3256763 10.1109/TIP.2016.2598681 10.1609/aaai.v34i07.6865 10.1109/TIP.2015.2446191 |
ContentType | Journal Article |
Copyright | 2025 John Wiley & Sons Ltd. 2025 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. – notice: 2025 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/cav.70029 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Visual Arts |
EISSN | 1546-427X |
EndPage | n/a |
ExternalDocumentID | 10_1002_cav_70029 CAV70029 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Humanities and Social Sciences Research Project in Jiangxi Province's Universities funderid: JC24205 – fundername: College Student Innovation and Entrepreneurship Training Program Project – fundername: National Natural Science Foundation of China funderid: 62162027 – fundername: Research Project on Innovation and Entrepreneurship Education of East China Jiaotong University funderid: 24hjct18 |
GroupedDBID | .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 29F 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HF~ HGLYW HHY HVGLF HZ~ I-F ITG ITH IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N9A NF~ O66 O9- OIG P2W P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TN5 TUS UB1 V2E V8K W8V W99 WBKPD WIH WIK WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAMMB AAYXX AEFGJ AGXDD AIDQK AIDYY CITATION 1OB 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c2599-9f00a416aa672ee0ec4886678c29bfe468e9d3869ee806ca892fb3a3dafe408a3 |
IEDL.DBID | DR2 |
ISSN | 1546-4261 |
IngestDate | Sat Aug 23 13:25:58 EDT 2025 Thu Jul 03 08:39:49 EDT 2025 Wed Jun 25 09:40:24 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2599-9f00a416aa672ee0ec4886678c29bfe468e9d3869ee806ca892fb3a3dafe408a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-2904-0124 0000-0001-7012-324X 0009-0005-2716-5782 |
PQID | 3228987887 |
PQPubID | 2034909 |
PageCount | 10 |
ParticipantIDs | proquest_journals_3228987887 crossref_primary_10_1002_cav_70029 wiley_primary_10_1002_cav_70029_CAV70029 |
PublicationCentury | 2000 |
PublicationDate | May/June 2025 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May/June 2025 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: Chichester |
PublicationTitle | Computer animation and virtual worlds |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2015; 24 2010; 33 2023; 32 2018; 28 2013; 3 2010; 1 2019; 5 2015; 126 2023 2020; 30 2022 2021 2020 2023; 551 2019 1977; 30 2017 2020; 34 2013 2015; 9875 2022; 16 2016; 25 Xie B. (e_1_2_11_6_1) 2010; 1 Joy N. (e_1_2_11_9_1) 2019; 5 e_1_2_11_10_1 e_1_2_11_32_1 e_1_2_11_14_1 e_1_2_11_13_1 e_1_2_11_11_1 e_1_2_11_33_1 e_1_2_11_7_1 e_1_2_11_29_1 e_1_2_11_5_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_26_1 He K. (e_1_2_11_2_1) 2010; 33 e_1_2_11_3_1 Guo C.‐L. (e_1_2_11_21_1) 2022 Chen T. (e_1_2_11_30_1) 2020 Qiu Y. (e_1_2_11_34_1) 2023 Jiwani M. A. (e_1_2_11_12_1) 2013; 3 e_1_2_11_20_1 e_1_2_11_25_1 Liu X. (e_1_2_11_28_1) 2019 e_1_2_11_23_1 e_1_2_11_22_1 e_1_2_11_18_1 e_1_2_11_17_1 e_1_2_11_16_1 e_1_2_11_15_1 Zheng Y. (e_1_2_11_31_1) 2023 Yu L. (e_1_2_11_8_1) 2015 e_1_2_11_19_1 Liu Y. (e_1_2_11_24_1) 2023 |
References_xml | – volume: 30 start-page: 1100 year: 2020 end-page: 1115 article-title: Deep Retinex Network for Single Image Dehazing publication-title: IEEE Transactions on Image Processing – volume: 551 year: 2023 article-title: Visual Transformer With Stable Prior and Patch‐Level Attention for Single Image Dehazing publication-title: Neurocomputing – start-page: 627 year: 2021 end-page: 646 – start-page: 279 year: 2013 end-page: 292 – volume: 5 start-page: 305 year: 2019 end-page: 309 article-title: Fast Image Dehazing Method Based on Homomorphism Filtering and Contrast Enhancement publication-title: International Journal of Scientific Research and Engineering Trends – volume: 34 start-page: 11908 issue: 7 year: 2020 end-page: 11915 article-title: Ffa‐Net: Feature Fusion Attention Network for Single Image Dehazing publication-title: Proceedings of the AAAI Conference on Artificial Intelligence – start-page: 36 year: 2019 end-page: 40 – start-page: 12802 year: 2023 end-page: 12813 – volume: 24 start-page: 3522 issue: 11 year: 2015 end-page: 3533 article-title: A Fast Single Image Haze Removal Algorithm Using Color Attenuation Prior publication-title: IEEE Transactions on Image Processing – volume: 25 start-page: 5187 issue: 11 year: 2016 end-page: 5198 article-title: Dehazenet: An End‐To‐End System for Single Image Haze Removal publication-title: IEEE Transactions on Image Processing – volume: 33 start-page: 2341 issue: 12 year: 2010 end-page: 2353 article-title: Single Image Haze Removal Using Dark Channel Prior publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 28 start-page: 492 issue: 1 year: 2018 end-page: 505 article-title: Benchmarking Single‐Image Dehazing and Beyond publication-title: IEEE Transactions on Image Processing – start-page: 7314 year: 2019 end-page: 7323 – volume: 16 start-page: 2518 issue: 9 year: 2022 end-page: 2534 article-title: Two‐Stage Single Image Dehazing Network Using Swin‐Transformer publication-title: IET Image Processing – start-page: 4770 year: 2017 end-page: 4778 – volume: 32 start-page: 1927 year: 2023 end-page: 1941 article-title: Vision Transformers for Single Image Dehazing publication-title: IEEE Transactions on Image Processing – start-page: 5812 year: 2022 end-page: 5820 – start-page: 1597 year: 2020 end-page: 1607 – volume: 126 start-page: 2619 issue: 20 year: 2015 end-page: 2625 article-title: Enhancement of Low Exposure Images via Recursive Histogram Equalization Algorithms publication-title: Optik – start-page: 1406 year: 2023 end-page: 1415 – start-page: 10012 year: 2021 end-page: 10022 – start-page: 1014 year: 2019 end-page: 1018 – volume: 30 start-page: 76 year: 1977 end-page: 77 article-title: Optics of the Atmosphere: Scattering by Molecules and Particles publication-title: Physics Today – start-page: 1833 year: 2021 end-page: 1844 – start-page: 5785 year: 2023 end-page: 5794 – year: 2022 – year: 2020 – start-page: 6444 year: 2020 end-page: 6449 – volume: 1 start-page: 848 year: 2010 end-page: 851 article-title: Improved Single Image Dehazing Using Dark Channel Prior and Multi‐Scale Retinex publication-title: 2010 International Conference on Intelligent System Design and Engineering Application – volume: 9875 year: 2015 – volume: 3 start-page: 1 issue: 6 year: 2013 end-page: 6 article-title: Single Image Fog Removal Using Depth Estimation Based on Blur Estimation publication-title: International Journal of Scientific and Research Publications – start-page: 10551 year: 2021 end-page: 10560 – start-page: 987502 volume-title: Eighth International Conference on Machine Vision (ICMV 2015) year: 2015 ident: e_1_2_11_8_1 – ident: e_1_2_11_26_1 doi: 10.1109/APCC47188.2019.9026457 – ident: e_1_2_11_19_1 – ident: e_1_2_11_25_1 doi: 10.1049/ipr2.12506 – start-page: 5785 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_11_31_1 – start-page: 1406 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2023 ident: e_1_2_11_24_1 – ident: e_1_2_11_23_1 doi: 10.1016/j.neucom.2023.126535 – ident: e_1_2_11_13_1 doi: 10.1109/CVPRW53098.2021.00074 – volume: 1 start-page: 848 year: 2010 ident: e_1_2_11_6_1 article-title: Improved Single Image Dehazing Using Dark Channel Prior and Multi‐Scale Retinex publication-title: 2010 International Conference on Intelligent System Design and Engineering Application – ident: e_1_2_11_14_1 doi: 10.1109/ICCV.2017.511 – ident: e_1_2_11_11_1 doi: 10.2991/icmt-13.2013.35 – ident: e_1_2_11_17_1 doi: 10.1109/CVPR46437.2021.01041 – ident: e_1_2_11_22_1 doi: 10.1109/ICCVW54120.2021.00210 – ident: e_1_2_11_3_1 doi: 10.1063/1.3037551 – ident: e_1_2_11_4_1 doi: 10.1016/j.ijleo.2015.06.060 – volume: 3 start-page: 1 issue: 6 year: 2013 ident: e_1_2_11_12_1 article-title: Single Image Fog Removal Using Depth Estimation Based on Blur Estimation publication-title: International Journal of Scientific and Research Publications – ident: e_1_2_11_32_1 doi: 10.1109/TIP.2018.2867951 – volume: 33 start-page: 2341 issue: 12 year: 2010 ident: e_1_2_11_2_1 article-title: Single Image Haze Removal Using Dark Channel Prior publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – start-page: 5812 volume-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition year: 2022 ident: e_1_2_11_21_1 – ident: e_1_2_11_29_1 doi: 10.1109/ICCV48922.2021.00986 – ident: e_1_2_11_5_1 doi: 10.1109/TIP.2020.3040075 – ident: e_1_2_11_15_1 – ident: e_1_2_11_33_1 doi: 10.1109/ICIP.2019.8803046 – start-page: 1597 volume-title: International Conference on Machine Learning year: 2020 ident: e_1_2_11_30_1 – ident: e_1_2_11_18_1 – start-page: 7314 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2019 ident: e_1_2_11_28_1 – ident: e_1_2_11_7_1 doi: 10.23919/CCC50068.2020.9189214 – ident: e_1_2_11_20_1 doi: 10.1109/TIP.2023.3256763 – ident: e_1_2_11_27_1 doi: 10.1109/TIP.2016.2598681 – start-page: 12802 volume-title: Proceedings of the IEEE/CVF International Conference on Computer Vision year: 2023 ident: e_1_2_11_34_1 – ident: e_1_2_11_16_1 doi: 10.1609/aaai.v34i07.6865 – volume: 5 start-page: 305 year: 2019 ident: e_1_2_11_9_1 article-title: Fast Image Dehazing Method Based on Homomorphism Filtering and Contrast Enhancement publication-title: International Journal of Scientific Research and Engineering Trends – ident: e_1_2_11_10_1 doi: 10.1109/TIP.2015.2446191 |
SSID | ssj0026210 |
Score | 2.3714538 |
Snippet | ABSTRACT
Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer... Convolutional neural networks have a long history of development in single‐width dehazing tasks, but have gradually been dominated by the Transformer framework... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Artificial neural networks contrastive regularization image dehazing Modelling Modules Regularization Regularization methods Swin Transformer U‐Net |
Title | UTMCR: 3U‐Net Transformer With Multi‐Contrastive Regularization for Single Image Dehazing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcav.70029 https://www.proquest.com/docview/3228987887 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQJxh4I8pLFmJgSWucxHFgqgoVINGhtNABFNnphSKgoCZlYOIn8Bv5JZydpjwkJMQWxU6U3PnuPid33xGyIwKu3dj3nUBxZUpyXEcxr-egcWF4wpAuA1PgfNYUxx3vtOt3p8hBUQuT80NMPrgZy7D-2hi40mn1kzQ0Vs-VwPxUQv9rcrUMIGpNqKO44DkTge8Jx2wTClYhxquTK7_Hok-A-RWm2jjTmCNXxRPm6SV3lVGmK_HLD_LGf77CPJkd409ayxfMApmCwSKZubhNR_nZdIlcd9pn9dY-dTvvr29NyGi7ALcwpJe3WZ_aql0cNNRWQ5Uaj0lbtqn9cFzWSXE6PceweA_05AF9Fj2EvmGyvlkmncZRu37sjLswODFujUInTBhTCNuUQr0CMIjR5gXGuJiHOgFPSAh7rhQhgGQiVjLkiXaV21M4yKRyV0hp8DiAVUJdoXkSSE8bDiDmg-55CdOJlAkkexB6ZbJd6CN6ysk2opxWmUcoq8jKqkw2Ck1FY3tLI3RLMpQmM7JMdq3If79BVK9d2IO1v09dJ9PcNP61mY4bpJQNR7CJaCTTW3bZfQCbcNuH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB5ReqAc6C9iKW0tRKVeshgncZxKPaDdot3C7mG7S7mgYGcngGi31Sbbqj3xCDxIX4WX4Ek6zs9CkZC4cOAWxZbleP4-OzOfAdZkIIwb-74TaKFtSY7raO4NHTIuCk8U0lVgC5w7XdkaeJ_2_L0Z-FvVwhT8ENMDN2sZub-2Bm4PpNcvWUNj_bMe2L9KZUrlNv7-RRu29EO7SdJ9K8TWx36j5ZR3CjgxAf3QCRPONYEQrWmWiBxj0mBJHjsWoUnQkwrDoatkiKi4jLUKRWJc7Q41NXKlXRr3ATy0N4hbpv5mb0pWJaQouA98Tzp2Y1LxGHGxPp3q_9HvEtJeBcZ5ZNt6DOfVmhQJLSf1SWbq8Z9rdJH3ZdGewEIJsdlmYRNPYQZHz2B-9zidFG_T57A_6HcavffMHVycnnUxY_0Kv-OYfTnOjlhemEyNlr1rrFMbFFgPD23Sblm5yqg7-0yR_yuy9jdyy6yJR5as-_AFDO7k-xZhdvR9hEvAXGlEEijPWJoj7qMZegk3iVIJJhsYejVYrRQg-lHwiUQFc7SISDZRLpsarFSqEZUuJY3I86pQ2eTPGrzLZXzzAFFjczd_WL591zcw1-p3dqKddnf7JTwS9p7jPLFzBWaz8QRfEfjKzOtc5xkc3LW-_ANFEjpi |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VIiF64B91oYCFQOKSrXESx0biUO2y6lK6Qstu6QUFOxm3FbBUmywITjwC78Gr8BQ8CeP8bAEJiUsP3KLYshzP32dn5jPAPZkIG2ZxHCRGGF-SEwaGR3lAxkXhiUK6SnyB8-5Ibk-jp_vx_gp8a2than6I5YGbt4zKX3sDP87d5glpaGY-dBP_U6nJqNzBTx9pv1Y8HvZJuPeFGDyZ9LaD5kqBICOcrwPtODeEQYyhSSJyzEiBJTnsTGjrMJIKdR4qqREVl5lRWjgbmjA31MiVCWncM3A2klz7eyL64yVXlZCipj6IIxn4fUlLY8TF5nKqvwe_E0T7Ky6uAtvgInxvl6TOZ3nTXZS2m33-gy3yP1mzS3ChAdhsq7aIy7CCsyuwtndULOq3xVV4NZ3s9saPWDj98eXrCEs2adE7ztnLo_KQVWXJ1Oi5u-am8CGBjfHAp-w2dauMurMXFPffIhu-I6fM-njoqboPrsH0VL7vOqzO3s9wHVgorXCJiqwnOeIx2jxy3DqlHLqHqKMO3G3lnx7XbCJpzRstUpJNWsmmAxutZqSNQylS8rtKK5_62YEHlYj_PkDa29qrHm78e9c7cO55f5A-G452bsJ54S85rrI6N2C1nC_wFiGv0t6uNJ7B69NWl59FpTkR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UTMCR%3A+3U%E2%80%90Net+Transformer+With+Multi%E2%80%90Contrastive+Regularization+for+Single+Image+Dehazing&rft.jtitle=Computer+animation+and+virtual+worlds&rft.au=Xu%2C+HangBin&rft.au=Zou%2C+ChangJun&rft.au=Lin%2C+ChuChao&rft.date=2025-05-01&rft.issn=1546-4261&rft.eissn=1546-427X&rft.volume=36&rft.issue=3&rft_id=info:doi/10.1002%2Fcav.70029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cav_70029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-4261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-4261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-4261&client=summon |